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Solitary wave solutions to the nonlinear evolution equations have recently attracted widespread 
interest in engineering and physical sciences. In this work, we investigate the fractional generalised 
nonlinear Pochhammer–Chree equation under the power-law of nonlinearity with order m. This 
equation is used to describe longitudinal deformation wave propagation in an elastic rod. In this study, 
we have secured a variety of exact solitary wave solutions by the assistance of the recently developed 
technique known as modified generalized exponential rational function method. Exact solutions 
of various categories, such as bright-dark, bright, mixed, singular, dark, complex, and combined 
solitons, are extracted. The applied approach is highly efficient and has a significant computational 
capability to efficiently tackle the solutions with a high degree of accuracy in nonlinear systems. To 
analyze the governing system, the equation under investigation is converted to an ordinary differential 
equation through the application of a suitable wave transformation with a β-derivative. In addition to 
illustrate the behavior of the solution at various parameter values, we generate 2D and 3D graphs that 
incorporate pertinent parameters. Moreover, the Galilean transformation is employed to investigate 
the sensitivity analysis. This research’s results have the potential to enhance comprehension of 
the nonlinear dynamic characteristics displayed by the defined system and to verify the efficacy of 
the strategies that have been implemented. The results obtained are a substantial contribution to 
the comprehension of nonlinear science and nonlinear wave fields that are associated with higher 
dimensions.

Keywords  Modified generalized exponential rational function method, Solitons, Generalised nonlinear 
Pochhammer–Chree equation, β-fractional derivative, Power-law nonlinearity

Nonlinear partial differential equations (NLPDEs) have a considerable influence on the study of nonlinear 
physical sciences. These equations are often used to elucidate many intricate natural phenomena. NLPDEs are 
mainly used to characterize the behaviors of waves in the form of solitons and solitary waves. As a result, the 
investigation of nonlinear waves plays a substantial role in our daily lives and in a variety of research fields, 
including hydrodynamics1, fluid dynamics and mechanics2, earth science3, solid-state physics4, water waves5, 
chaos theory6, quantum mechanics7, and many others. These expanded models encouraged a multitude of 
potential research projects and significantly elucidated the physical properties of engineering and physics 
applications. Consequently, the study of NLPDEs has consistently attracted considerable interest in recent 
years. Nonlinear differential equations represent various scientific experimental models. To comprehend the 
intrinsic characteristics of the nonlinear model, analytical and accurate solutions to the models are essential. 
It is necessary to investigate the solutions and characteristics of NLPDEs in order to understand the structure 
they represent. Researchers have developed a number of efficient methods using symbolic computations to 
ensure the accuracy of soliton solutions to NLPDEs. Numerous problem-solving methods have their own 
advantages and requirements when used in management models. NLPDEs are now widely recognized as the 
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most comprehensive way for defining the physical significance of nonlinear scenarios occurring in the fields of 
science and engineering.

Numerous studies have demonstrated the characteristics of soliton solutions and their applications in various 
scientific and technological domains. Soliton theory is a significant field of research in the fields of applied 
mathematics and mathematical physics. Solitons are wave bundles that are self-sustaining and maintain their 
shape while traveling at a constant speed, as defined by mathematics and physics. There are numerous varieties 
of solitons, including dark, bright, peakons, anti-kink, kink, temporal, spatiotemporal, spatial, and singular. 
There have been numerous investigations that have demonstrated the diverse characteristics of soliton solutions 
and their applications in scientific and technological fields8. Numerous disciplines, such as fluid dynamics, 
plasma physics, nonlinear optics, coastal engineering, and communications engineering, have significant uses 
for soliton solutions. They are essential for the advancement of global communication. Advanced analytical 
and numerical strategies have been devised by mathematicians to ascertain the soliton solutions of various 
NLPDEs. Soliton waves are gaining significance in a variety of fields, such as nonlinear optics, optical fibers, 
and ferromagnetic materials. This multidisciplinary approach, which integrates mathematics, computer science, 
and physics, demonstrates the dynamic nature of scientific research when it is applied to real-world issues. By 
acquiring a more thorough comprehension of soliton waves, researchers may make progress in these fields and 
investigate novel applications.

