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Genome-wide meta-analysis identifies 22 loci
for normal tension glaucomawith significant
overlap with high tension glaucoma
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Primary open-angle glaucoma typically presents as two subtypes. This study
aimed to elucidate the shared and distinct genetic architectures of normal-
tension (NTG) and high-tension glaucoma (HTG), motivated by the need to
develop intraocular pressure (IOP)-independent drug targets for the disease.
We conducted a comprehensive multi-ethnic meta-analysis, prioritized var-
iants basedon functional annotation, and exploreddrug-gene interactions.We
further assessed the genetic overlap between NTG and HTG using pairwise
GWAS analysis.We identified 22 risk loci associatedwithNTG, 17 of which have
not previously been reported for NTG. Two loci, BMP4 and TBKBP1, have not
previously been associated with glaucoma at the genome-wide significance
level. Our results indicate that while there is a significant overlap in risk loci
between tension subtypes, the magnitude of the effect tends to be lower in
NTG compared to HTG, particularly for IOP-related loci. Additionally, we
identified a potential role for biologic immunomodulatory treatments as
neuroprotective agents.

Primary open-angle glaucoma (POAG) is a chronic andprogressive optic
neuropathy that is characterized by damage to the optic nerve and loss
of vision1. It is a leading causeof irreversibleblindness, and itsworldwide
prevalencewas estimated tobe around 2.4% in 20212. POAG is oneof the
most heritable diseases3 and typically presents as two subtypes: high-
tension glaucoma (HTG) and normal-tension glaucoma (NTG).

HTG is defined as POAG in patients with intraocular pressure
(IOP) ≥ 21mmHg, and it is usually associated with the ocular hyperten-
sion process, in which high IOP is the main risk factor in the disease
progression4. NTG is defined as POAG in patients with IOP consistently
measured <21mmHg, and is believed to be more related to specific

processes such as vascular dysregulation and ischemia5,6. However, the
stratification of POAG by IOP is controversial whereby different tension
subtypes may be part of the same pathogenic process7 versus the claim
that primary neurodegeneration features aremore prominently inNTG8.

The current treatments for NTG/HTG aim to lower IOP, which
can slow disease progression9,10. Yet, over 50% of POAG cases are not
diagnosed until there is irreversible optic nerve damage11. This
highlights the importance of developing more accurate screening
methods to identify individuals at high risk for NTG earlier in the
disease process. In addition, a deeper understanding of the genetics
of the neurodegenerative process of glaucoma could help develop
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neuroprotective treatments, which are currently unavailable12, by
inhibiting the pathogenic cascade that leads to nerve damage.

In this work, we aimed to untangle the shared and specific genetic
architecture between the glaucoma tension subtypes and identify spe-
cific loci for NTG, which could lead to a more accurate risk assessment
and screening prioritization. We also used our gene-discovery approach
to highlight possible neuro-protective drug targets for POAG.

Results
Multitrait meta-analysis
Throughout our study, we used a two-stage meta-analysis approach.
The first stage included European data from the IGGC, UK Biobank,
CLSA, and VCDR. Upon validating the initial results on Asian partici-
pants from IGGC and Europeans using Finngen data, the second stage
incorporated these datasets along with the results from the first stage.

This study identified 22 independent loci associated with NTG by
meta-analyzing multiple ethnicities and traits (Fig. 1). The first stage
MTAG analysis found 11 genome-wide significant risk loci, nine of
which replicated after Bonferroni correction for multiple testing
(P < 0.05/11) and the remaining two at nominal significance (P < 0.05)
in Finngen; see Supplementary Data 1. In the IGGCAsianmeta-analysis,
three were replicated after Bonferroni correction and five at nominal
significance (Supplementary Data 1). Three loci did not replicate in
IGGC Asians (rs6054248, rs57831033, and rs6539772), and two,
rs66998222 and rs2971831, did not replicate after correction for mul-
tiple testing in FinnGen, however, all of them maintained the same
direction of effect. The resulting meta-analysis demonstrated low
genetic inflation (λGC= 1.08; see Q–Qplot in Supplementary Fig. 1), an
LDSC intercept of 1.02 (SE =0.007), and an array heritability estimate
of 0.22 (SE =0.05) for NTG in Europeans. We further validated the
consistency of the results between stage one and stage two of the
meta-analysis using an IVW approach (r =0.99, P = 1.7e-11); as per

Supplementary Fig. 2. Examination of all the loci across the genome
using the GWAS pairwise method (GWAS-PW) indicated that the risk
loci are shared across NTG and HTG (PPA >0.8), consistent with the
high genetic correlation (rg) between HTG and NTG (rg = 0.84, se =
0.07 P = 5.1e−33).

