
Articles
eBioMedicine
2024;110: 105429

Published Online xxx

https://doi.org/10.
1016/j.ebiom.2024.
105429
Polygenic and transcriptional risk scores identify chronic
obstructive pulmonary disease subtypes in the COPDGene and
ECLIPSE cohort studies
Matthew Moll,a,b,c,x Julian Hecker,a,x John Platig,d Jingzhou Zhang,e Auyon J. Ghosh,f Katherine A. Pratte,g Rui-Sheng Wang,a Davin Hill,h

Iain R. Konigsberg,i Joe W. Chiles, IIIj Craig P. Hersh,a,b,x Peter J. Castaldi,a,j,k,x Kimberly Glass,a,x Jennifer G. Dy,h Don D. Sin,l Ruth Tal-Singer,m

Majd Mouded,n Stephen I. Rennard,o Gary P. Anderson,p Gregory L. Kinney,q Russell P. Bowler,r Jeffrey L. Curtis,s,t Merry-Lynn McDonald,i,u,v

Edwin K. Silverman,a,b,x Brian D. Hobbs,w,y and Michael H. Choa,b,x,y,∗

aChanning Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, USA
bDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, USA
cDivision of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02123, USA
dCenter for Public Health Genomics, University of Virginia, Charlottesville, VA, 22903, USA
eThe Pulmonary Center, Boston University Medical Center, Boston, MA 02118, USA
fDivision of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
gDepartment of Biostatistics, National Jewish Health, Denver, CO, 80206, USA
hDepartment of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
iDepartment of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
jDivision of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham,
Birmingham, AL, 35233, USA
kDivision of General Internal Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115,
USA
lCentre for Heart Lung Innovation, St. Paul’s Hospital, and Department of Medicine (Respiratory Division), University of British
Columbia, Vancouver, BC, Canada
mGlobal Allergy and Airways Patient Platform, Vienna, Austria
nNovartis Institute for Biomedical Research, Cambridge, MA, USA
oDivision of Pulmonary, Critical Care, and Sleep Medicine, University of Nebraska, Omaha, NE, 68198, USA
pLung Health Research Centre, Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
qDepartment of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
rDivision of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
sDivision of Pulmonary and Critical Care Medicine, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
tMedical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, 48109, USA
uDepartment of Epidemiology, School of Public Health, University of Alabama at Birmingham, 701, 19th Street S., LHRB 440,
Birmingham, AL, 35233, USA
vDepartment of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
wRegeneron Pharmaceutical, Tarrytown, NY, USA
xHarvard Medical School, Boston, MA, 02115, USA

Summary
Background Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but
their effect on COPD heterogeneity is unclear. We aimed to define high-risk COPD subtypes using genetics
(polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in
clinical and molecular characteristics.

Methods We defined high-risk groups based on PRS and TRS quantiles by maximising differences in protein
biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We
tested multivariable associations of subgroups with clinical outcomes and compared protein–protein interaction
networks and drug repurposing analyses between high-risk groups.

Findings We examined two high-risk omics-defined groups in non-overlapping test sets (n = 1133 NHW COPDGene,
n = 299 African American (AA) COPDGene, n = 468 ECLIPSE). We defined “high activity” (low PRS, high TRS) and
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“severe risk” (high PRS, high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI),
lower lung function, and alterations in metabolic, growth, and immune signalling processes compared to a low-
risk (low PRS, low TRS) subgroup. “High activity” but not “severe risk” participants had greater prospective FEV1

decline (COPDGene: −51 mL/year; ECLIPSE: −40 mL/year) and proteomic profiles were enriched in gene sets
perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors.

Interpretation Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular het-
erogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific
enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

Funding National Institutes of Health.

Copyright Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study
Genetic variants and gene expression have been previously
associated with the risk of developing chronic obstructive
pulmonary disease (COPD). However, their role in defining the
heterogeneity of COPD subtypes has not been fully explored.

Added value of this study
We utilised both polygenic (PRS) and transcriptional (TRS) risk
scores to identify high-risk COPD subtypes. This approach
highlighted two subgroups: “high activity” and “severe risk.”
The findings demonstrate distinct clinical and molecular
characteristics in these subgroups, with differences in body-
mass index (BMI), lung function, and proteomic profiles.

Moreover, proteomic and drug repurposing analyses revealed
subtype-specific enrichment for certain therapies, such as 5-
lipoxygenase inhibitors and ACE inhibitors, which could
explain previous failures in drug repurposing due to patient
selection issues.

Implications of all the available evidence
Integrating polygenic and transcriptional risk scores provides
a more nuanced understanding of COPD heterogeneity. These
findings suggest that patient stratification using omics-based
approaches could enhance the effectiveness of targeted
therapies, potentially leading to better clinical outcomes for
high-risk COPD subtypes.
Introduction
Chronic obstructive pulmonary disease (COPD) is a
leading cause of morbidity and mortality worldwide.1

Although COPD is characterised by irreversible airflow
obstruction, there is marked heterogeneity amongst in-
dividuals in emphysema and airway pathology, exacer-
bation incidence, and lung function decline.2,3

Identifying individuals at high risk for rapid COPD
progression or eventual severe disease is critically
important to implement personalised therapeutic
approaches.

Large-scale omics data offer the potential to identify,
via a simple blood test, high risk groups that share
distinct, targetable pathobiology. Genetics, quantified
with polygenic risk scores (PRSs), can identify in-
dividuals at high risk for coronary artery disease and
guide consideration of statin therapy earlier than
advised by current guidelines.4 In cancer, integrating
genetic and transcriptomic profiling can improve ther-
apy recommendations and outcomes.5 We demon-
strated that both a PRS and a transcriptional risk score
(TRS) independently predict COPD.6,7 The TRS pre-
dicted COPD with an odds ratio of 3.3 and area-under-
the-curve of 0.79.7 Although the PRS and TRS were
both based on spirometry measures, the scores are not
correlated7 and likely capture different aspects of lung
pathobiology. Specifically, COPD genetic risk loci are
enriched for aspects of lung development and have a
greater effect in early COPD6,8; in contrast, the COPD
TRS is associated with markers of inflammation and
lung function decline and may reflect disease activity
and propensity toward disease progression.7 Thus, it
may be possible to leverage the different features of the
PRS and TRS to identify clinically and biologically
distinct COPD subtypes.