Exact solutions are of significant importance in the investigation of physical behaviors in a variety of physical 
systems, as they provide a foundation for subsequent research and investigations. Characterizing the behaviors 
of any physical system as an ordinary differential equation (ODE) or PDE is the only feasible way of obtaining an 
exact solution. The preponderance of natural or industrial complex phenomena can be modeled using NLPDEs 
or FNLPDEs. In order to achieve analytic solutions to these issues, different methodologies and strategies 
have been developed by a number of academicians, such that, truncated Painlevé approach9, Master stability 
function10, improved F-expansion function method11, Lie symmetry technique12, simplest equation technique13, 
networking of higher of higher order systems14, iterative transform method15, Intelligent Detection Method16, 
Hirota bilinear method17, Lie classical approach12, Adomian decomposition technique18, bifurcation analysis19, 
tan

(
ϕ
2

)
 technique20, multiple exp-function approach21, Bernoulli G′

G -expansion method22, generalized 
exponential rational function method23, tanh-coth method24, the inverse scattering method25, the Backlund 
transformation26, logarithmic transformation27 and some other analytic methods28–33.

Consequently, the model in concern has not been investigated using the proposed methodology, despite 
a comprehensive examination of the existing literature. Therefore, the current study aims to make use of 
this analytical methodology to clarify the complex dynamics that are inherent in the generalized nonlinear 
Pochhammer–Chree (PC) equation. Pochhammer34 and Chree35 simultaneously deduced the equation of 
motion in cylindrical coordinates to characterize the propagation of a sinusoidal wave with frequency f through 
an infinitely long homogeneous, isotropic cylinder with a uniform cross-section. Inspired by the work of 
Pochhammer and Chree, a frequency equation was formulated and introduced by Love36 and numerical solution 
presented by Bancroft37. This study aims to improve the understanding of these intricacies and contribute to 
advances in the field of analysis of complex phenomena by implementing the proposed method. Here, our main 
goal is to study various soliton solutions of the fractional PC equation by applying an integration method called 
the modified generalized exponential rational function method (mGERFM)38. Furthermore, the applied method 
is well suited for nonlinear complex models, as it enable obtaining results in a simple and straightforward manner 
and is capable of generating a variety of new results and providing guidance for organizing them.

The article is structured as follows: Section “Fractional order derivative” covers the fundamental definitions 
and some of the most significant properties of fractional derivative. Section “The governing equation” provides 
the governing generalized nonlinear PC equation, while Section “Extraction of solutions for m = 1” presents the 
computation of numerous soliton solutions employing the suggested technique mGERFM with various graphs. 
Section “Sensitivity analysis” provides sensitivity analysis, while Section “Discussion and concluding remarks” 
offers the concluding remarks.

Fractional order derivative
Fractional differential equation are equations where the derivatives have fractional orders instead of integer 
orders. Soliton’s theory presents a multitude of fractional, nonlinear challenges. Researchers use fractional 
calculus and the development of innovative operators, such as Atangana Baleanu derivative39, Riemann-
Liouville derivative40, and Caputo derivative41, to solve some of the most important contemporary problems. 
The fractional models exhibit superior precision and accuracy in comparison to their integer-order counterparts, 
closely matching the experimental data. The fractional form facilitates the implementation of sophisticated 
optimization and control strategies that enhance the overall performance of a system. β-derivative has been 
applied by researchers, providing a more precise understanding of the behavior of solitary waves in nonlinear 
systems42. Fractional derivative is advantageous for the comprehension and analysis of a diverse array of various 
nonlinear systems43.

Definition 1  Suppose that κ(t) : [c,∞) → R, then the β-derivative44 of κ is given as:

	
Dβ

t {κ (t)} = lim
ϵ→0

κ
(
t + ϵ

(
t + 1

Γ(β)

))

ϵ
, β ∈ (0, 1]� (1)

Theorem 1  44 Let κ and h ̸= 0 are two β-differentiable functions such that 0 < β ≤ 1. Then: 
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	1.	� Dβ
t (c{κ(t)} + d{h(t)}) = cDβ

t {κ(t)} + dDβ
t {h(t)}, for all c, d ∈ R.

