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A B S T R A C T

Breast cancer has become the most prevalent malignant tumor worldwide and remains one of the leading causes 
of cancer-related mortality among women globally. The prognosis for patients with metastatic breast cancer 
remains poor, necessitating the exploration of novel therapeutic strategies to improve survival rates. In the era of 
precision medicine, antibody-drug conjugates (ADCs) have gained significant attention as a targeted therapeutic 
strategy in breast cancer treatment. ADCs, a relatively new treatment for breast cancer, deliver cytotoxic drugs 
(payloads), directly into the tumor space, turning chemotherapy into a targeted agent, which enables patients to 
experience significant improvements with manageable drug toxicity. For the treatment of breast cancer, there are 
three ADCs approved for breast cancer treatment: Trastuzumab emtansine (T-DM1), Trastuzumab Deruxtecan (T- 
Dxd) targeting HER-2, and Sacituzumab Govitecan (SG) targeting Trop-2. Recent clinical studies have demon-
strated that the benefits of ADC therapies extend beyond HER2-positive breast cancer toinclude hormone re-
ceptor (HR)-positive breast cancer, triple-negative breast cancer (TNBC), and HER2-low expressing breast 
cancer. Notably, the DESTINY-Breast series of studies, particularly focusing on T-Dxd, encompass neoadjuvant, 
adjuvant, and multiple lines of therapy for advanced breast cancer. This marks the advent of a comprehensive 
ADC era in breast cancer treatment. This review summarizes the efficacy and adverse effects of ADC therapies 
that have completed or are currently undergoing phase I-III clinical trials. Additionally, it analyzes potential 
combination strategies to overcome ADC resistance, aiming to provide clinicians with a comprehensive clinical 
guide to the use of ADCs in breast cancer treatment.

1. Introduction

Breast cancer has emerged as the foremost prevalent malignancy 
among women globally [1]. Historically, the evolution of treatment 
modalities for breast cancer has been significantly influenced by ad-
vancements in molecular biology. Postoperative chemotherapy 
employing cytotoxic agents was the cornerstone of therapy aimed at 
minimizing tumor recurrence. Nevertheless, the limitations of chemo-
therapy, characterized by a narrow therapeutic window, pronounced 
systemic toxicity, and the propensity for drug resistance, necessitated 
alternative approaches [2]. Enhanced understanding of cellular carci-
nogenesis mechanisms, coupled with advancements in monoclonal 
antibody production technologies, has pivoted anti-tumor drug devel-
opment towards targeted therapies targeting proteins that facilitate 
breast cancer cell growth, dissemination, and proliferation [3]. ADCs, 

colloquially termed "molecular missiles"—have undergone extensive 
research, particularly for Her-2-positive breast cancers [4]. ADCs inge-
niously combine small-molecule cytotoxins with large-molecule mono-
clonal antibodies, yielding potent anti-tumor efficacy with minimal 
systemic toxicity. Recently, the exploration of cellular oncogenic signal 
transduction pathways and tumor markers has broadened the target 
repertoire of ADCs, exemplified by the advent of SG targeting Trop-2 in 
breast cancer, heralding the clinical emergence of novel targets [5]. This 
development underscores the potential of ADCs to undergo continual 
refinement and expansion, catering to new patient cohorts. This review 
aims to summarize the ADCs approved for breast cancer and describe the 
potential ADCs under investigation and new strategies of ADC in treat-
ing breast cancer.
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2. Basic characteristics of ADC

ADC represents a pivotal advancement in targeted cancer therapy, 
combining a monoclonal antibody specific to tumor antigens, a cyto-
toxic payload, and a linker. Upon administration, the antibody compo-
nent of an ADC specifically binds to its antigen on the tumor cell surface, 
facilitating internalization via clathrin-mediated endocytosis [6]. This is 
followed by lysosomal degradation, releasing the payload within the cell 
to exert its cytotoxic effects, either by disrupting DNA or inhibiting 
tubulin function, thereby halting tumor cell division (Fig. 1). This dual 
mechanism—antigen-targeted blockade and payload-mediated cyto-
toxicity—enables ADCs to deliver targeted therapy with potentially su-
perior clinical efficacy compared to conventional monoclonal antibodies 
or their fragments.

ADCs with different targets have different killing mechanisms which 
determine where the drug will be released and the adaptive populations. 
Her-2 overexpression occurs in 20%–30 % of breast tumors and predicts 
a poor clinical prognosis [7]. Therefore, Her-2 targeted ADCs, T-DM1 
and T-Dxd, which have been approved by the U.S. Food and Drug 
Administration (FDA), the mechanism includes two parts: one is the 
anti-tumor effect mediated by trastuzumab: the Fab segment can block 
the extracellular domain of Her-2 on the cell surface and inhibit the 
proliferation of tumor cells by inhibiting the PI3K/AKT signaling 
pathway [8,9]; The Fc segment can induce antibody-dependent cell--
mediated cytotoxicity (ADCC) to kill tumor cells [10]. The second is the 
anti-tumor effect mediated by payload. The payloads currently under 
development are mainly limited to tubulin inhibitors, DNA damage 
agents, and immunomodulators [11]. The payload of T-DM1 can block 
mitosis by destroying the microtubule network of target cells, resulting 
in mitotic disaster or apoptosis to inhibit tumor cell proliferation [12]. 

The second Her-2 targeted ADC approved for breast cancer, T-Dxd, the 
payload is a derivative of exatecan, has stronger membrane penetration, 
and can penetrate neighboring cells to eliminate neighboring 
antigen-negative tumor cells, a process known as the bystander effect, 
this process bears significance for tumor cells characterized by hetero-
geneous antigen expression [13].