For the genome-wide significant NTG loci from our stage-one
model, we found a high correlation (r =0.89, P =0.003) between the
effect size on NTG for the European discovery sample datasets and the
effect sizes estimated in the IGGC Asian NTG datasets (Fig. 2A). The
correlation was even higher (r =0.99, P = 1.5e−8) when comparing the
European discovery sample NTG datasets and NTG in FinnGen
(Fig. 2B). We further tested the correlation of effect sizes between the
MTAG-independent NTG genome-wide significant loci and the pub-
lished IGGC POAG GWAS, which revealed a lower correlation than the
results obtained from NTG in Finngen (Fig. 2C). Similarly, the corre-
lation between the effect sizes of the risk loci associated with POAG13

and NTG in FinnGen was smaller (r =0.53, P <0.001); as shown in
Supplementary Fig. 3.

The second stage of themeta-analysis across ethnicities (i.e., joint
analysis of the discovery and validated datasets from stage 1) found 22
independent genome-wide significant loci associated with NTG (Sup-
plementary Data 2), 17 have not been identified for NTG and two loci
(MIR5580/BMP4 and KPNB1/TBKBP1) have not been associated at the
genome-wide significant level with any glaucoma subtype. However,
some of these loci have been previously associated at a genome-wide
significant level with primary open-angle glaucoma (16/22), high-
tension glaucoma (7/22), and someglaucoma endophenotypes suchas
IOP (9/22) and VCDR (21/22); VCDR has been previously associated
with MIR5580 and KPNB1.

The effect size of the genome-wide significant loci tends to be
lower in NTG when compared with HTG (Fig. 3); on average, the HTG
effects on the log(OR) scale were 1.6 times higher (SE = 0.13) based on

Fig. 1 | Manhattan plot based on the meta-analysis of normal tension
glaucoma (NTG). Each dot (N = 22) represents a single nucleotide polymorphism
(SNP), and the red line represents the threshold for multiple testing correction

(p < 5 × 10−8) and blue line p < 5 × 10−6; p-values derived from logistic regression
models are two-sided. Previously unidentified loci are highlighted in purple and
represented in the plot as red dots, while known loci are in black.
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an inverse variance weighting regression of the effect sizes. This dif-
ference was larger for IOP loci (P < 0.05 for IOP), with the HTG effects
being 1.9 times higher (SE = 0.2) thanNTG compared with non-IOP loci
(P > 0.05 for IOP) where the HTG effects were only 1.2 times higher
(SE = 0.09). Seven loci showed statistically significantly different
magnitudes of effect between NTG and HTG after multiple testing
corrections (P < 0.002; 0.05/22 loci), as shown in Supplementary
Data 2. Four loci (rs2472493, nearest gene is ABCA1, rs12602519,
nearest gene is GAS7, rs4657477, nearest gene is TMCO1, and
rs2745572, nearest gene is FOXC1) were consistently using SNP effect
sizes from clinically diagnosed NTG in FinnGen and IGGC.

Functional annotation and drug-gene interaction
Gene-based analysis in mBAT-combo on 18,766 genes identified 25
genes associated with NTG (P < 0.05/18,766) (Supplementary Data 3),
and gene-set enrichment analysis in MAGMA identified a biological
process “go_response_to_laminar_fluid_shear_stress” that is likely
associated with the etiology of NTG (P < 2.7e−6). Although gene-based
analysis did not identify additional risk loci over and above the SNP-
based analysis, it provided gene-based support for the association of
genes within the two loci (MIR5580/BMP4 and KPNB1/TBKBP1/
EFCAB13), which were not previously associated at the genome-wide

significant level with any glaucoma phenotype. The results of the
conditional analysis in GCTA-COJO for the top SNP of KPNB1
(rs7220935) and EFCAB13 (rs9894179) suggest that this could be part
of the same signal at the TBKBP1 locus, as the signal for TBKBP1 did not
remain in the conditional analysis. Similarly, the signal forMIR5580 did
not remain after the analysis was conditioned forBMP4, indicating that
it is likely the same locus, as shown in Supplementary Figs. 12–15.
KPNB1 has been previously associated with snoring14, hemoglobin
levels15, and Body Mass Index (BMI)16.