	2.	� Dβ
t ({κ(t)} × {h(t)}) = {h(t)}Dβ

t ({κ(t)}) + {κ(t)}Dβ
t ({h(t)}).

	3.	� D
β
t

(
{κ(t)}
{h(t)}

)
=

{h(t)}Dβ
t {κ(t)}−{κ(t)}Dβ

t {h(t)}
({h(t)})2 .

	4.	� D
β
t {κ(t)} = d{κ(t)}

dt

(
t + 1

Γ(β)

)1−β

.
	5.	� Dβ

t {c(t)} = 0, where c(t) is a constant

The governing equation
Integral systems are indispensable for the analysis of various types of nonlinear equations due to their applicability 
across a wide range of scientific disciplines. These systems are highly applicable in the fields of nanophysics and 
applied magnetism, as well as possessing remarkable geometric and gauge invariance properties. Among many 
integrable system, the generalized nonlinear fractional PC equation45–48 read as:

	 D2β
tt u− D4β

ttxxu− D2β
xx

(
αu + ηum+1 + γu2m+1

)
= 0,� (2)

where u = u(x, t), is a real valued function that denotes the displacement field, characterizing the longitudinal 
wave propagation within elastic rods and the exponent m ≥ 1 is the parameter of the power-law nonlinearity 
and α, η, γ are real constants. Additionally, the exact solutions of Eq. (2) are generated through the application 
of various methods. For instance, in45, the authors investigated various types of soliton solutions by employing 
the analytical technique known as the modified simple equation method. In46, the aforementioned model is 
examined using the Φ6-model expansion method. In47, the modified extended tanh-function method is 
employed to extract new exact solutions, while the exp-function method is employed to analyze new solutions 
of the fractional PC equation in48. In the subsequent section, we derive the various solutions of the proposed 
model.

Extraction of solutions for m = 1
To solve Eq. (2), for m = 1, we have

	 D2β
tt u− D4β

ttxxu− D2β
xx

(
αu + ηu2 + γu3

)
= 0.� (3)

Subsequently, consider

	 u =u(x, t) = Φ(ξ); � (4)

	
ξ =

k

β

(
x +

1

Γ(β)

)β

− v

β

(
t +

1

Γ(β)

)β

, � (5)

where k is a scaler parameter and v is the wave speed. By employing the aforementioned transformations in Eq. 
(3), we obtain the following:

	 −k2v2Φ(4)(ξ) + Φ′′(ξ)
(
−αk2 − 3γk2Φ(ξ)2 − 2ηk2Φ(ξ) + v2

)
− 2k2Φ′(ξ)2(η + 3γΦ(ξ)) = 0.� (6)

Furthermore, we get the nonlinear ordinary differential equation (ODE) as follows by integrating Eq. (6) twice 
and setting the integration constant to zero:

	 −k2v2Φ′′(ξ)− γk2Φ(ξ)3 − ηk2Φ(ξ)2 +
(
v2 − αk2

)
Φ(ξ) = 0.� (7)

Moreover, the suggested method is applied to analyze the Eq. (7). Using the balance principle between the terms 
Φ′′(ξ) and Φ3(ξ) in Eq. (7), n = 1 is achieved.

Application of the method
The applied method is versatile approach applicable to a wide range of nonlinear differential equations of 
different types. The mGERFM38 solution is given as:

	
Φ(ξ) = d0 +

n∑
r=1

dr

(
Ω′(ξ)

Ω(ξ)

)r

+

n∑
r=1

fr

(
Ω′(ξ)

Ω(ξ)

)−r

,� (8)

where

	
Ω(ξ) =

r1e
s1ξ + r2e

s2ξ

r3es3ξ + r4es4ξ
.� (9)
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In this study, we have taken the few families from the suggested reference and some other families have been 
selected by considering the appropriate values for r and s, which produce the function Ω(ξ) = r1e

s1ξ+r2e
s2ξ

r3e
s3ξ+r4e

s4ξ
, 

different and therefore the variety of solutions will be extracted. Moreover, Eq. (8) is stated as follows for n = 1:

	
Φ(ξ) = d0 + d1

(
Ω′(ξ)

Ω(ξ)

)
+ f1

(
Ω′(ξ)

Ω(ξ)

)−1

.� (10)

• Let r = [1, 1, 1, 0] and s = [0,−1, 0, 0], in Eq. (9), provides Ω(ξ) = 1 + e−ξ, and inserting 

Eq. (10) in Eq. (7) offers d0 = − 3
√
2αk√

γ(k2−1)
, f1 = −2d0, d1 = 0, η = d0√

2
, v = −

√
αk√

1−k2
 and 

d0 = − 3
√
2αk√

γ(k2−1)
, f1 = 0, d1 = −3d0, η = d0√

2
, v =

√
αk√

1−k2
, then we get:

The exponential soliton solution

	

u1(x, t) = −

3
√
2αk exp




k




√
α


1

Γ(β)
+t

β

√
1−k2

+


1
Γ(β)

+x
β




β





γ (k2 − 1)



3 exp




k




√
α


1

Γ(β)
+t

β

√
1−k2

+


1
Γ(β)

+x
β




β




+ 2




.� (11)

The explicit hyperbolic solution

	

u2(x, t) = −

√
2αk

(
cosh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

)
+ sinh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

))

√
γk2 − γ

(
cosh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

)
+ sinh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

)
+ cosh

(
k
(

1
Γ(β)

+x
)β

β

)
+ sinh

(
k
(

1
Γ(β)

+x
)β

β

)).� (12)

• Choosing r = [2, 0, 1, 1] and s = [0, 0, 1,−1], in Eq. (9), offers Ω(ξ) = sech(ξ) while incorporating Eqs. 

(10) and (7) implies that d0 =
6(k2+1)v2

ηk2
, γ = − η2k2

18(k2+1)v2
, d1 = −

6
√
(k2+1)v4

ηk , α =
(
− 5

k2
− 4

)
v2, f1 = 0 and 

d0 =
6(4k2+1)v2

ηk2
, γ = − η2k2

18(4k2+1)v2
, d1 =

6
√
(4k2+1)v4

ηk , α =
(
− 5

k2
− 16

)
v2, f1 = d1 and the following solutions are 

expressed as:

	
u3(x, t) =

6

(
k
√
(4k2 + 1) v4

(
coth2

(
v
(

1
Γ(β)

+t
)β

−k
(

1
Γ(β)

+x
)β

β

)
+ 1

)
tanh

(
v
(

1
Γ(β)

+t
)β

−k
(

1
Γ(β)

+x
)β

β

)
+
(
4k2 + 1

)
v2

)

ηk2
,

� (13)

	
u4(x, t) =

6


2k


(4k2 + 1) v4 coth


2


v


1
Γ(β)

+t
β

−k


1
Γ(β)

+x
β

β


 +

�
4k2 + 1


v2




ηk2
.

� (14)

• Suppose r = [1,−1, 2, 0] and s = [2, 0, 0, 0], then the Eq. (9), offers Ω(ξ) = e−2ξsech(ξ) and on 
managing the Eqs. (10) and (7) providef1 = 0, γ = −2v2

d21
, α =

(
1
k2
− 4

)
v2, η = −3γ, d0 = 3d1

, along with f1 = d0, γ = −18v2

d20
, α =

(
1
k2
− 4

)
v2, η = 18v2

d0
, d1 = 0 and 

f1 = 3d1, γ = −2v2

d21
, α =

(
1
k2
+ 12

√
7− 28

)
v2, η = −γ, d0 =

(√
7 + 1

)
d1 the explicit solitary wave solutions are

	

u5(x, t) = d1


tanh



v


1
Γ(β) + t

β

− k


1
Γ(β) + x

β

β


 + 1


 , � (15)
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u6(x, t) =

d0

(
tanh

(
v
(

1
Γ(β)

+t
)β

−k
(

1
Γ(β)