Transmembrane calcium signal transducer Trop-2 is highly 
expressed in multiple tumor types, most notably in more than 90 % of 
breast cancer [14,15]. Trop-2 is related to a variety of transcription 
factors, resulting in the dysregulation of related pathways. It can in-
crease the expression of CREB1, Jun, NF-κB, Rb, STAT1, and STAT3 by 
activating CyclinD1 and ERK/MEK pathways, thereby mediating tumor 
cell deterioration and metastasis [16]. Studies have shown that the use 
of small interfering RNA (siRNA) to silence the Trop-2 gene in breast 
cancer cell models can inhibit tumor cell deterioration, proliferation, 
invasion, and cell colony formation in vitro [17,18]. Therefore, Trop-2 
as the target of SG can effectively block these signaling pathways, and 
the highly toxic payload SN-38 also has the bystander effect to kill the 
tumor cells with low expression of antigen [19,20].

3. For HER-2 positive breast cancer

3.1. Trastuzumab emtansine(T-DM1, Trastuzumab/DM1)

T-DM1, the first Her-2 targeted antibody-drug conjugate approved 
for BC, serves as a pivotal adjuvant therapy for Her-2+ BC. In the 
EMILIA trial, the findings revealed that the median progression-free 
survival (mPFS) in the T-DM1 monotherapy group exceeded that of 
the lapatinib plus capecitabine group by 3.2 months (9.6 months vs. 6.4 
months), and median overall survival (OS) was 30.9 months compared 

Fig. 1. Schematic presentation of the mechanism of action for an ADC.
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to 25.1 months, respectively. This demonstrated a 32 % reduction in 
mortality risk with T-DM1 treatment [21]. Following this study, in 2013, 
FDA approved T-DM1 as the standard second-line treatment for patients 
with metastatic (Fig. 2), Her-2+ BC [22,23]. Subsequent research, the 
TH3RESA trial, evaluating T-DM1 against the treatment of physician’s 
choice (TPC), supported these conclusions, showing a significant 
improvement in mPFS with T-DM1 (6.2 months vs. 3.3 months). The 
final mOS analysis indicated a considerable increase in survival for the 
T-DM1 group (22.7 months vs. 15.8 months) [24]. Importantly, the 
TH3RESA trial enrolled individuals who had received at least two prior 
anti-Her-2 therapies, suggesting the benefits of T-DM1 even after mul-
tiple lines of targeted Her-2 therapy. Further investigation has been 
conducted into the potential benefits of T-DM1 in earlier stages of 
treatment, specifically in the adjuvant setting. The KATHERINE trial 
found that for patients who did not achieve a pathological complete 
response (pCR), T-DM1 substantially lowered the recurrence risk by 50 
% and increased the absolute invasive disease-free survival (iDFS) 
benefit by 11.3 % compared to trastuzumab, after a median follow-up of 
41 months [25]. Consequently, the FDA has approved T-DM1 for mon-
otherapy in the adjuvant treatment of Her-2+ early BC in patients with 
residual invasive disease post-neoadjuvant therapy involving taxanes 
and trastuzumab [26]. Moreover, the efficacy of T-DM1 in comparison 
to traditional chemotherapy combined with targeted therapy regimens 
in the neoadjuvant setting was assessed in the KRISTINE trial. It reported 
a higher probability of event-free survival (EFS) events in the T-DM1 
group (13.9 %) compared to the control group (5.9 %), indicating that 
the traditional chemotherapy combined with dual anti-Her-2 blockade 
maintains its superiority [27]. Furthermore, the KAMILLA trial’s 
exploratory subgroup analysis, representing the largest cohort of Her-2+
BC patients treated with T-DM1 in a prospective study, showed a median 

PFS and OS of 6.8 and 27.2 months, respectively [28].
Overall, the efficacy of T-DM1 in the adjuvant treatment of Her-2- 

positive early breast cancer and the multi-line treatment of advanced 
breast cancer is proved by robust evidence from trials such as EMILIA 
and TH3RESA. However, its comparative effectiveness against tradi-
tional chemotherapy, in conjunction with dual anti-Her-2 blockade as a 
neoadjuvant therapy, remains to be conclusively determined.

3.2. Trastuzumab deruxtecan(T-Dxd, trastuzumab/Dxd)

T-Dxd represents a pivotal shift in the therapeutic landscape for Her- 
2+ BC, emerging as a viable option for subsequent lines of therapy. In 
the DESTINY-Breast 01 study, patients with advanced Her-2 positive 
breast cancer treated with T-Dxd had a remarkable mPFS of 16.4 months 
[29]. Further validation came from the DESTINY-Breast 02 study, which 
supplemented the OS data for T-Dxd, the median OS of the T-Dxd group 
and the TPC group was 39.2 months and 26.5 months, respectively [30]. 
Moreover, data from the DESTINY-Breast 03 study unveiled that T-Dxd, 
when compared to T-DM1, significantly prolonged PFS in patients with 
advanced BC who had not responded to first-line therapy with trastu-
zumab, pertuzumab, and a taxane (THP), recording a PFS more than 
fourfold longer (28.8 months versus 6.8 months), at the 2024 ASCO 
Congress, the study published OS results, with 52.6 months of OS in the 
T-Dxd group, significantly longer than 42.7 months in the T-DM1 group 
[31,32]. In December 2019, FDA granted accelerated approval to T-Dxd 
for adult patients with unresectable or metastatic Her-2+ solid tumors 
who have received prior systemic treatment and have no satisfactory 
alternative treatment options. Historically, monoclonal antibody ther-
apies have demonstrated limited efficacy in patients with brain metas-
tases (BMs). However, T-Dxd has transformed the treatment landscape 