Single-cell expression results showed a statistically significant
association between the expression of BMP4 and NTG in serotonin
transporter neurons that were exposed to rotenone-induced oxidative
stress. Expression of two other genes, ALDH9A1 andMGST3, were also
associated with NTG in neuron or neuron-like cells; however, these
associations were nominally significant or had a HEIDI P <0.05, likely
depicting heterogeneity in the association; as per Supplementary
Data 5. Results for BMP4were also consistent withmulti-omics analysis
whereMIR5580/BMP4 (rs12893484)was associatedwithmethylation at
a DNA promoter region (cg16720578), with a posterior probability of
association greater than 0.9 for a combined effect of changes in gene
expression and methylation of BMP4 in development of NTG. Results
from eQTL on peripheral blood using the SMR framework also found
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Fig. 2 | Correlation of the allele effect estimates using a two-sided linear model
between multitrait analysis of European ancestry (EUR) and two independent
cohorts, FinnGen and the Asians in the International Genetics of Glaucoma
Consortium (IGGC). Effects estimate (Beta) are presented as center points and

black crosses represent 95% confidence intervals. A Correlation of the effect esti-
mates between theNTGof EUR and IGGCAsians (N = 8),BNTGof EUR and FinnGen
(N = 11) and C NTG of EUR and POAG (N = 11).
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an association with NTG and 6 genes, as per the supplementary Data 6,
including TBKBP1, however, only ITGB3 association remained sig-
nificant after assessing for heterogeneity (P >0.05 [HEIDI]). We further
assessed the expression profile using retinal eQTL data, but the results
were inconclusive, likely due to a lower sample size of the retinal
eQTL data.

Results from DBIbd found interactions between four genes (i.e.,
ABCA1, CDKN2A, CDKN2B, and ITGB3) and 42 drugs, as shown in
Supplementary Data 4. Of interest, CDKN2A, CDKN2B, and ITGB3, are
genes that have been previously associated with the neurodegen-
eration of the optic nerve and had the majority of the drug-gene
interactions (36/42). Highlighting a potential role for biologic
immunomodulatory treatments as neuroprotective agents; as per
Supplementary Data 4.

Discussion
We conducted a GWAS and identified 22 independent loci associated
with NTG, thereby expanding our understanding of the genetic
architecture underlying the condition. Gene enrichment analysis and
SNP-based tests identified two loci, BMP4 and TBKBP1, which had not
previously been associated at a genome-wide significant level with any
glaucoma subtype.

TBKBP1 is an adaptor protein that binds to TANK-binding kinase 1
(TBK1), a gene known to be involved in various cellular processes,
including inflammation, autophagy, and the innate immune
response17. Previous studies have shown an association between TBK1
mutations and NTG, where gene duplications and triplications have
been associated with early-onset familial NTG1,18,19. Consistent with
these studies, our results highlight an association between TBKBP1 in
peripheral blood and NTG. These findings support the potential
involvement of the adaptor protein TBKBP1 in the develop-
ment of NTG.

Through this study, we also found an association between BMP4
and NTG, an association that was confirmed through multi-omics
analysis. Bone Morphogenetic Protein 4 (BMP4) has been associated
with retinal ganglion cell integrity in mouse models20. There is a well-
known interaction between BMP4 and TGF-β that could play a sig-
nificant role in NTG pathogenesis through effects on the trabecular
meshwork and optic nerve head21,22. TGF-β2 is significantly upregulated
in patients with glaucoma21, and increased concentrations of TGF-β
have been observed in the aqueous humor and reactive optic nerve
astrocytes of individuals diagnosed with POAG23. It has also been
suggested that BMP4 acts as an endogenous inhibitor of TGF-β2within
the human trabecular meshwork and aids in controlling the increased
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accumulation of extracellular matrix protein deposits24, thereby
maintaining IOP within normal limits.