+x
)β

β

)
− 1

)

tanh

(
v
(

1
Γ(β)

+t
)β

−k
(

1
Γ(β)

+x
)β

β

)
− 2

, � (16)

	

u7(x, t) = d1



tanh



v


1
Γ(β) + t

β

− k


1
Γ(β) + x

β

β


 +

3

tanh


v


1
Γ(β)

+t
β

−k


1
Γ(β)

+x
β

β


− 2

+
√
7− 1




. � (17)

• On selecting r = [1, 1, 2, 0] and s = [i,−i, 0, 0], then the Eq. (9), gives Ω(ξ) = cos(ξ), Eqs. (10) and (7) provide 
d1 =

d0√
2
, f1 =

d0√
2
, η = 12v2

d0
, k = v√

α+8v2
, γ = −4v2

d20
 the soliton solution as:

	
u8(x, t) =

d0 cot

(
v
(

1
Γ(β)

+t
)β

β −
v
(

1
Γ(β)

+x
)β

β
√
α+8v2

)

√
2

+

d0 tan

(
v
(

1
Γ(β)

+t
)β

β −
v
(

1
Γ(β)

+x
)β

β
√
α+8v2

)

√
2

+ d0.
� (18)

• Let r = [1, 1, 1, 0] and s = [3, 2, 0, 0], then the Eq. (9), gives Ω(ξ) = e2ξ + e3ξ, Eqs. (10) 

and (7) provide d0 = − 3
√
2αk√

γ(k2−1)
, f1 = −2d0, d1 = 0, η = 3

√
αγk√

2γ(k2−1)
, v = −

√
αk√

1−k2
 and 

d0 = − 3
√
2αk√

γ(k2−1)
, f1 = 0, d1 = −3d0, η = 3

√
αγk√

2γ(k2−1)
, v =

√
αk√

1−k2
, then we have:

	

u9(x, t) =−

3
√
2αk exp




k




√
α


1

Γ(β)
+t

β

√
1−k2

+


1
Γ(β)

+x
β




β





γ (k2 − 1)



3 exp




k




√
α


1

Γ(β)
+t

β

√
1−k2

+


1
Γ(β)

+x
β




β




+ 2




, � (19)

	

u10(x, t) =−

√
2αk

(
cosh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

)
+ sinh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

))

√
γ (k2 − 1)

(
cosh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

)
+ sinh

(√
αk

(
1

Γ(β)
+t

)β

β
√
1−k2

)
+ cosh

(
k
(

1
Γ(β)

+x
)β

β

)
+ sinh

(
k
(

1
Γ(β)

+x
)β

β

)). � (20)

• On selecting r = [1,−1, i, i] and s = [i,−i, 0, 0], then the Eq. (9), gives Ω(ξ) = sin(ξ)

, Eqs. (10) and (7) provide α =
(

1
k2
− 8

)
v2, d1 =

d0√
2
, f1 =

d0√
2
, γ = −4v2

d20
, η = 12v2

d0
 and 

α =
(

1
k2
− 8

)
v2, d0 = −

√
2f1, d1 = f1, γ = −2v2

f21
, η = −6

√
2v2

f1
=, we obtain the solution as:

	
u11(x, t) =

1

2
d0



√
2


− cot



v


1
Γ(β) + t

β

− k


1
Γ(β) + x

β

β





−

√
2 tan



v


1
Γ(β) + t

β

− k


1
Γ(β) + x

β

β


 + 2


 , � (21)

	

u12(x, t) = −


f1


2 csc



2


v


1
Γ(β) + t

β

− k


1
Γ(β) + x

β


β


 +

√
2





 . � (22)

• Numerical simulation:
See Figs. 1 and 2.