Fig. 2. Treatment algorithm for patients with advanced-stage breast cancer. T: taxane, H: transtuzumab, P: pertuzumab, Py: pyrotinib, CDK4/6i: CDK4/6 inhibitor.
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for these patients. The recent DESTINY-Breast12 single-arm clinical trial 
further substantiated this potential, yielding promising results. In the 
cohort with BMs, the 12-month PFS rate was 61.6 % (95 % confidence 
interval [CI]: 54.9–67.6), while the 12-month central nervous system 
(CNS) PFS was 58.9 % (95 % CI: 51.9–65.3). Notably, among patients 
with active brain metastases, the 12-month PFS rate was even more 
impressive, reaching 66.7 % (95 % CI: 53.4–76.9) [33]. In comparison, 
the best prior results were observed in the HER2CLIMB trial, where the 
combination of tucatinib, trastuzumab, and capecitabine achieved a 
12-month PFS of only 35 % [34]. Currently, no head-to-head clinical 
trials have compared T-Dxd with tucatinib, leaving the relative efficacy 
of these agents inconclusive. Nonetheless, we can derive some clinical 
insights from the patient populations in both studies. The 
DESTINY-Breast12 trial included a higher proportion of untreated pa-
tients with active brain metastases (33.05 %), and these individuals 
achieved a 12-month PFS of 47 % with T-DXd, whereas the HER2CLIMB 
trial primarily enrolled previously treated patients. Additionally, ac-
cording to the results of the PERMEATE study, the combination of 
pyrotinib and capecitabine has also shown promising efficacy in the 
Chinese population with brain metastases, with a median PFS of 11.3 
months [35](Fig. 2).

3.3. Trastuzumab duocarmazine (SYD985, trastuzumab/duocarmycin)

SYD985 incorporates the duocarmycin derivative as its payload 
through an innovative technology platform. This platform engineers a 
seco-DUBA structure, enhancing water solubility and optimizing alkyl-
ation rates. The drug’s linker, a peptide susceptible to cleavage by 
cathepsin B within cellular environments, safeguards the seco-DUBA 
structure, thus ensuring its high stability in the bloodstream and mini-
mizing off-target toxicity [36]. Recent outcomes from the TULIP trial, 
part of the ongoing Phase 3 clinical evaluation of SYD-985 in patients 
with Her-2+ BC, were unveiled at the 2023 ESMO Congress. These 
findings demonstrate that SYD985 significantly extends PFS compared 
to the control group (7.9 vs 4.9 months, HR = 0.63) [37]. While the 
survival benefits confirm SYD-985’s efficacy in treating Her-2-positive 
breast cancer, its performance does not surpass that of the already 
available drug, T-Dxd. This finding could help to explain why, despite its 
earlier development, the FDA has not yet approved SYD985. SYD985 is 
highly effective in treating heterogeneous tumors via the bystander ef-
fect. It has a 54 times greater killing effect on Her-2 negative cells 
compared to T-DM1 [38]. Further research is necessary to determine 
whether SYD-985 can produce positive outcomes in populations with 
low Her-2 expression.

3.4. FS-1502(Trastuzumab/MMAF)

FS-1502, leveraging Monomethyl auristatin F as its payload—a 
member of the tubulin inhibitors class—disrupts the cytoskeletal struc-
ture of tumor cells, impeding mitotic division. This cytotoxic agent ex-
hibits a potency 100 to 1000 times greater than that of doxorubicin. In a 
Phase I dose-escalation trial (NCT03944499) targeting advanced Her-2- 
overexpressing solid tumors, FS-1502 demonstrated favorable tolera-
bility and significant antitumor efficacy [39]. Specifically, among pa-
tients with Her-2+ BC who had not responded to multiple lines of 
therapy, the ORR reached 53.7 %, with a mPFS of 15.5 months. Notably, 
only mild ocular toxicity was reported, and no instances of interstitial 
lung disease were observed. Currently, a Phase III clinical trial 
(NCT05755048) is in progress to further assess the effectiveness and 
safety of FS-1502 in treating advanced Her-2+ BC.

3.5. A166(Trastuzumab/Duo-5)

A166, an innovative Her-2-targeted ADC, integrates trastuzumab 
with the microtubule inhibitor auristatin derivative, duostatin-5 (Duo- 
5), through a cleavable linker [40]. In this phase I study, at the 

recommended dose, the drug demonstrated a good safety profile with an 
ORR of 73.9 % and a median PFS of 12.3 months [41]. On May 11, 2023, 
the National Medical Products Administration (NMPA) accepted the 
marketing application for A166 for the treatment of Her-2-positive 
unresectable locally advanced, recurrent, or metastatic breast cancer 
following failure of second-line or higher anti-Her-2 therapies. To 
determine whether it can be used as an alternative to T-DM1 or over-
come drug resistance in ADCs, we must await the results of the phase III 
clinical trial (CTR20231740).

3.6. SHR-A1811(Trastuzumab/SHR9265)

SHR-A1811, a domestically developed ADC in China, exhibits a 
structural similarity to T-Dxd. Characterized by its innovative payload, 
SHR169265, and an optimized DAR, SHR-A1811 has demonstrated an 
impressive pharmacokinetic profile along with a favorable preclinical 
safety profile [42]. Notably, phase I clinical trial results revealed that 
SHR-A1811 achieved an ORR of 81.5 % for the follow-up treatment of 
Her-2+BC, compared to the 62 % ORR reported for T-Dxd in the 
DESTINY-Breast01 trial. These findings position SHR-A1811 as a po-
tential best-in-class anti-Her-2 ADC [43,44].