Our Europeanmeta-analysis revealed a consistent loci effectwhen
compared to two independent cohorts, Finngen and the Asian meta-
analysis of IGGC. Although our first stage meta-analysis used proxy
phenotype information for NTG (based on IOP < 21mmHg, as well as
VCDR), the results replicated well in IGGC and Finngen with clinically
diagnosed NTG. Notably, three loci were not present in the Asian
population, one of which corresponded to the TMCO1 region where
the key SNP (rs4657477) is monomorphic in Asians. Given the higher
prevalence of NTG in Asian populations25, the absence of a TMCO1-
related variant could be expected as this gene is likely associated with
higher IOP26.

Genes such as FOXC1 are likely to have a primary effect on IOP but
also a secondary effect on VCDR, as a result of the pressure effect. In
our study, we adjust for IOP to focus our efforts on identifying loci that
act on VCDR in a way that is relatively unaffected by IOP. In the second
stage of the meta-analysis, we sought to leverage the effect of known
variants in genes such as CDKN2BAS and SIX1, which affect VCDR with
little or no impact on IOP, across the genome. These results still showa
high genetic correlation between HTG and NTG, with shared risk loci
across the genome. However, further analysis revealed that NTG loci
could be divided into two groups, ‘neurodegenerative-driven’ (VCDR-
related) and ‘IOP-driven’. Genes in the IOP-driven group (e.g., TMCO1,
GAS7, ABCA1) had a much larger effect on HTG than on NTG, while
genes in the neurodegenerative-driven group (e.g., SIX6/BICC1,
CDKN2BAS, MTMC2, CASC20) had a similar effect on both HTG and
NTG risk. This suggests that the observed 1.6-fold increased effect on
HTG compared to NTG is a result of a combination of two types of
genetic variants, where the neurodegenerative-driven loci have a
similar effect size on bothHTG andNTG, while the IOP-driven loci have
a much larger effect size on HTG than on NTG. Future studies of NTG
may be able to leverage this further to estimate more accurate effect
sizes, which could benefit some types of analysis, such as polygenic
risk scores.

The genetic analysis of drug-gene interactions revealed a sig-
nificant interaction between four genes and several drugs. Specifically,
ABCA1 had an interaction with some cholesterol-lowering medications
such as Probucol, Simvastatin, Pravastatin, and Atorvastatin. These
drugs have been studied for their potential neuroprotective effects in
animal models of glaucoma, and some have been found to lower IOP
and improve retinal ganglion cell survival27,28. However, no drug-gene
interactions associated with the neurodegeneration of the optic nerve
(CDKN2A, CDKN2B and ITGB3) have been specifically proposed or
studied as treatments for glaucoma and further research is necessary
to evidence if these could be potential targets for neuroprotective
treatments.

It is important to highlight that our results were limited by sta-
tistical power to identify loci with a small effect, warranting larger
studies to identify such loci. We have shown that the VCDR-driven loci
are shared across NTG and HTG, with similar effect sizes. For the IOP-
driven loci, the largest ones affect NTG, although the effect size on
NTG for such loci is much smaller than it is on HTG. Additionally, while
our results were replicated in Asians, where NTG is more prevalent,
further research is needed to validate our proposed explanations in
other ethnic groups.

A limitation of our study is the reliance on IOP measurements,
which includedparticipantswhohad tonometryup tofive years before
or after the diagnosis of glaucoma. This introduces a risk of mis-
classification, particularly given that glaucoma diagnoses were self-
reported in CLSA. While our two-stage approach to analysis mitigates
some of these concerns by reducing the likelihood of false positives, it
may increase the heterogeneity of the sample and the potential for
false negatives. Consequently, while the loci identified in this study are

likely robust, additional loci associated with NTG may remain
undetected.

To conclude, our study identified 22 independent loci associated
with NTG and revealed a high genetic correlation between NTG and
HTG. We also found an association between two genes, NTG, BMP4,
and TBKBP1, that have not been previously associated at a genome-
wide level with any type of glaucoma. This highlights an important
consistent association of the TANK-binding kinase 1 (TBK1) in the
development of NTGand a role ofBMP4 in NTG etiology, as underlined
by our multi-omic analysis.