Solutions for m = 2
For m = 2, Eq. (2), read as:

	 D2β
tt u− D4β

ttxxu− D2β
xx

(
αu + ηu3 + γu5

)
= 0.� (23)
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Next, we apply the transformation described by

	 u = u(x, t) = Φ(ξ); � (24)

	
ξ =

1

β

(
x +

1

Γ(β)

)β

− c

β

(
t +

1

Γ(β)

)β

, � (25)

where c is the wave speed. Using the above relation in Eq. (23), we acquire:

	 c2Φ′′ − c2Φ(iv) −
(
αΦ + ηΦ3 + γΦ

)′′
= 0.� (26)

Moreover, the nonlinear ODE is obtained by integrating Eq. (26) twice and setting the integration constant to 
zero:

	
(
c2 − α

)
Φ− c2Φ′′ − ηΦ3 − γΦ5 = 0.� (27)

When homogeneous balance principle is applied to the terms Φ′′ and Φ5, the result is n = 1
2 , which is not an 

integer. In order to extract the solitary wave solutions, n must be an integer. Therefore, taking Φ(ξ) = Ψ
1
2(ξ) in 

Eq. (27) implies

	 4
(
c2 − α

)
Ψ2 − 2c2ΨΨ′′ + c2 (Ψ′)

2 − 4ηΨ3 − 4γΨ4 = 0.� (28)

Fig. 1.  Plots of Eq. (19) for α = 2.8, γ = 1.2, k = 1.15.
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The balance principle between the terms ΨΨ′′ and Ψ4 in Eq. (28) , resulting in n = 1. Furthermore, solving Eq. 
(28) by applying the proposed method and completing the analogous process described in section “Application 
of the method”, we have the following solutions:

• Plugging r = [1, 1, 1, 0] along with s = [0,−1, 0, 0], in Eq. (9), results in Ω(ξ) = 1 + e−ξ

, and inserting Eq. (10) in Eq. (28) providesd1 = d0, γ = − 3η
4d0

, f1 = 0, c = −
√
d0η, α = 3d0η

4  and 

d0 = 0, γ = −3c2

4d21
, η = − c2

d1
, f1 = 0, α = 3c2

4  then we get:
The exponential soliton solution

	

u1(x, t) =
d0e

√
d0η

(
1

Γ(β)
+t

)β
+

(
1

Γ(β)
+x

)β

β

e

√
d0η

(
1

Γ(β)
+t

)β
+

(
1

Γ(β)
+x

)β

β + 1

.� (29)

The explicit hyperbolic solution

	

u2(x, t) = −
d1

(
cosh

(
c
(

1
Γ(β)

+t
)β

β −
(

1
Γ(β)

+x
)β

β

)
+ sinh

(
c
(

1
Γ(β)

+t
)β

β −
(

1
Γ(β)

+x
)β

β

))

cosh

(
c
(

1
Γ(β)

+t
)β

β −
(

1
Γ(β)

+x
)β

β

)
+ sinh

(
c
(

1
Γ(β)

+t
)β

β −
(

1
Γ(β)

+x
)β

β

)
+ 1

.� (30)

Fig. 2.  Plots of Eq. (20) for k = 1.2, α = 0.01, γ = 0.2.
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• Further, taking r = [2, 0, 1, 1] with s = [0, 0, 1,−1], in Eq. (9), gives Ω(ξ) = sech(ξ) and incorporating Eqs. (10) and (28) 
offer d1 = −d0

2 , γ = − 3η
8d0

, α = −1
8 (3d0η) , c =

√
d0η

2
√
2
, f1 = −d0

2  and d1 = 0, γ = − 3η
8d0

, α = 0, c =
√
d0η√
2
, f1 = d0 

then the solutions are as follows:

	

u3(x, t) =
1

2
d0


coth



4


1
Γ(β) + x

β

−
√
2d0η


1

Γ(β) + t
β

4β




+ tanh



4


1
Γ(β) + x

β

−
√
2d0η


1

Γ(β) + t
β

4β


 + 2


,

� (31)

	

u4(x, t) = d0 tanh



√
d0η


1

Γ(β) + t
β

√
2β

+


1

Γ(β) + x
β

β


 + d0.� (32)

• Let r = [1,−1, i, i], s = [i,−i, 0, 0], in Eq. (9), offers Ω(ξ) = sin(ξ) and on solving Eqs. (10) and (28) offers 
α = −1

2 (d0η) , c = −
√
d0η

2
√
2
, d1 = −d0

2 , f1 = −d0
2 , γ = − 3η

8d0
 then we get:

	

u5(x, t) = −1

2
d0


cot



√
2d0η


1

Γ(β) + t
β

+ 4


1
Γ(β) + x

β

4β


− 1




2


tan



√
2d0η


1

Γ(β) + t
β

+ 4


1
Γ(β) + x

β

4β





 .