Despite advances in omics-based risk prediction,
important clinical translation questions remain. Omics
risk scores are usually standardised for statistical ana-
lyses, leaving the question of how to use them to risk-
stratify individuals.9 Risk scores are also continuous
measures, often normally distributed; the issue of
attempting to identify subtypes along a continuum has
been previously recognised.10 Despite this limitation,
there is a need to classify individuals to link omics-
defined high-risk groups, which might benefit from
specific therapies, with specific pathobiological
www.thelancet.com Vol 110 December, 2024
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processes and treatment decisions. COPD drug and
drug repurposing candidates have high failure rates in
clinical trials,11 but it remains unknown if these thera-
pies have failed because of patient selection, which
currently does not utilise omics or other biomarkers.

The PRS was effective for predicting COPD severity
and incident COPD, while the TRS was better at pre-
dicting FEV1 decline; combining both risk scores may
identify subgroups at risk for multiple important COPD
outcomes. Therefore, we hypothesised that our pub-
lished PRS and TRS, both based on spirometry, could
identify COPD subtypes (i.e., heterogeneity) within
high-risk groups with clinical and biological differences
in two cohorts of ever-smokers. We aimed to develop an
approach for how omics risk scores can be applied to
populations and leveraged for precision medicine. We
used proteomics to obtain an additional biological view
of omics-defined subgroups and performed in silico
drug repurposing analyses to identify potential
subgroup-specific drug repurposing candidates.
Methods
Study populations
COPDGene
We included Genetic Epidemiology of COPD (COPDG-
ene) study (ClinicalTrials.gov Identifier: NCT00608764)
participants with single nucleotide polymorphism (SNP)
genotyping, RNA-sequencing, and SomaScan proteomic
data to calculate the PRS, TRS, and performed differen-
tial protein expression analyses, respectively. Briefly, the
COPDGene study recruited n = 10,198 non-Hispanic
white (NHW) and African American (AA) individuals
aged 45–80 years with ≥10 pack-years of smoking his-
tory.12 COPDGene began as a cross-sectional case–control
study that was extended into a longitudinal study
including 5 and 10-year follow up visits. Anthropometric,
spirometry, and computed tomography (CT) imaging
measures were performed at each visit. We obtained
genotype data at baseline, and RNA-sequencing and
SomaScan proteomic data at the 5-year follow up visit.

Single nucleotide polymorphism (SNP) genotyping
was performed using the Illumina (San Diego, CA)
HumanOmniExpress array. Genotyping at the Z and S
alleles was performed and participants with severe
alpha-1 antitrypsin deficiency were excluded. Imputa-
tion was performed using the Michigan Imputation
Server to the Haplotype Reference Consortium13 and
1000 Genomes Phase I v3 Cosmopolitan reference
panels, for non-Hispanic whites and African Americans,
respectively. Variants with an r2 value of ≤0.3 were
removed.

ECLIPSE
As previously described,7 we included Evaluation of
COPD Longitudinally to Identify Predictive Surrogate
End-points (ECLIPSE) study (ClinicalTrials.gov
www.thelancet.com Vol 110 December, 2024
Identifier: NCT00292552) participants with SNP geno-
typing data, whole blood microarray data, and at least
two FEV1 measurements. The ECLIPSE study recruited
n = 2140 individuals with COPD aged 40–75 years and
≥10 pack-years of smoking history.14 Baseline anthro-
pometric, spirometry, and CT imaging measures were
collected. Blood samples were also collected at study
enrolment and, for a subset of samples, both genotype
and gene expression microarray data are available. If
individuals met the spirometry criteria for Global
Initiative for Chronic Obstructive Lung Disease
(GOLD)15 stage 2–4 COPD at enrolment, they returned
every six months for three years for repeat spirometry.

In ECLIPSE, SNP genotyping was performed using
the Illumina HumanHap 550 V3 (Illumina, San Diego,
CA) array. Subjects and markers with call rates <95%
were excluded. Imputation was performed using the
Michigan Imputation Server and Haplotype Reference
Consortium13 reference panel.

Cohort expression data
COPDGene: RNA sequencing data. At the 5-year follow
up of the COPDGene study, whole blood was obtained
and stored in PAXgene Blood RNA tubes. Collection
and processing of RNA-sequencing data was previously
described.7,16 Briefly, total RNA was extracted with the
Qiagen PreAnalytiX PAXgene Blood miRNA Kit (Qia-
gen, Valencia, CA). After undergoing quality assurance,
samples were globin reduced and cDNA library prepa-
ration was performed; 75 bp reads with a mean of 20
million reads per sample were generated using an
Illumina HiSeq 2500. Count data were filtered to
include transcripts with >1 count per million (CPM) in
99% of samples, and were subsequently normalised by
log-CPM transformation using the edgeR R package.17

Counts were adjusted for library depth, and batch ef-
fects were removed using the limma removeBatch-
Effects function.18

ECLIPSE: microarray data. ECLIPSE participants had
blood samples collected at the time of study enrolment,
and total RNA was extracted using PAXgene Blood
miRNA kits and hybridised to the Affymetrix Human
Gene 1.1 ST array. If transcripts were represented by
multiple probes, we chose the probe with the greatest
interquartile range. Batch effects were removed using
the limma removeBatchEffects function.18 Our prior
publication7 contains further details regarding prepara-
tion and processing of RNA data.