Despite the high genetic overlap, we have shown that IOP-related
loci tend to have smaller effect sizes for NTG compared to HTG while,
loci that are independent of IOP have similar effect sizes for NTG and
HTG. This suggests that, even though shared mechanisms may lead to
thedevelopment ofmajor POAGsubtypes, certain genetic profilesmay
be more sensitive to the ocular hypertension process. However, the
presence of specific loci in NTG that are not associated with HTG at a
genome-wide significant level might imply the existence of distinct
mechanisms that primarily contribute to neurodegeneration, leading
to ocular neuropathy and that are exacerbated by a comorbid increase
in ocular pressure.

Methods
Study design and participants
To identify risk loci specific to NTG, we conducted a large multi-trait
meta-analysis of genome-wide association studies (GWAS) across
individuals of European and Asian descent. The European ancestry
NTG data included the International Genetics of Glaucoma Con-
sortium (IGGC; 3247 cases and 47,997 controls), UK Biobank (UKB;
2184 cases and 7000 controls), Canadian Longitudinal Study on Aging
(CLSA; 755 cases and 3000 controls), FinnGen (Release 8, 1756 cases
and326,434 controls), and a structuralmeasurementof the integrity of
the optic nerve, vertical cup-to-disk ratio (VCDR, N = 97,939 partici-
pants). VCDR estimates were obtained from UKB and CLSA partici-
pants of European ancestry29. The Asian NTG data included a GWAS
meta-analysis of 4418 cases and 34,303 controls from Hong Kong,
Singapore, and Japan.

Glaucoma was self-reported in CLSA following diagnosis by a
clinician as per the report in the item ‘ICQ_GLAUC_COM’ (Has a doctor
ever told you that you have glaucoma?)30,31. UK Biobank was restricted
to glaucoma diagnosed under the International Classification of Dis-
eases (ICD) 10 criteria, without specific classification for HTG or NTG.
Thus, participants with a diagnosis of glaucoma and IOP under
21mmHg were considered NTG cases in UKB and CLSA, provided that
the tonometry to measure IOP was performed within 5 years of the
glaucoma diagnosis. However, to ensure consistency in results when
IOPmeasurements are taken closer to the time of glaucoma diagnosis,
we re-ran the analysis to include participants who had tonometry
within one year of their diagnosis. The results were consistent, but the
power decreased due to a reduction in the number of ‘probable NTG’
participants by approximately 4.5-fold, as shown in Supplementary
Fig. 16. Maximum IOP was used when multiple measurements were
present. Patients receiving glaucoma medication or those who had
undergone surgery to decrease the IOP at the time of the tonometry
were excluded from the analysis in UKB and CLSA. Controls were
randomly selected fromUKB and CLSA datasets,maintaining a ratio of
1:3, from a pool of individuals who had no reported ocular conditions.
Given that UKB and CLSA cases were not clinically diagnosed with
specificity for tension subtypes,we considered them as “probableNTG
cases” and used them as a separate phenotype in the multi-trait meta-
analysis. NTG was clinically diagnosed (in person or confirmed with
medical records) in IGGCand FinnGen. Detailed information regarding
recruitment, genotyping, andquality control are describedwithin their
respective publications32,33.
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Genome-wide association studies (GWAS)
GWAS analysis was performed using UKB and CLSA participants of
European ancestry determined through principal component analysis.
We used Regenie v 2.3.4, a machine-learning method34, to run the
GWAS. We included sex, age, and 10 principal components as covari-
ates in the model. We meta-analyzed the UKB and CLSA results using
METAL, a software to meta-analyze genome-wide association scans35.
For IGGCNTGandVCDRdata, we used the previously publishedGWAS
summary statistics13,29. The VCDRGWASwas adjusted for IOP using the
mtCOJO, a method to adjust estimates for the effect of another trait
using GWAS summary statistics. For FinnGen, we used the release 8
normotensive glaucoma GWAS (https://r8.finngen.fi/pheno/H7_
GLAUCOMA_NTG).

Multitrait meta-analysis
We used multi-trait analysis of GWAS (MTAG), version 2020080, a
method for the joint analysis of summary statistics from genome-wide
association studies (GWAS) of correlated traits36, and an inverse var-
iance weighting meta-analysis approach through METAL, version
20211102, to enhance the power for discovering NTG risk loci. MTAG
leverages the genetic correlation between correlated traits to boost
the statistical power for the GWAS of each input trait. We conducted a
two-stage multi-trait meta-analysis.