3.7. ARX788(Trastuzumab/MMAF)

ARX788 intricately conjugates a monoclonal antibody specific to 
Her-2 with Ambrastatin269, a potent cytotoxic agent targeting tubulin 
[45]. The initial findings from a Phase I clinical trial (CTR20171162) 
underscored ARX788’s capacity to attain a satisfactory ORR in patients, 
while maintaining a safety profile devoid of dose-limiting toxicity or 
serious adverse effects [46]. Bolstering its potential further, data from a 
Phase II trial (NCT04829604) revealed an ORR of 51.7 % and a disease 
control rate (DCR) of 100 % in patients with Her-2+ metastatic BC, 
including those resistant or refractory to T-DM1. In the latest results of 
Phase II/III trial ACE-Breast-02, ARX788 significantly extended PFS 
compared to lapatinib plus capecitabine in patients with HER2+
advanced breast cancer previously treated with trastuzumab and taxane 
(11.33 months vs 8.25 months, HR = 0.64, P = 0.0006) [47,48]. 
Advancing on these promising results, a Phase III clinical trial 
(NCT05426486) is currently in progress. This trial is designed to assess 
the combined efficacy and safety of ARX788 and pyrotinib as a neo-
adjuvant therapy for Her-2+ BC, further cementing ARX788’s potential 
as a foundational element in treating this formidable disease.

3.8. MRG002(MAB802/MMAE)

MRG002, employing the Monomethyl auristatin E payload, has 
demonstrated initial anti-tumor efficacy in its first-in-human (FIH) study 
(MRG002-001) conducted in China, specifically in patients with Her-2+, 
late-stage BC. The ORR for 47 patients with evaluable HER2-positive 
breast cancer was 53 %, for 23 patients with liver metastasis it was 
61 %, and for 5 patients with liver metastasis combined with brain 
metastasis it was 60 %, indicating that this drug has a high response rate 
in patients with metastasis, warranting further investigation [49]. A 
Phase III clinical trial is now in progress to assess the efficacy and safety 
of MRG002 for the treatment of Her-2+, unresectable locally advanced 
or metastatic BC.

3.9. RC-48(Hertuzumab/MMAE)

RC-48 is the first innovative ADC developed independently in China 
to enter clinical research. This innovative therapeutic has garnered 
regulatory approval for two distinct indications: the treatment of Her-2- 
overexpressing locally advanced or metastatic gastric cancer and 
gastroesophageal junction adenocarcinoma following at least two sys-
temic chemotherapy regimens, as well as Her-2+ locally advanced or 
metastatic urothelial carcinoma in patients previously treated with 
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systemic chemotherapy [50]. In the realm of breast cancer, the ASCO 
released pivotal data in 2021 concerning patients with either Her-2+ or 
Her-2-low expressing breast cancer. The findings highlighted a superior 
benefit-risk profile within the 2.0 mg/kg dosing cohort. Furthermore, 
the results from the C001 study demonstrated a notable ORR of 42.9 % 
in patients with metastatic Her-2+ BC, accompanied by a median PFS of 
5.7 months [51].

4. For HER-2 low breast cancer

Breast cancer is classified as Her-2-positive if there is evidence of 
Her-2 overexpression, indicated by a score of 3+ in immunohisto-
chemistry (IHC) assays, or gene amplification as detected by in situ 
hybridization (ISH) assays in at least one tumor sample. Conversely, the 
absence of these markers categorizes BC as Her-2-negative. Recently, a 
revised nomenclature has been suggested for cases exhibiting IHC scores 
of 1+ or 2+ coupled with negative ISH results, now termed Her-2-low 
BC [52]. Subsequent studies have revealed that this subtype may 
benefit from Her-2-targeted therapies, as demonstrated by the efficacy 
of novel anti-Her-2 agents like T-Dxd.

4.1. T-Dxd

Based on the membrane-permeable nature of the payload and the 
properties of the linker, T-Dxd can provide cytotoxic activity against off- 
targeted cancer cells, called the bystander effect. The pivotal Phase III 
DESTINY Breast04 (DB04) trial, involving participants with low Her-2 
expression, showcased significant improvements in OS and PFS across 
various hormone receptor statuses, with T-Dxd outperforming the 
treatment of physician’s choice [53]. Subsequently, the NMPA approved 
the indication for T-Dxd: monotherapy for adult breast cancer patients 
with unresectable or metastatic Her-2 low expression (IHC 1+ or IHC 
2+/ISH-) who have previously received at least one systemic therapy in 
the metastatic stage of disease or who relapsed during or within 6 
months after completion of adjuvant chemotherapy (Fig. 2).

4.2. SHR-A1811

The ORR of SHR-A1811 when used for posterior line treatment of 
breast cancer with low Her-2 expression can reach 55.8 %. In terms of 
safety, the incidence of interstitial pneumonia caused by T-Dxd has been 
condemned by the public, whereas the incidence of SHR-A1811 is just 
3.2 % [43]. In addition, Phase III clinical trials (NCT05814354, 
NCT06126640) are underway in patients with different subtypes of 
breast cancer to evaluate whether SHR-A1811 has a dual benefit in 
survival time and quality of life compared to conventional therapies.