Prior to analyses, we limited transcripts to those
present in both data sets based on HGNC symbols. For
ECLIPSE microarray data, some gene transcripts were
represented by multiple probes. In these cases, we chose
the probe with the greatest interquartile range. We also
scaled the RNAseq count and microarray gene expres-
sion data to have a mean of 0 and standard deviation
of 1.
3
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Proteomic data: COPDGene
Blood proteomic data were measured using SomaScan
v4.0, which uses aptamers (i.e., SOMAmers) to quantify
4776 unique human proteins. Using the SomaScan 5K
platform, we performed plate hybridisation, median
signal normalisation, and plate scaling and calibration of
SOMAmers to control for variability across array signals,
inter-run variability, inter-assay variation between ana-
lytes and batch differences between plates. Further de-
tails regarding SomaScan data and preparation have
been previously published.19

Polygenic and transcriptional risk scores
The COPD PRS and TRS were both based on spirom-
etry and previously described.6,7

Polygenic risk score
We previously published a PRS6 using GWASs of FEV1

and FEV1/FVC performed in approximately 500,000
individuals from the UK Biobank and SpiroMeta con-
sortium.20 We calculated PRSs for FEV1 and FEV1/FVC
separately using lassosum,21 a penalised regression
approach that minimises collinearity, provides feature
selection, and accounts for linkage disequilibrium. We
summed the FEV1 and FEV1/FVC scores into a com-
posite risk score, as previously performed.6 COPDGene
and ECLIPSE were not used to develop the PRS and
represent external datasets.
COPDGene tra
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Fig. 1: Schematic of study design. COPD, chronic obstructive pulmo
ECLIPSE, Evaluation of COPD to Longitudinally Identify Predictive Surroga
score. STRING, Search Tool for the Retrieval of Interacting Genes/Protein
To maximise our ability to separate subjects based on
the genetic risk score and to minimise potential con-
founding by genetic ancestry, we analysed NHW and
AA participants separately in this analysis and resi-
dualised by regressing out principal components of ge-
netic ancestry from the PRS before use.

Transcriptional risk score
We previously published a TRS7 in a training sample of
COPDGene using least absolute shrinkage and selection
operator (LASSO) penalised regression22 in 1374 in-
dividuals from the COPDGene study and tested its
performance in a held-out sample of 674 individuals.
We have since obtained RNA-sequencing data (TOPMed
Freeze 4) in an additional 459 NHW and 143 AA par-
ticipants and have added these participants to the
COPDGene testing set. We ensured that none of the
samples used in the training of the TRS were included
in our COPDGene testing set.

Statistics
Overview of study design
To identify high-risk subgroups based on continuous
scores, we used the same previously defined COPDG-
ene training set,7 and tested among PRS and TRS
quantiles to maximise the number of associated differ-
entially expressed proteins across the resulting subtype
partitions (Fig. 1). We included only Europeans in the
ining set
,374)
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training dataset as the PRS was developed in European
ancestry individuals. We then determined the raw (non-
standardised) score cut offs associated with the corre-
sponding percentile values in the COPDGene training
set. This approach facilitated classifying each participant
in the COPDGene testing set and the external ECLIPSE
validation set into an omics-defined subtype. We char-
acterised the newly defined subtypes using proteomic
network and drug repurposing analyses, and applied
multivariable linear regressions to test the association of
subtypes with COPD-related outcomes.

Determining risk score divisions and identifying omics-defined
subtypes
Omics-based risk scores are typically standardised prior to
statistical analysis, and therefore, have a normal distribu-
tion and by design do not lend themselves to clustering
analyses (Figure S1). Yet, for clinical application, patients
need to be categorised into groups. First, to determine
whether one or more clusters are optimal, we calculated
the gap statistic based on the PRS and TRS using the
clusGap function (cluster R package) with a maximum of 8
k means clusters and 500 bootstrap iterations. The gap
statistic provides a measure of dispersion for each cluster
and compares this dispersion metric to the expected
dispersion under the null distribution23; thus, the differ-
ence (or “gap”) between the observed and expected within
cluster dispersion is used to calculate the gap statistic and
the maximum gap statistic over a range of cluster numbers
indicates the optimal number of clusters.

As an alternative to clustering, individuals are
commonly placed into omics risk-score quantiles, and
participants in each quantile are compared to those in
the lowest risk quantile.4,6,24 To extend this approach to
two separate omics risk scores is more complex, as
fewer subdivisions lead to larger group sizes and more
statistical power, but more subdivisions allow a more
extreme comparison group. As genetic and tran-
scriptomic data were used to define the subtypes, pro-
teomics would provide a third “view” of the data. Thus,
to determine the optimal quantiles we split the PRS and
TRS into 2 to 3 quantiles (minimum of 4 and maximum
of 9 groups) and tested to see what group divisions
maximised the number of associated differentially
expressed proteins using limma,18 comparing each
quantile category to the lowest quantile. To test the
sensitivity of the groups to partitioning, we also exam-
ined clinical characteristics for each combination of
these partitions. Benjamini-Hochberg25 false discovery
rate (FDR)-adjusted p-values less than 0.05 were
considered significant. The number of significantly
differentially expressed proteins associated with each
omics risk score category was summed.

Clinical comparisons of omics-defined subtypes
We compared clinical characteristics across omics-
defined subtypes using the tableone R package. In
www.thelancet.com Vol 110 December, 2024
COPDGene, transcriptomic and proteomic data were
collected at the 5-year follow up visit (i.e., “Phase 2”), so
we examined differences in anthropometry (including
change in BMI per year (Kg/m2/year) from enrolment to
the 5-year follow up visit), spirometry (including pro-
spective FEV1 change (from 5- to 10-year follow up
visits)), and CT measures of emphysema (quantitative
emphysema on inspiratory CT scans (% LAA < −950
HU),26 15th percentile of lung density histogram on
inspiratory CT scans (Perc15)27) and of airway thick-
ening (wall area percent (WA%)26 and square root of wall
area of a hypothetical internal perimeter of 10 mm
(Pi10)28) at the 5-year follow up visit. In ECLIPSE, we
examined the same outcomes but longitudinal follow up
was from the time of study enrolment to the 3-year
follow up visit. In both cohorts, we used post-
bronchodilator spirometry measures. We adjusted
regression models for age, sex, current smoking status,
pack-years of smoking history, principal components of
genetic ancestry, and CT scanner (for imaging outcomes
only). Sex and race were determined by self-report
and checked for concordance with respect to sex and
ancestry as assessed by X and Y chromosome and
ancestry principal components, as performed in prior
genetic association studies.20,29 To test for an interaction
between the PRS and TRS, we tested the significance of
the cross-product term (PRS X TRS) in multivariable
models adjusting for confounders.

We defined FEV1 change in COPDGene as the 10-
year follow-up measure minus the 5-year follow-up
measure, divided by the time in years, and in ECLIPSE,
by taking the slope of the best fit line for FEV1 versus
time, as previously described.7,30 In COPDGene, we
additionally examined differences in early-onset COPD
(GOLD 2–4 spirometry grades before 55 years of age31)
and absolute white blood cell differential counts.