The first stage entailed a meta-analysis using METAL, incor-
porating NTG probable cases from the UKB and CLSA. Subse-
quently, the results of the UKB and CLSA meta-analysis, vertical
cup-disc ratio (VCDR) adjusted for intraocular pressure (IOP), and
clinically diagnosed NTG cases of European ancestry from the
International Glaucoma Genetics Consortium (IGGC) were inte-
grated into a multi-trait meta-analysis using MTAG. This first
stage aimed to enhance the statistical power of IGGC NTG cases
of European ancestry.

Loci identified as independent and genome-wide significant
(P < 5e−8) in the first-stage analysis were validated using an inverse
variance weighting approach in independent datasets (i.e., FinnGen
and Asian IGGC). Upon validation of the first-stage results, we jointly
analyzed phenotypes that were clinically diagnosed (i.e., IGGC in Eur-
opeans and Asians, FinnGen) using METAL and then used MTAG to
incorporate the probable NTG cases of UKB and CLSA, and IOP-
adjusted VCDR. The second stage resulted in an overall sample size of
7942 cases and 384,431 controls, with VCDR values available for 97,939
participants. VCDR data from UKB and CLSA were used for their high
correlation with the clinically diagnosed phenotype, aiming to boost
the statistical power of the associations.

To compare HTG and NTG, we used the HTGGWAS published by
Gharahkhani et al. 13 based on 5144 HTG cases and 76,997 controls.
We further compared the magnitude of the effect of the risk loci
between NTG and IOP26, vertical cup-to-disk ratio29 and POAG13. The
difference inmagnitude of effect between theMTAGNTG results and
previously published results for HTG and between FinnGen NTG and
HTG was estimated using the equation below. Given the strong cor-
relation between the two phenotypes, we decided to include the
method described in Randall et al. 37, which accounted for differ-
ences between NTG and HTG effect estimates βhtg, βntg and corre-
sponding standard errors SEhtg, SEntg using t statistics and adjusting
for HTG and NTG correlation, where r was computed as the genetic
correlation coefficient across all the loci; effects were estimated on
the log(OR) scale:

t =
βhtg � βntg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2htg + SE
2
ntg � 2r � SEhtg � SEntg

q ð1Þ

The genetic correlation between HTG and NTG was evaluated
using linkage disequilibrium score regression (LDSC). LDSC is a

technique that estimates the genetic correlation between phe-
notypes by analyzing GWAS summary statistics, while also taking
into consideration factors such as overlapping samples and
polygenicity38. We used the 1000 Human Genome Project refer-
ence panel for LDSC estimations. Additionally, LDSC was utilized
to estimate the LD-Score intercept and heritability of NTG in
individuals with European ancestry.

We then compared differences in the genetic architecture of
NTG andHTGusing the GWASpairwisemethod (GWAS-PW)39. GWAS-
PW is a method that evaluates the genetic overlap over specific
genomic regions by splitting the genome into 1703 segments and
estimating the posterior probability of four different models: (1) the
region is unique to NTG, (2) unique to HTG, (3) shared with both with
a common causal variant and (4) sharedwith bothwithout a common
causal variant.

Functional annotation and drug–gene interaction
To improve our power to detect genes associated with NTG, we
employed a Gene-based association test, mBAT-combo v 1.94.1, a
method that is considered robust to detect SNPs with masking
effects40. We corrected for multiple testing using a Bonferroni
approachgivenby the number ofgenes tested in the analysis (α = 0.05/
18,766 [genes], P < 2.7e−06). We further performed conditional ana-
lysis using GCTA-COJO v 1.91.7 to identify independent genetic signals
in low linkage disequilibrium41. To find biological pathways associated
with NTG, we used gene-set tests in the program Meta-Analysis Gene-
set Mining of GWAS (MAGMA) v 1.08. We applied Bonferroni correc-
tion for multiple testing, accounting for the total number of gene-sets
tested (α = 0.05/15,483 [gene-sets], P < 3.3e−06).