4.3. MRG-002

In preclinical studies, MRG002 demonstrated efficacy against BC 
characterized by low Her-2 expression. Subsequently, a Phase II trial 
was initiated to assess both the safety and antitumor activity of MRG002 
in this patient subset. The trial, involving 49 evaluable patients with low 
Her-2 expression, reported an ORR of 34.7 % and a DCR of 75.5 %. 
Notably, the study included 8 patients with TNBC who had undergone at 
least two prior lines of therapy. The results from this subgroup were 
particularly promising, further substantiating the significant efficacy 
and safety of MRG002 for BC patients exhibiting low Her-2 expression 
[54].

4.4. RC-48

Due to its remarkable bystander effect, RC48 also demonstrated 
obvious efficacy in BC with low Her-2 expression. The Phase Ib/II trial 
C003 CANCER (NCT03052634) enrolled 48 patients with Her-2 low 
expression, to receive treatment with RC48. The ORR and mPFS for 

patients treated with a dose of 2.0 mg/kg were 39.6 % and 5.7 months, 
respectively. Overall, RC48 has shown promising potential in treating 
Her-2-negative BC, potentially bridging a significant gap in current 
treatment options [51].

5. For HER2-ultro-low/negative breast cancer (ADC drugs 
targeting Trop-2)

5.1. Sacituzumab govitecan (SG, IMMU-132, hRS7/SN-38)

SG is the first Trop-2-targeted ADC approved by the FDA, demon-
strating significant efficacy in patients with Her-2-negative BC, which 
include HR+/HER-2 BC patients and TNBC patient [55]. TROPiCS-02 
study indicated that the SG group achieved an extension of mPFS over 
the TPC group (5.5 months vs 4.0 months, P = 0.0003). And the OS data 
for SG and TPC was 14.5 months vs. 11.2 months (P = 0.01).The patients 
included in this study were all treated with CDK4/6 inhibitors and had 
received 2–4 lines of chemotherapy, suggesting that SG could be a new 
treatment option for HR+/Her-2-BC patients with poor response to 
endocrine therapy [56]. Additionally, the accelerated approval of SG in 
2020 has introduced a targeted treatment alternative for TNBC. In the 
IMMU-132-01 study, 108 patients with metastatic TNBC treated with SG 
as a third-line or subsequent therapy showed an ORR of 33 %, with 
significant improvements in mPFS and OS—5.5 months and 13 months, 
respectively [57]. In the phase III ASCENT trial, SG significantly out-
performed single-agent chemotherapy chosen by physicians, with the 
mPFS at the primary endpoint reaching 4.8 months versus 1.7 months, 
and the mOS at the secondary endpoint extending to 11.8 months versus 
6.9 months [58]. These results underscore SG’s potential as an effective 
option for treating advanced TNBC post-initial treatment.

5.2. Datopotamab deruxtecan (DS-1062, hTINA1/Dxd)

Datopotamab deruxtecan is an innovative ADC targeting Trop-2, 
currently under clinical trial. It is specifically designed to address Her- 
2-negative BC. The first Phase III data from the TROPION-Breast01 
trial, involving HR+/Her-2- advanced BC, was unveiled at the 2023 
ESMO Meeting. The results revealed that the median PFS in the Dato- 
DXd group was significantly superior than that in the investigator’s 
choice of chemotherapy group (6.9 months vs 4.9 months) [59]. Addi-
tionally, the use of Dato-DXd extends to the treatment of TNBC which 
has a higher expression of Trop-2. Ongoing clinical trials include 
TROPION-Breast02, which compares Dato-DXd’s efficacy and safety 
against chemotherapy in the first-line treatment of unresectable locally 
advanced or metastatic TNBC unsuitable for PD-1/PD-L1 inhibitor 
therapy [60]. Another trial, TROPION-Breast03, is evaluating Dato-DXd 
as postoperative adjuvant therapy in TNBC patients with residual lesions 
after neoadjuvant therapy.

5.3. SKB-264

The first phase II clinical data for SKB-264 showed that the mono-
therapy was effective in treating metastatic TNBC after multiple prior 
treatments [61]. As a result, SKB-264 has received two "breakthrough 
therapy" designations from the Center for Drug Evaluation of the NMPA. 
These designations are for the treatment of locally advanced or meta-
static TNBC, as well as locally advanced or metastatic HR+/Her-2- BC 
that has previously undergone at least second-line chemotherapy. 
Ongoing clinical trials are examining whether SKB-264, alone 
(NCT05347134, NCT06081959) or in combination with other therapies, 
such as PD-L1 monoclonal antibody KL-A167 (NCT05445908), can offer 
improved survival benefits for patients with advanced TNBC and 
advanced HR+/Her-2- BC.
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6. Other ADCs under pre/phase-II clinical development

In the evolving landscape of BC treatment, researchers are broad-
ening their horizons beyond the well-known Her-2 and Trop-2 targets to 
explore the potential of other tumor-associated antigens as novel targets 
for ADCs. Notably, Nectin-4, a type I membrane protein, has been 
identified as a promising candidate due to its role in stimulating tumor 
cell proliferation and invasion through activation of the PI3K/AKT 
pathway [62]. Similarly, the interaction of the membrane protein 
associated with folate metabolism, FRα, and its interaction with LYN 
tyrosine kinase plays a pivotal role in tumor genesis by regulating 
PEAK1 phosphorylation and consequently activating ERK and STAT3 
signaling pathways [63]. Additionally, the immunomodulatory mole-
cule B7-H4 presents a significant interest in its ability to suppress 
anti-tumor T cell activity, leading to T cell exhaustion or dysfunction, 
and thus facilitating tumor immune evasion [64]. These emerging tar-
gets, supported by preclinical research, herald a new development 
frontier for the next generation of ADC therapeutics. We summarized the 
potential ADC medicines based on their respective targets (Table 1), 

which is an important step forward in the search for more effective 
breast cancer treatments.