As a sensitivity analysis, we included only partici-
pants with COPD (FEV1/FVC <0.7) at either baseline or
the 5-year follow up visit and repeated the regression
analyses.

Regression model specifications. We performed multi-
variable linear regressions in the COPDGene testing
set comparing each subtype to the reference group.
Outcomes included FEV1% predicted, FEV1/FVC, %
LAA < −950 HU, Perc15, Pi10, and WA%. We
adjusted regression models for age, sex, current
smoking status, pack-years of smoking history, prin-
cipal components of genetic ancestry, and CT scanner
(for imaging outcomes only). We selected outcomes
based on input from clinicians and data availability
(less than 20% missingness). Adjustment variables
were chosen based on clinician input and these
measures were available for all participants. We
additionally performed interaction analyses by
including the PRS, TRS, and a cross-product term
(PRS*TRS) within a single regression model.
5
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Biological characterisation of omics-defined subtypes
We performed differential gene and protein expression
analyses (accepting FDR-adjusted p-values <0.05),
comparing high risk subtypes to the reference group,
defined as the group with the lowest PRS and TRS
quantiles. We mapped differentially expressed proteins
to the human protein–protein interactome32 and per-
formed Reactome33 pathway enrichment, Enrichr,34–36

and STRING37 analyses.

Differential expression analysis. We performed differen-
tial protein expression analysis to identify proteins
associated with the PRS, using limma and considering
FDR-adjusted p-values below 0.05 to be significant. We
also compared differential protein expression between the
high-risk groups. To understand how the PRS modifies
gene expression profiles, we also examined differentially
expressed genes associated with COPD case–control status
(GOLD 2–4 versus normal spirometry) adjusting for age,
sex, smoking status, pack-years of smoking. We then
repeated this analysis adjusting for the PRS and principal
components of genetic ancestry. We chose adjustment
variables based on clinician input and the fact that these
measures were available for all participants.

STRING, pathway enrichment, and drug repurposing analy-
ses. We used STRING (www.string-db.org) to query the
human protein–protein interactome and to construct a
network including up to 10 interactors in the first shell
(i.e., proteins directly interacting with seed proteins) and 5
interactors in the second shell (i.e., proteins directly
interacting with 1st shell proteins) per seed protein37; only
high confidence interactions (≥0.7) were included.

We also performed pathway enrichment and MCL
(Markov clustering algorithm, inflation parameter 3)
clustering analyses38 on these protein–protein interac-
tion (PPI) networks. We input the differentially
expressed proteins into Enrichr (maayanlab.cloud/
Enrichr) to query the Multi-marker Analysis of GenoMic
Annotation (MAGMA) drugs and diseases database,39
Characteristic COPDGene
training set

COPDGe
testing
(NHW)

n 1374 1133

Age in years (mean (SD)) 67.38 (8.25) 68.13 (8

Sex (No. (% female)) 677 (49.3) 560 (49

Pack-years of smoking (mean (SD)) 45.47 (24.61) 45.47 (2

Current smoking (No. (%)) 343 (25.0) 289 (25

FEV1% predicted (mean (SD)) 78.37 (24.21) 77.85 (2

FVC % predicted (mean (SD)) 87.25 (17.34) 86.79 (1

FEV1/FVC (mean (SD)) 0.67 (0.15) 0.66 (0

COPD, chronic obstructive pulmonary disease. COPDGene, Genetic Epidemiology of CO
Endpoints study. FEV1, forced expiratory volume in 1 s. FEV1/FVC, FEV1/forced vital ca

Table 1: Characteristics of study populations.
and used the Enrichr Appyter to identify potential
drug repurposing candidates for individuals belonging
to omics-defined subtypes. After these analyses, we
renamed the subtype groups based on associated clinical
outcomes and biological processes.

Ethics
All study participants provided written informed con-
sent, and studies were approved by local Institutional
Review Boards. The current study was approved by the
Mass General Brigham institutional review board (IRB
#2007P000554).

Role of funders
For ECLIPSE, GlaxoSmithKline was involved in the
study design and genotype and phenotype data collec-
tion. Otherwise, the study design, data collection, data
analysis, data interpretation, and manuscript writing did
not involve any sponsors. The final responsibility to
submit the publication fell upon the corresponding
author, who had full access to all data.

Results
Characteristics of study populations
We included 3274 participants across two cohorts of in-
dividuals who smoked. The COPDGene training and
testing sets are similar in demographic and spirometry
characteristics (Table 1). A diagram of the included and
excluded participants is shown in Figure S2. Compared
to COPDGene, ECLIPSE participants were more likely to
be younger, male, to have a greater number of smoking
pack-years, a lower FEV1% predicted, and lower FEV1/
FVC, and were less likely to be current smokers.

Defining polygenic and transcriptional risk score
divisions
Participants plotted on the axes of PRS and TRS exist
along a continuum (Figure S1), as is the case for
spirometric measures of COPD severity (i.e., FEV1 and
FEV1/FVC10,40). We calculated the gap statistic over a
ne
set

COPDGene
testing
set (AA)

ECLIPSE p

299 468

.30) 61.01 (6.95) 64.43 (6.09) <0.001

.4) 153 (51.2) 156 (33.3) <0.001

3.65) 39.55 (20.74) 49.33 (26.87) <0.001

.5) 182 (60.9) 70 (15.0) <0.001

4.81) 81.79 (23.54) 44.22 (14.64) <0.001

7.55) 88.68 (16.63) 80.63 (19.37) <0.001

.15) 0.71 (0.14) 0.45 (0.11) <0.001

PD. ECLIPSE, Evaluation of COPD to Longitudinally Identify Predictive Surrogate
pacity. NHW, non-Hispanic white. AA, African American.
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range of kmeans cluster numbers in the COPDGene
training set, and consistent with visual inspection of
Figure S1, we observed that one cluster yields the
highest gap statistic, indicating that there are no clusters
(Figure S3). As an alternative approach to clustering, we
applied the common practice of dividing risk scores into
quantiles, though the optimal quantiles balancing suf-
ficiently high risk, yet adequate sample size, are not
clear. Thus, we tested four combinations of partitioned
omics risk scores, using protein expression differences
(not used in the PRS and TRS) between groups. We
observed that dichotomising PRS and dividing TRS into
tertiles yielded the greatest number of differentially
expressed proteins (Table S1). We then applied these
same quantiles to the COPDGene testing set and
ECLIPSE participants (Fig. 2). To test the robustness of
subgroups to specific partitions, we also examined 4 to 9
subdivisions and noted stable clinical characteristics of
the highest (“low PRS, high TRS” and “high PRS, high
TRS”) and lowest risk (“low PRS, low TRS”) groups
(Table S2).
low PRS 
low TRS

low PRS 
intermediate TRS

low PRS 
high TRS

High disease 
activity subtype

Fig. 2: Omics-defined groups or subtypes overlaid on a plot of the polygen
the COPDGene testing set (n = 1432).