We then leveraged omics data to explore the functional relevance
of the genes identified in the mBAT-combo gene-based analysis. First,
we used summary-data-based Mendelian randomization (SMR) (Zhu
et al.42), v 1.3.1, to identify putative causal associations between gene
expression and NTG based on eQTL data from peripheral blood of 2765
individuals from the Consortium for the Architecture of Gene Expres-
sion (CAGE)43 and retinal eQTL data from 453 individuals44. We then
conducted an in-depth analysis of cell-type specific transcriptomic
profiles in retinal ganglion cells, themost relevant cells implicated in the
development of NTG. This analysis employed single-cell RNA-sequen-
cing data derived from 23 distinct sub-populations of retinal ganglion
cells, which collectively constituted a sample comprising 247,520 cells45

and over one million neuron-like cells, including cells that had been
exposed to rotenone to induced oxidative stress46. These neurons
encompassed a diverse range, including dopaminergic neurons, ser-
otonin transporters, astrocyte-like cells, ependymal cells, and cell clus-
ters undergoing neuronal differentiation. For the assessment of gene
expression acrossmultiple cell lines in relation toNTG,weemployed the
SMR method. Additionally, to account for multiple testing, we applied
the Bonferroni correction technique, considering the effective number
of independent genes being analyzed (α =0.05/25 [genes], p<0.002).

We further assessed the multi-omic profile of genes that were
consistent between the gene-based and sc-RNA Seq-based approach
through the Omics Pleiotropic Association (OPERA), v 1.0.0. OPERA is a
Bayesianmethod that integrates the SMR andHEIDI approach formulti-
omics analysis, aiming toprovide further interpretation of the biological
mechanisms underlying GWAS signals and to prioritize molecular
phenotypes47. This analysis incorporates the single-cell RNA-sequencing
data, described in the previous paragraph, methylation profile based on
mQTL of peripheral blood samples from 1980 participants48 and eQTL
data from the peripheral blood of 2765 individuals from theConsortium
for the Architecture of Gene Expression (CAGE)43.

Genes that reached genome-wide significance in the mBAT-
combo gene-based tests were included for drug–gene interaction
using the Drug–Gene Interaction Database (DBIbd) v 4.049 to identify
genes that could be prioritized for targeted therapy or drug
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development. DBIbd is a scientifically curated database that provides
information on known and predicted interactions between drugs and
genes. It integrates data from multiple sources to provide a compre-
hensive overviewofdrug–gene interactions and is commonlyused as a
resource for evaluating the potential impact of genetic variation on
drug response.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary data for themeta-analysis generated in this study
is available on Zenodo [https://doi.org/10.5281/zenodo.14010557].
Individual-level data from the UK Biobank were accessed under
application number 25331, and CLSA data under application number
190225. Researchers may obtain access to these datasets by applying
directly to each cohort: UK Biobank (https://www.ukbiobank.ac.uk/)
and CLSA. GWAS data from the IGGC in European and Asian popula-
tions used in this study are available upon request to the corre-
sponding authors of Gharahkhani et al. 13; the POAGGWASdata used in
this study can be accessed via the GWAS Catalog (GCST90011766).
FinnGen normotensive glaucoma GWAS data used in this study is
accessible at https://r8.finngen.fi/pheno/H7_GLAUCOMA_NTG. The
GWAS summary statistics for vertical cup-disc ratio (VCDR) GWAS
used in this study are available at https://xikunhan.github.io/site/
publication/. Bulk and single-cell eQTL data used in this study,
including peripheral blood and retinal datasets, are accessible at
https://yanglab.westlake.edu.cn/software/smr/#DataResource, with
additional retinal single-cell RNA-seq data accessible upon request to
the corresponding authors of Daniszewski et al. 45. Neuronal single-cell
RNA-seq data from Jerber et al. 46 can be found on Zenodo (https://
zenodo.org/record/3625024).Methylation profile datasets used in this
study are accessible at https://yanglab.westlake.edu.cn/software/
smr/#DataResource, and drug target data were obtained from DGIdb
(https://www.dgidb.org/). Supplementary data for Figs. 1–3 are inclu-
ded in Supplementary Data 7–9.

Code availability
The code used in this study is available upon request to the corre-
sponding authors. Scripts will be provided to the requester within one
to five business days.
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