� (33)

• Suppose r = [2, 0, 1, 1], s = [−2, 0, 1,−1], then Eq. (9), provides Ω(ξ) = e−2ξsech(ξ) while Eqs. (10) and 
(28) offers f1 =

12(
√
3−1)c2
η , γ = −3(

√
3+2)η2

128c2
, α = 6

(
2
√
3− 3

)
c2, d0 = −8(

√
3−3)c2
η , d1 =

4(
√
3−1)c2
η  and 

f1 = 0, γ = − 3η2

16c2
, α = 0, d0 = −2c2

η , d1 = −2c2

η  the solutions as:

	
u6(x, t) =

4c2



�√

3− 1

tanh


c


1
Γ(β)

+t
β

−


1
Γ(β)

+x
β

β


+

3(
√
3−1)

tanh




c


1

Γ(β)
+t

β
−


1
Γ(β)

+x

β

β


−2

− 4
√
3 + 8




η
,

� (34)

	
u7(x, t) = −

2c2

(
tanh

(
c
(

1
Γ(β)

+t
)β

−
(

1
Γ(β)

+x
)β

β

)
− 1

)

η
.

� (35)

• Let r = [1, 1, 1, 0] and s = [3, 2, 0, 0], then the Eq. (9), gives Ω(ξ) = e2ξ + e3ξ, Eqs. (10) and (28) provide 
f1 = −3d0, d1 = 0, η = − 8α

3d0
, c = 2

√
α√
3
, γ = −4α

d20
 and f1 = 0, d1 = −d0

2 , η = − 8α
3d0

, c = 2
√
α√
3
, γ = −4α

d20
, then 

we have:

	

u8(x, t) =
1

2
d0




1

2
3 exp


2
√
3
√
α


1
Γ(β)

+t
β

−3


1
Γ(β)

+x
β

3β


+ 1

− 1




,� (36)

where the hyperbolic solution is written as

	

u9(x, t) = −
d0

(
cosh

((
1

Γ(β)
+x

)β

β

)
+ sinh

((
1

Γ(β)
+x

)β

β

))

2

(
cosh

(
2
√
α
(

1
Γ(β)

+t
)β

√
3β

)
+ sinh

(
2
√
α
(

1
Γ(β)

+t
)β

√
3β

)
+ cosh

((
1

Γ(β)
+x

)β

β

)
+ sinh

((
1

Γ(β)
+x

)β

β

)).� (37)
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• Numerical simulation:
See Figs. 3 and 4

Sensitivity analysis
This section explores the sensitivity analysis of the proposed model. Applying the Galilean transformation, Eq. 
(7) can be reconfigured into two separate systems of equations. Under the assumption that ϕ′ = Q, Eq. (7) can 
then be formulated subsequently.

	

dΦ

dξ
= Q,

dQ

dξ
= AΦ(ξ)3 + BΦ(ξ)2 + CΦ(ξ),




� (38)

where A = −γ
v2
, B = −ηk

v2
 and C = v2−αk2

k2v2
.

The system (38) is solved using the Runge-Kutta method by applying the suitable parameter values for 
k = 1, v = 0.7, η = 0.5, α = 0.22, γ = 0.8.

Case 01 Two possible solutions are depicted in Fig. 5: (Q,Φ) = (0, 2.01) in red (solid line) and 
(Q,Φ) = (0, 2.07) in navy blue (solid line) .

Case 02 In Fig. 6 (Q,Φ) = (0, 2.01) in red and (Q,Φ) = (0, 2.1) in green.
Case 03 Similarly, Fig. 7 illustrates two solution curves. First set is characterized by initial values of 

(Q,Φ) = (0, 2.07) in navy blue (solid line), while second set is characterized by initial values of (Q,Φ) = (0, 2.1) 
in green (solid line).