www.thelancet.com Vol 110 December, 2024
Polygenic and transcriptional risk scores identify
“high disease activity” and “severe disease risk”
subtypes
We observed, as expected, heterogeneity amongst the two
high-risk (i.e., high TRS) groups (Table 2). We compared
these high-risk subtypes to a reference group, which was
defined as the lowest omics risk group (i.e., “low PRS, low
TRS” subtype). Compared to the reference group, the two
high-TRS risk groups (i.e., “low PRS, high TRS” and “high
PRS, high TRS”) demonstrated decreased BMI, lower
spirometry measures, more emphysema, and thicker air-
ways across testing cohorts (Table 2). Both groups had
similar mean adjusted prospective FEV1 decline in the
COPDGene testing set compared to the reference group,
but this finding was only consistent for the “low PRS, high
TRS” group in ECLIPSE (−40 mL/year).

We then performed linear regression analyses on
selected COPD-related outcomes. We compared
anthropometric, spirometry, CT, and other COPD-
related outcomes across COPDGene and ECLIPSE
(Table 3, Table S3). Compared to the reference group,
high  PRS 
low TRS

high  PRS 
intermediate TRS

high  PRS 
high TRS

Severe disease risk 
subtype

ic risk score (PRS; x-axis) and transcriptional risk score (TRS; y-axis) in
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Characteristic COPDGene NHW testing set COPDGene AA testing set ECLIPSE

Reference group
(Low PRS,
Low TRS)

Low PRS,
High TRS

High PRS,
High TRS

Reference group
(Low PRS,
Low TRS)

Low PRS,
High TRS

High PRS,
High TRS

Reference group
(Low PRS,
Low TRS)

Low PRS,
High TRS

High PRS,
High TRS

n 196 65 68 61 16 11 57 63 56

Age in years
(mean (SD))

67.85 (8.52) 67.16 (6.46) 69.04 (8.11) 61.26 (7.55) 60.58 (7.24) 65.95 (8.05) 63.00 (5.10) 65.43 (6.65) 66.59 (5.95)

Sex (No.
(% female))

114 (58.2) 19 (29.2) 24 (35.3) 36 (59.0) 5 (31.2) 8 (72.7) 30 (52.6) 10 (15.9) 11 (19.6)

Pack-years of
smoking
(mean (SD))

36.51 (22.27) 60.07 (26.49) 57.28 (23.35) 37.01 (20.85) 43.42 (16.14) 61.36 (38.87) 45.49 (26.24) 55.29 (35.25) 54.29 (21.10)

Current
smoking
(No. (%))

20 (10.2) 36 (55.4) 36 (52.9) 31 (50.8) 15 (93.8) 8 (72.7) 6 (10.5) 7 (11.1) 12 (21.4)

BMI (Kg/m̂2)
(mean (SD))

30.00 (6.84) 26.51 (5.81) 25.70 (5.58) 30.61 (6.36) 29.14 (8.52) 25.26 (6.57) 27.54 (5.06) 26.70 (6.22) 25.49 (4.76)

FEV1% predicted
(mean (SD))

90.15 (18.13) 66.50 (27.07) 60.55 (24.11) 90.83 (17.41) 80.61 (25.43) 71.08 (10.67) 50.25 (13.42) 43.41 (15.65) 37.44 (13.44)

FVC % predicted
(mean (SD))

90.44 (15.27) 85.25 (20.18) 83.25 (16.65) 91.65 (14.37) 85.12 (20.95) 91.99 (13.77) 90.53 (20.17) 79.60 (18.68) 75.25 (22.51)

FEV1/FVC (mean
(SD))

0.75 (0.09) 0.57 (0.15) 0.53 (0.15) 0.77 (0.10) 0.73 (0.14) 0.61 (0.12) 45.84 (11.13) 43.16 (12.79) 39.71 (10.29)

% LAA < −950
HU (mean (SD))

2.78 (4.71) 8.50 (10.39) 11.00 (11.98) 1.71 (4.00) 3.51 (8.08) 5.49 (7.30) 16.01 (11.46) 20.88 (13.50) 22.44 (13.22)

Perc15
(mean (SD))

−913.62 (20.43) −927.23 (27.21) −931.05 (31.55) −895.53 (26.89) −901.19 (29.94) −913.62 (34.95) −943.75 (50.13) −960.00 (49.44) −971.11 (45.84)

Pi10
(mean (SD))

2.01 (0.50) 2.55 (0.65) 2.60 (0.51) 2.11 (0.48) 2.56 (0.59) 2.42 (0.44) 4.38 (0.20) 4.42 (0.23) 4.43 (0.19)

WA %
(mean (SD))

46.97 (8.11) 54.46 (8.35) 54.61 (7.41) 47.48 (7.76) 54.86 (10.52) 51.62 (4.06) 64.35 (2.79) 65.05 (3.58) 67.22 (3.44)

Change in FEV1
mL/year
(prospective)
(mean (SD))

−32.11 (48.07) −51.21 (74.41) −66.45 (61.58) −42.28 (36.59) −87.86 (156.98) −56.26 (76.62) −32.21 (59.54) −40.13 (75.31) −15.22 (67.46)

The reference group was defined as the “Low PRS, Low TRS” group. BMI, body-mass index. LAA, low attenuation area. HU, Hounsfield units. Perc15, 15th percentile of lung density histogram on inspiratory
CT scans. WA %, wall area percent. Pi10, square root of wall area of a hypothetical internal perimeter of 10 mm. ACO, asthma-COPD overlap. See Table 1 legend for other abbreviations. NHW, non-Hispanic
white. AA, African American.