7. ADC combination medication regimens

As new targets are explored, the range of indications for ADCs is 
expanding. However, in clinical settings, resistance to drugs like T-DM1 
remains an issue for some patients. Drug resistance can manifest at 
various stages, including the downregulation or loss of antigen expres-
sion, defects in endocytic trafficking pathways, impaired lysosomal 
function, and limited toxicity of the payload [65]. We have investigated 
several combination drug regimens to counteract ADC resistance and 
enhance its efficacy (Fig. 2). The optimal strategy involves selecting 
combinations that produce additive or synergistic effects on tumor cells 
or the tumor microenvironment while avoiding overlapping toxicities.

7.1. Combine with chemotherapeutics

Many ADCs utilize microtubule inhibitors as payloads. To enhance 

Table 1 
Potential ADC medicines based on their respective targets.

Drug Target Linker Payload DAR Phase Clinical trial 
number

Disease status

ALT-P7 HER-2 Cleavable Microtubule polymerization inhibitor, auristatin 
analogueMMAE

2 I NCT03281824 R/R Advanced HER2+ BC

PF- 
06804103

HER-2 Cleavable Microtubule polymerization inhibitor, auristatin 
analogueAur0101

4 I NCT03284723 R/R Advanced BC

ZW49 HER-2 Cleavable Microtubule polymerization inhibitor, auristatin- 
basedpayload

NA I NCT03821233 R/R HER2+ cancer

XMT-1522 HER-2 Cleavable Microtubule polymerization inhibitor, AF-HPA 
moiety

12 I NCT02952729 R/R HER2+ cancer

BDC-1001 HER-2 Non- 
cleavable

TLR7/8 inhibitor NA II NCT04278144 R/R Advanced HER2 expressing 
cancer

BB-1701 HER2 Cleavable Eribulin NA II NCT06188559 R/R Advanced HER2 ± BC
GQ1001 HER2 NA Microtubule polymerization inhibitor, 

maytansinoidderivative DM1
2 II NCT04450732 R/R Advanced HER2+ cancer

NCT05575804 R/R Advanced HER-2 BC
U3-1402 HER-3 Cleavable TOP1 inhibitor, camptothecin analogue DXd 8 I NCT04610528 Preoperative hormone 

receptor+/HER2-BC
II NCT04699630 R/R mBC
II NCT02980341 R/R HER3+mBC

SGN-LIV1 LIV-1 Cleavable Microtubule polymerization inhibitor, auristatin 
analogueMMAE

4 II NCT03310957 First line mTNBC
I NCT01969643 R/R mBC

MORAb- 
202

FRα Cleavable Microtubule inhibitor, eribulin 4 II NCT04300556 R/R Advanced solid tumors

PRO1184 FRα Cleavable Exatecan 8 II NCT05579366 R/R Advanced solid tumors
BAT8006 FRα Cleavable Topoisomerase I inhibitor (TOP1i) 8 I NCT05378737 R/R Advanced solid tumors
CX-2009 CCD166 Cleavable Microtubule polymerization inhibitor, maytansinoid 

derivative DM4
3.5 II NCT04596150 R/R Advanced HER-2 BC

II NCT03149549 R/R Advanced solid tumors
ASG-22ME Nectin- 

4
Cleavable Microtubule polymerization inhibitor, auristatin 

analogueMMAE
3–4 II NCT04225117 R/R Advanced solid tumors

NBE-002 ROR1 Non- 
cleavable

Highly potent anthracycline derivative PNU-19682 NA I NCT04410224 R/R Advanced solid tumors

BA3021 ROR2 Cleavable Microtubule polymerization inhibitor, auristatin 
analogueMMAE

NA II NCT03504488 R/R Advanced solid tumors

PF-0664720 PTK7 Cleavable Microtubule polymerization inhibitor, auristatin- 
based 
payload Aur0101

4 I NCT02222922 R/R Advanced solid tumors

AZD8205 B7-H4 Cleavable topoisomerase I inhibitor (TOP1i) 8 II NCT05123482 R/R Advanced solid tumors
SGN-B7H4V B7-H4 Cleavable Microtubule polymerization inhibitor, auristatin 

analogueMMAE
NA I NCT05194072 R/R Advanced solid tumors

PYX-201 ED-B Cleavable Microtubule polymerization inhibitor, auristatin- 
based 
payload Aur0101

4 I NCT05720117 R/R Advanced solid tumors

MEN-1309 CD205 Cleavable Microtubule polymerization inhibitor, maytansinoid 
derivative DM4

3.7 I NCT04064359 R/R Advanced solid tumors

IMGC936 ADAM9 Cleavable maytansinoid linker-payload,DM21-C 2 II NCT04622774 R/R Advanced solid tumors
ASN-004 5T4 NA Auristatin F hydroxypropylamide (AF-HPA) 10–12 I NCT04410224 R/R Advanced solid tumors
TH1902 SORT1 Cleavable Docetaxel 2 I NCT04706962 R/R Advanced solid tumors