Case 04 Figure 8 demonstrates three solutions: red, navy blue, and green, which are denoted by 
(Q,Φ) = (0, 2.01), (Q,Φ) = (0, 2.07), and (Q,Φ) = (0, 2.1), respectively. Upon observing the figures, it becomes 
evident that minor alterations in the initial conditions have a negligible impact on the stability of the solution.

Fig. 4.  Plots of Eq. (30) for c = 0.3, d1 = 2.

 

Fig. 3.  Plots of Eq. (29) for γ = −0.03, d0 = 1.2.
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Discussion and concluding remarks
The PC equation, a mathematical framework for modeling nonlinear longitudinal wave propagation in elastic 
media, is widely applicable in various fields of physics and engineering. In particular, the equations include 
nonlinear effects associated with scenarios involving high-amplitude wave motion. Researchers have extensively 
employed the PC equation to investigate a wide range of real-world phenomena. Examples of these phenomena 
include transverse vibrations in structures, large-amplitude seismic wave propagation, nonlinear acoustics in 
pipes, tubes, and granular materials, as well as solitons and solitary wave dynamics. The PC equation’s versatility 
in encapsulating wave motion in elastic medium is demonstrated in biomechanics and biofluids, revealing its 
nonlinear physics of wave motion. The present study aims to enhance comprehension of the diverse physical 
systems described by the PC equation across multiple disciplines by offering solutions and insights into this 
fundamental model. The generalized nonlinear PC equation has been thoroughly examined in this study with 
the aid of the β fractional derivative. A variety of solitary wave solutions have been secured by the considering 
the recently introduced integration method called mGERFM. The comprehension of the PC equation is 
substantially improved by the identification of these novel solitary wave solutions. Their unique properties 
align with traditional wave theory concepts while also bringing innovative advancements to the field. The 

Fig. 6.  Sensitivity analysis of system (38) with initial conditions (Q,Φ) = (0, 2.01) in red and 
((Q,Φ)) = (0, 2.1) in green.

 

Fig. 5.  Sensitivity analysis of system (38) with initial conditions (Q,Φ) = (0, 2.01) in red (solid line) and 
(R,Φ) = (0, 2.07) in navy blue (solid line).
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identification of these unconventional wave patterns highlights the success of computational methods used to 
reveal complex details. Moreover, the obtained solutions have been depicted in the Figs. 1, 2, 3, 4 for observing 
the physical movement and fractional parametric effect. Visualizing the solitary wave solutions of the model 
using different graphical styles is essential for comprehending the shapes and features of the waves, as well as 
for simplifying complex mathematical concepts. Visual representations of the solutions, such as graphs with 
various parameter values, aid in understanding the mathematical solutions derived from the problem. These 
graphical aids facilitate a more intuitive understanding of wave dynamics, including the shapes, magnitudes, 
and propagation patterns of the solitary waves. Furthermore the sensitivity analysis is also observed and shown 
in the Figs. 5, 6, 7, 8.

As a result, our study’s findings are particularly important in understanding the propagation of longitudinal 
waves through elastic rods. Through nonlinear wave dynamics, the solitary waves have the capacity to influence 
material behaviors and applications associated with energy transmission. This research work can serve as a basis 
for exploring various potential solutions, encouraging further research on other profiles. New research enhances 
understanding of solitary waves governed by PC equations, revealing unexpected changes that were previously 

Fig. 8.  Sensitivity analysis of system (38) with initial conditions. Three solutions, red, navy blue, and green, 
indicated by (Q,Φ) = (0, 2.01), (Q,Φ) = (0, 2.07) and, (Q,Φ) = (0, 2.1) respectively.

 

Fig. 7.  Sensitivity analysis of system (38) with initial conditions (Q,Φ) = (0, 2.07) in navy blue (solid line) and 
(Q,Φ) = (0, 2.1) in green (solid line).
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unnoticed. This broadens the spectrum of known solutions and enriches the theoretical foundation of wave 
physics.

Data availability
All data that support the findings of this study are included in the article.
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