Table 2: Omics-defined subtypes in the COPDGene testing set and ECLIPSE.
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high-risk groups exhibited lower spirometry, more
emphysema, and thicker airways (Table 3). While none
of the adjusted FEV1 decline measures were statistically
significant, the “low PRS, high TRS” means were
consistent between COPDGene and ECLIPSE (−30 mL/
yr and −24 mL/year, p = 0.15 and p = 0.11, respectively),
despite that COPDGene participants had only two FEV1

measurements while ECLIPSE participants had up to six
FEV1 measurements. Given the clinical relevance of
accelerated FEV1 decline in the “low PRS, high TRS”
group, we renamed this group the “high disease activity”
subtype. While the “high PRS, high TRS” group did not
have replicable FEV1 decline across cohorts, this group
had the lowest lung function and most emphysema;
therefore, we renamed this group the “severe disease
risk” subtype. We observed similar distributions of
COPD-related outcomes across omics-defined subtypes
when stratifying by sex (Table S4). In COPDGene NHW
participants only, the “high disease activity” subtype also
exhibited a trend toward greater decline in BMI
compared to the reference group (β = −0.154 [95%
CI: −0.333 to 0.0253], p = 0.094). In multivariable
interaction analyses, we did not observe any significant
interactions (all p-values of cross-product terms [PRS X
TRS] > 0.05) between the PRS and TRS on spirometry or
CT imaging outcomes (Table S5). As a sensitivity anal-
ysis, we limited analysis to those with COPD (FEV1/
FVC <0.7) at either study visit (Table S6). We note that
all ECLIPSE individuals had COPD. The results in
COPDGene are similar with respect to characteristics
across omics-defined subtypes (Table S7).

Biological characterisation and drug repurposing
analyses of subtypes
Having identified clinical differences between the two
high-risk groups, we sought to characterise biological
differences between these subtypes. We performed dif-
ferential gene and protein expression analyses between
www.thelancet.com Vol 110 December, 2024
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COPD-related
outcome

COPDGene NHW testing set COPDGene AA testing set ECLIPSE

Low PRS,
High TRS

High PRS,
High TRS

Low PRS,
High TRS

High PRS,
High TRS

Low PRS,
High TRS

High PRS,
High TRS

beta (95% CI) p beta (95% CI) p beta (95% CI) p beta (95% CI) p beta (95% CI) p beta (95% CI) p

FEV1%
predicted

−22.3 (−29.5 to −15.2) 4.3E-09 −31.5 (−38.2 to −24.8) 1E-17 −4.11
(−16.8 to 8.59)

0.53 −19.6 (−32.7 to −6.51) 0.0048 −7.8
(−13.6 to −1.95)

0.01 −15.5
(−21.4 to −9.61)

1.3E-06

FVC %
predicted

−7.24 (−13 to −1.51) 0.014 −11.9 (−17.1 to −6.63) 1.3E-05 −4.07
(−14.6 to 6.45)

0.45 −3.77 (−15.5 to 7.91) 0.53 −6.89
(−14.9 to 1.15)

0.096 −12.4
(−22.2 to −2.51)

0.016

FEV1/FVC −0.147 (−0.184 to −0.11) 3E-13 −0.197 (−0.233 to −0.161) 4.8E-22 −0.00368
(−0.0731 to 0.0657)

0.92 −0.118
(−0.193 to −0.043)

0.0032 −4.5
(−9.07 to 0.0772)

0.057 −8.83
(−13.5 to −4.16)

0.00035

% LAA
< −950 HU

3.1 (1.8–5.2) 3.30E-05 3.4 (2.1–5.6) 2.30E-06 1.3 (0.44–3.7) 0.66 0.94 (0.23–3.9) 0.93 2.33 (−3.34 to 8) 0.42 6.97
(−0.0748 to 14)

0.058

Perc15 −11.2 (−18.6 to −3.72) 0.0037 −15.3 (−22.8 to −7.89) 7.6E-05 −0.305
(−17.1 to 16.5)

0.97 −4.66 (−26.2 to 16.9) 0.67 −0.994
(−24.1 to 22.1)

0.93 −19.2
(−49.3 to 10.8)

0.21

Pi10 0.498 (0.298–0.698) 2.10E-06 0.605 (0.429–0.78) 1.40E-10 0.346
(−0.032 to 0.724)

0.079 0.475 (0.00489–0.946) 0.054 −0.0786 (−0.147
to −0.00988)

0.029 −0.0753
(−0.163 to 0.0124)

0.099

WA % 5.88 (3.19–8.58) 2.90E-05 7.17 (4.63–9.71) 8.90E-08 4.55
(−1.6 to 10.7)

0.15 7.48 (−0.0534 to 15) 0.058 0.516
(−0.972 to 2)

0.5 2.18 (0.376–3.98) 0.021

FEV1 change
(mL/year)

−30 (−70.6 to 10.7) 0.15 −43.9 (−91.7 to 3.94) 0.077 −103
(−294 to 87.5)

0.32 −60.5 (−105 to −15.6) 0.033 −23.7
(−52.9 to 5.47)

0.11 6.97
(−25.8 to 39.8)

0.68

Models were adjusted or age, sex, current smoking status, pack-years of smoking, and principal components of genetic ancestry. Computed tomography imaging outcomes were additionally adjusted for CT scanner. Abbreviations are detailed in
Tables 1 and 2 legends.

Table 3: Multivariable linear regressions in the COPDGene testing sets and ECLIPSE.
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the “high disease activity” and “severe disease risk”
subtypes and the reference group in the COPDGene
NHW testing set (Tables S8–S10). The “high disease
activity” subtype had 14 and the “severe disease risk”
subtype had 2 differentially expressed proteins
(Table S8). We did not observe differentially expressed
genes or proteins when directly comparing high risk
groups. We examined how the PRS affects differential
gene expression associated with COPD case–control
status as detailed in the supplement (Supplementary
Results and Table S11).