Abbreviations: DAR, drug-antibody ratio; FRα, folate receptor alpha; HER, human epidermal growth factor receptor; MMAE, monomethyl auristatin E; MMAF, 
monomethyl auristatin F; NA, not acquired; PTK7, protein tyrosine kinase 7; ROR, receptor tyrosine kinase orphan receptor; TOP, topoisomerase; TROP2, trophoblast 
cell surface antigen 2; R/R, relapse/refractory.
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the blockade of the G2/M phase of the cell cycle, DNA-damaging agents 
can be combined with microtubule inhibitors, with improved efficacy 
noted when microtubule inhibitors are used sequentially after DNA- 
damaging agents [66,67]. Additionally, chemotherapy may influence 
the expression of surface antigens targeted by ADCs. For instance, in 
pancreatic cancer cells, combining gemcitabine with T-DM1 has shown 
increased efficacy due to gemcitabine’s ability to up-regulate Her-2 
expression [68]. In a phase Ib/IIa study, the combination of T-DM1 and 
Paclitaxel for Her-2+ BC resulted in an ORR of 47.8 % and a mPFS of 7.4 
months [69]. However, this combination treatment significantly 
increased toxicity. Another study involving T-DM1 and Pegylated 
doxorubicin reported an ORR of 40 % [70]. These findings indicate that 
while ADC and chemotherapy combinations may offer survival benefits, 
the associated increase in toxic side effects cannot be overlooked [71].

7.2. Combine with targeted therapies

ADCs, when combined with targeted therapies, can significantly 
improve the inhibition of oncogenic signaling pathways. This combi-
nation enhances the utilization of surface antigens and increases the 
sensitivity of tumors with low antigen expression, while also modifying 
the tumor microenvironment [72]. Research is ongoing to explore the 
potential synergies between ADCs and existing targeted treatments, 
including macromolecular monoclonal antibodies, small molecule TKIs, 
PI3K inhibitors (PI3Ki), CDK4/6i, and PARP inhibitors (PARPi).

The monoclonal antibody pertuzumab binds to domain II of the 
extracellular region of the Her-2 receptor, inhibiting its ability to form 
dimers with other HER receptors, particularly the Her-2-HER3 complex. 
This prevents the ligand regulator NRG-1β from diminishing the cyto-
toxic effects of T-DM1 in BC cell lines [73]. In a Phase Ib/IIa trial 
combining T-DM1, pertuzumab, and docetaxel in patients with Her-2+
BC, the treatment significantly improved the objective response rate to 
80 % compared to 43.6 % [74]. However, a subsequent Phase III trial 
(NCT02131064) combining T-DM1 with pertuzumab did not yield the 
desired outcomes. The three-year EFS rate for the combination treat-
ment was 85.3 %, lower than the 94.2 % observed in the T-DM1 mon-
otherapy group. The specific mechanisms behind these results require 
further investigation [75].

Small molecule TKIs such as lapatinib, nilotinib, and tucatinib, bind 
to ATP binding sites and inhibit downstream signal transduction. These 
inhibitors are particularly effective in enhancing the inhibition of the 
PI3K-AKT and MAPK pathways when used in combination with T-DM1 
[76–78]. At the 2023 SABCS, results from the Phase III Her-2CLIMB-02 
study were presented. The findings indicate that combining tucatinib 
with T-DM1 significantly improves PFS in patients with Her-2+
advanced BC, notably in those with brain metastases. The study showed 
a mPFS of 9.5 months with the combination therapy compared to 7.4 
months with the control group [79]. Importantly, tucatinib plus tras-
tuzumab and capecitabine is approved for patients with metastatic HER 
2+ breast cancer who have previously received one or more 
HER2-targeted therapies [80]. It is also suggested as the first option for 
patients who have disease progression after T-Dxd treatment, especially 
those with active brain metastases [81,82]. However, this strategy lacks 
prospective cohort research evidence and requires additional investi-
gation. Besides, excessive activation of the PAM signaling pathway is 
also a key mechanism of drug resistance in BC. The combination of 
T-DM1 and PI3Kis has been found to have a synergistic effect in inhib-
iting the PI3K/AKT/mTOR pathway [83]. In a Phase I study of T-DM1 
combined with the PI3Ki Alpelisib for treating Her-2+ BC, the ORR was 
43 %, and the mPFS was 8.1 months [84].

Additionally, CDK4/6 serves as a common downstream target for 
several growth-promoting signaling pathways, including RAS/MAPK, 
ER, and PI3K/mTOR [85]. CDK4/6i enhances cell cycle control and 
inhibits tumor cell proliferation by selectively targeting CDK4/6 [86]. In 
a phase I clinical trial, the combination of T-DM1 and the CDK4/6i 
Palbociclib for treating Her-2+ BC yielded an ORR of 33 % and a mPFS 

of 6 months [87]. When T-DM1 was combined with another CDK4/6i, 
Ribociclib, the ORR dropped to 16.7 % [88]. The efficacy of CDK4/6 
inhibitors in combination with T-DM1 was not significant, this may be 
due to the CDK4/6i′s role in preventing tumor cells from entering the 
S/M phase, thereby diminishing the impact of T-DM1 [89].

Recently, a Phase 1b study indicates that the PARP inhibitor Ruca-
parib effectively disrupts DNA repair in cancer cells with BRCA gene 
mutations, which enhances cancer cell mortality and hampers tumor 
progression. The result showed that SG and Rucaparib achieved an ORR 
of 50 % and a CBR of 100 %, suggesting a synergistic interaction 
[90–92].