We mapped differentially expressed proteins associ-
ated with each high-risk subtype in the COPDGene
testing set to the human protein–protein interactome32

and used the mapped proteins as seed proteins to
construct STRING PPI networks (Figs. 3 and 4) with
associated MCL clusters (Table S12) and perform
pathway enrichment analyses (Table S13). We built
separate up and down-regulated STRING PPI networks
for the low PRS/high TRS group, and additionally
Fig. 3: High disease activity (“low PRS, high TRS”) subtype STRING protei
in Omics-defined groups (subtypes) in the COPDGene testing set as see
interactors in the second shell. Only high-confidence interactions were
Differentially expressed proteins were identified by comparing group as
clusters.
observed alterations in the Asparagine N-linked glyco-
sylation, NCAM1, and RAF/MAP kinase cascade path-
ways (Table S14). To identify subtype-specific drug
repurposing candidates, we used these same seed pro-
teins to perform enrichment analyses on the MAGMA
Drugs and Disease database.39 Both subtypes demon-
strated enrichment proteomic profiles suggesting po-
tential treatment with ACE inhibitors, thyroid
medications, carvedilol, bromocriptine, and lovastatin;
the “high disease activity” subtype also had significant
findings for 5-lipoxygenase inhibitors, fomepizole, and
galantamine, while the “severe disease risk” (Table S15)
subtype had significant findings for atypical
antipsychotics.
Discussion
In this study of 3274 ever-smokers from two cohorts, we
used blood-based polygenic (PRS) and transcriptional
(TRS) risk scores to identify heterogeneity within high-
n–protein interaction networks using differentially expressed proteins
d proteins, permitting up to 10 interactors in the first shell and 5
included and greater line thickness indicates greater confidence.

signments to the reference group. Colours represent MCL (Markov)

www.thelancet.com Vol 110 December, 2024
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Fig. 4: Severe disease risk (“high PRS, high TRS”) subtype STRING protein–protein interaction networks using differentially expressed proteins in
Omics-defined groups (subtypes) in the COPDGene testing set as seed proteins, permitting up to 10 interactors in the first shell and 5
interactors in the second shell. Only high-confidence interactions were included and greater line thickness indicates greater confidence.
Differentially expressed proteins were identified by comparing group assignments to the reference group. Colours represent MCL (Markov)
clusters.

Articles
risk individuals, defining “high disease activity” and
“severe disease risk” COPD subtypes. Compared to a
reference group, both subtypes had lower mean BMI
values and alterations in metabolic, growth, and im-
mune signalling processes. “High disease activity” par-
ticipants exhibited prospective FEV1 decline across both
replication cohorts, albeit with a non-significant (though
directionally consistent) association in multivariable
models adjusted for baseline FEV1. “Severe disease risk”
participants had low spirometry measures with high
quantitative emphysema and thick airways. We
www.thelancet.com Vol 110 December, 2024
identified biological processes and drug repurposing
candidates associated with each subtype, including
therapies previously tested in COPD clinical trials. Our
study demonstrates how omics risk scores can identify
COPD subtypes with associated clinical and biological
characteristics that can be leveraged for therapeutic
interventions.

Linking omics-defined high-risk groups to specific
pathobiology is an active area of research that we now
extend to lung disease. In schizophrenia, PRS-defined
high risk groups were biologically characterised using
11
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weighted gene co-expression network analyses.41 Other
approaches have incorporated gene expression into
PRSs to improve prediction and imply biological
mechanisms.42–44 Here, we used genetic and tran-
scriptomic data to define subtypes, and then leveraged
proteomic differences between groups to understand
subtype biology. Importantly, our results suggest that
different omics risk scores are not interchangeable, i.e.,
a higher omics risk score will not always have the same
association with specific outcomes. Individuals with the
highest transcriptomic quantile exhibited different
clinical and biological features depending on their un-
derlying polygenic risk. We did not observe statistically
significant interactions between the PRS and TRS on
COPD-related outcomes in regression analyses, but our
quantile-based omics-defined subtyping approach iden-
tified individuals with severe disease and divergent
clinical characteristics; our approach was able to identify
heterogeneity that was not detected using traditional
regression-based interaction analyses. We also demon-
strate that individuals may exist along a continuum of
COPD risk—i.e., there are no clusters—yet omics-
defined subgroups may have important clinical and
biological differences. While we did not observe clus-
ters, we observed that omics-defined subgroups were
robust to varying PRS and TRS subdivisions, with the
two high-risk groups (“low PRS, high TRS” and “high
PRS, high TRS”) demonstrating stable clinical charac-
teristics across risk score subdivisions. Thus, genetics
and transcriptomics may provide alternative yet com-
plementary views of lung function biology.

The two high-risk groups we identified have impor-
tant clinical differences. Participants in these groups
have different degrees of lung function impairment,
amounts of emphysema, airway wall pathology, and
lung function decline. For clinical prognosis, it is
helpful to identify which patients are more severely
affected and will decline quickly. Using blood-based
omics alone, we were able to identify subtypes of in-
dividuals with very advanced disease (high PRS, high
TRS) as well as those prone to accelerated FEV1 decline
(low PRS, high TRS).

Of direct clinical relevance, the association of lower
spirometry, greater emphysema and observed FEV1

decline across two cohorts suggests that the “high dis-
ease activity” subtype is a targetable trait, the risk of
which might be modified by approved medications (5-
lipoxygenase inhibitors, angiotensin-converting
enzyme (ACE) inhibitors, fomepizole, galantamine).
Fomepizole has not previously been implicated as a
COPD drug-repurposing candidate, to our knowledge.
Galantamine is known to cause bronchospasm, and
enrichment for proteins targeted by galantamine sug-
gests this drug is most likely to cause harm in this
subtype of patients. Although a randomised trial of the
5-lipoxygenase inhibitor, Zileuton, did not reduce length
of stay or treatment failure in patients hospitalised for
COPD exacerbations, it was likely underpowered,45 and
did not examine longer term outcomes. ACE inhibitors
and angiotensin receptor blockers (ARB) have been
identified as COPD drug repurposing candidates. A
recent clinical trial showed failure of losartan to
decrease emphysema progression.46 Our drug repur-
posing analyses implicated utility of captopril—not all
ACE inhibitors and ARBs–in the “high disease activity”
but not the “severe disease risk” subtype. Conversely,
our analysis suggests potential benefit of atypical anti-
psychotics in the “severe disease risk” subtype. The
coincidence of schizophrenia and COPD is largely
attributed to smoking, though a phenome-wide associ-
ation and polygenic risk analysis suggests that schizo-
phrenia and obstructive lung disease may have shared
genetic mechanisms.47 While we adjusted for self-
reported cigarette smoking status, these measures are
imperfect, and thus we cannot address whether shared
mechanisms are due to smoking behaviour. A broader
implication of the drug repurposing analyses that merits
validation is that previous failure of drugs in clinical
trials was due to heterogeneity in patient selection that
could be overcome by omics-based subtyping.