7.3. Combine with immunotherapy

Numerous studies suggest that ADCs could boost the efficacy of 
immunotherapy. The induction of immunogenic cell death by ADC leads 
to the maturation of dendritic cells, increases T-lymphocyte infiltration, 
and enhances immune memory. Additionally, these studies indicate 
increased expression of immunomodulatory proteins like PD-L1 and 
MHC [93–96]. It is reported that T-DM1 could enhance tumor-specific 
immunity by increasing stromal tumor-infiltrating lymphocytes [97]. 
However, the Phase II KATE2 study, which investigated the combination 
of T-DM1 and Atezolizumab in treating Her-2- BC, did not yield signif-
icant improvements in PFS but instead showed a higher incidence of 
adverse effects [98,99]. Interestingly, a subset of patients with PD-L1 
positive tumors did experience a PFS benefit, with an mPFS of 8.5 
months for the T-DM1 plus Atezolizumab group compared to 4.1 months 
for the control group, though this finding was not statistically significant 
(HR = 0.60, 95 % CI: 0.32–1.11, P = 0.099) [99]. The limited sample 
size and variability at baseline temper these results, leaving the true 
benefit uncertain. Consequently, the ongoing Phase III KATE3 study 
continues to explore this combination [100]. Moreover, the preclinical 
study of Dato-Dxd has shown that combining its payload ’Dxd’ with 
immunotherapy can enhance T-cell recognition of tumor cells, bolster 
the immune response, and increase anti-tumor activity, a finding sup-
ported by data from the BEGONIA study released at the 2023 ESMO [16,
101]. When used with the immune checkpoint inhibitor Durvalumab in 
the first-line treatment of advanced TNBC, regardless of PD-L1 expres-
sion, Dato-Dxd demonstrated potential for additional benefits in ORR, 
warranting further investigation [102].

8. Discussion

HER2-targeted ADCs have established a pivotal role in treating both 
HER2-positive and HER2-low breast cancer patients, while TROP-2- 
targeted ADCs, such as SG, have demonstrated remarkable efficacy in 
TNBC. This review synthesizes clinical data to outline the therapeutic 
pathways for breast cancer patients treated with ADCs (Fig. 3). As 
depicted, ADCs exemplified by T-Dxd now span the full spectrum of 
breast cancer therapies. Although current clinical data for ADCs tar-
geting HER2-low and TNBC patients are limited, the growing variety of 
ADCs in development holds promise for future breakthroughs. Target 
selection is pivotal in advancing effective ADCs [103]. While the 
development of HER2-targeted ADCs in breast cancer has progressed 
earlier and more comprehensively, a biomarker-agnostic strategy is 
currently applied to other ADCs targeting proteins like HER3 and 
Trop-2, which are highly expressed in breast cancer cells. In the 
TROPiCS-02 study, no significant differences in PFS and OS were 
observed between subgroups with high Trop-2 expression and low 
Trop-2 expression, potentially due to the bystander effect [104,105]. 
Notably, longitudinal evaluations revealed that anti-HER2 ADC agents, 
particularly T-DXd, displayed superior efficacy, specificity, and cyto-
toxicity compared to ADCs targeting non-driver oncogenes such as 
HER3-DXd and SG. The absolute difference in ORR among these drugs 
was substantial, ranging from 20% to 30 %, with mPFS and mOS dif-
ferences nearly doubling. Despite similar designs between HER3-DXd 
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and T-DXd, the primary difference lies in their antigen targets, while the 
linker, payload, and DAR remain consistent, highlighting the impor-
tance of target selection. Oncogenic targets significantly influence ADC 
behavior, potentially through enhanced internalization and ubiquiti-
nation of the target-ADC complex, reducing downregulation—a known 
ADC resistance mechanism that impairs drug uptake. Additionally, 
oncogenic drivers tend to be uniformly and highly expressed in tumor 
tissues due to evolutionary pressures [106]. ADCs targeting driver on-
cogenes also retain some intrinsic mAb functionality, impairing target 
protein function by blocking receptor ligands, disrupting dimerization, 
and inducing endocytosis and degradation. The Fc segment of ADC an-
tibodies can engage with FcR on effector cells (e.g., NK cells, macro-
phages), promoting direct cytotoxic effects like ADCC, CDC, and ADCP, 
while inhibiting downstream antigen receptor signaling [8,107,108], 
reinforcing the hypothesis that ADCs targeting oncogenic or functional 
proteins may offer enhanced antitumor efficacy compared to those tar-
geting non-functional proteins. Innovations in ADC drug development 
can be pursued in multiple dimensions: 1) Mechanism innovation: 
Combining novel ADC mechanisms, such as dual conjugation of cyto-
toxic agents or conjugating ADCs with PD-L1 inhibitors, especially for 
HER2-positive breast cancer. 2) Combination drug innovation: 
Concurrently conjugating cytotoxic agents with two large molecule 
monoclonal antibodies or combining ADCs with immune checkpoint 
inhibitors, monoclonal antibodies, or small molecule TKIs. 3) Combi-
nation therapy innovation: Integrating ADCs with immunotherapy, 
endocrine therapy, targeted therapy, or chemotherapy.

Resistance is a critical challenge in ADC therapy, driven by mecha-
nisms such as antibody-mediated resistance, impaired drug transport, 
lysosomal dysfunction, and payload-specific resistance. Strategies to 
overcome resistance include developing drugs targeting novel mecha-
nisms and exploring combination therapies addressing different resis-
tance pathways. Designing effective ADC combination regimens should 
adhere to the following principles: minimizing additive toxicities to 
avoid exacerbating adverse effects, ensuring synergistic interactions to 

enhance therapeutic efficacy, and supporting the regimen with robust 
evidence-based feasibility. Current ADC combination regimens under-
going clinical trials encompass immunotherapy, endocrine therapy, 
targeted therapy, and chemotherapy. The advent of precision medicine 
has introduced a broader array of treatment options and reshaped the 
therapeutic landscape for breast cancer. From mechanistic innovations 
to clinical applications, ADCs continue to advance the frontier of breast 
cancer treatment, offering the potential for significant patient benefits.
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