The cachectic COPD patient, who may be prone to
more exacerbations, is a well-described clinical
phenotype,48–51 and we observed that the “high disease
activity” and “severe disease risk” subtypes have lower
mean BMI than other subtypes. Although pulmonary
cachexia has been proposed to occur only in severe
COPD,52 we demonstrate additional heterogeneity
within lower BMI ever-smokers and identify a “high
disease activity” subtype with less spirometric severity
and distinct biology. The “high disease activity” group
may also overlap with a previously identified comor-
bidity cachexia subgroup,53 and in the current analysis,
we identified molecular profiles that might guide ther-
apy. Relevant to body composition, the adipocyte prod-
uct leptin exhibited altered expression in both subtypes,
which has several potential, not mutually exclusive in-
terpretations. Leptin acts both as a hormone negatively
regulating hunger and adipocyte fat storage54 and as a
proinflammatory cytokine essential for host defence.55,56

The role of leptin in regulating hunger suggests it
could be relevant to the “severe disease risk” subtype,
which had the largest effect size in leptin expression
(−0.71 log-fold change); the observed decrease in leptin
could be a compensatory response to or share a causal
relationship with pulmonary cachexia. In addition, the
lower leptin levels observed in malnourished pop-
ulations are associated with dysfunctional cell-mediated
immunity and increased susceptibility to infections.55,57

In COPD, elevated leptin concentrations have been re-
ported in the plasma and airways in some,58–62 but not all
studies,63 and has been identified as a potential
biomarker of emphysema progression.64,65 Our results
suggest that “high disease activity” or “severe disease
risk” subtype individuals might exhibit humoral and
www.thelancet.com Vol 110 December, 2024
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cytokine profiles similar to those seen in malnourished
individuals with increased susceptibility to infections. It
remains unclear whether the observed peripheral blood
proteomic alterations are merely a consequence of dis-
ease activity, or a causal component of a positive feed-
back loop involved in driving disease progression. The
biomarkers used in this study are blood-based, making
it difficult to identify the relevant mechanisms in lung
tissue. However, blood-based biomarkers are practical
in a clinical setting and follow up studies linking
changes in these biomarkers to pathophysiologic
mechanism in lung tissue can help to bridge the gap
between prediction and precision therapeutics.

This study leveraged multiple omics data in the form
of validated, replicated, risk scores, to identify COPD
subtypes in two cohorts of ever-smokers. Often, the poor
correlation between transcripts and proteins precludes
them from being used within the same analyses, but we
were able to leverage the weak correlation to understand
protein-level biological changes occurring in subtypes
defined using genetics and transcriptomics. The prote-
ome, which we used for protein–protein interaction
analyses, provides several advantages in defining bio-
logical subtypes in omics studies. Proteins are the
functional molecules in cells, directly involved in bio-
logical processes, pathways, and interactions, and tend
to provide easily attainable biomarkers. As many exist-
ing drugs are small molecules that target proteins, uti-
lising proteomic data is preferrable for drug target
identification and repurposing analyses.

One major challenge of this analysis was determining
how to subset subjects from a standardised, continuous
distribution. To overcome this limitation, we varied the
number of quantiles and assessed which combination of
divisions yielded the greatest number of differentially
expressed proteins, then identified corresponding raw
score cut-off values that allowed each participant in the
COPDGene and ECLIPSE testing sets to be categorised
into an omics-defined subtype. We acknowledge that
there are other reasonable approaches for applying omics
risk scores to identify COPD subtypes. We also note that
COPDGene and ECLIPSE are cohorts that represent
heavy smokers, and so our approach applies to patients
meeting this study inclusion criteria.

Individuals near the cut-off value for PRS might exist
on a continuum between “high disease activity” and
“severe disease risk” subtypes, and these participants
might be able to transition between subtypes; regard-
less, defining thresholds and categories are an impor-
tant step toward clinical translation. We focused on the
highest risk groups; while the high PRS, low TRS group
would theoretically be of interest, we observed that
participants in this group had comparatively mild dis-
ease compared to the other severe groups. The FEV1/
FVC cutoff of 0.7 for airflow obstruction has come into
question with respect to disease definitions. Indeed,
www.thelancet.com Vol 110 December, 2024
recent ATS/ERS spirometry guidelines66 now recognise
preserved ratio with impaired spirometry (PRISm) in-
dividuals who experience respiratory symptoms and
have emphysema, airway wall pathology, increased
mortality, and exacerbations.40,67–69 However, there is
also an upward inflection point in mortality as the FEV1/
FVC falls below 0.7.70 Therefore, we repeated our main
analyses including only those with FEV1/FVC less than
0.7 and saw similar results, suggesting that this omic-
based subtyping approach applies to patients with
COPD as well as smokers at high risk for disease.

We observed similar results in COPDGene AA par-
ticipants, including the “high disease activity” subtype
association with FEV1 decline in multivariable analyses.
We previously described how the PRS, developed in
European ancestry individuals, had decreased perfor-
mance in individuals of non-European ancestry.6 While
we tested our subtypes in African Americans, we
emphasise that future studies are needed to improve
genetic prediction in non-Europeans. While we used
COPDGene as a discovery cohort and ECLIPSE for
validation, the cohorts have notable differences.
COPDGene included a larger number of participants
without COPD, while ECLIPSE included a larger pro-
portion of severe COPD. Additionally, ECLIPSE used a
lower-dose CT scan. We have previously observed
disparate measures of emphysema and airway wall
thickness even after propensity score-matching partici-
pants from these two cohorts,71 which is likely related to
differences in imaging protocols. We based our drug
repurposing candidates on enrichment analyses of pro-
teomic profiles, but directionality of biological processes
was not accounted for in enrichment analyses; addi-
tional mechanistic and clinical trial validations are
needed. Finally, we identified two high-risk subtypes
using this approach, but these do not explain all of
COPD heterogeneity, and there are almost certainly
other important subtypes.

In conclusion, polygenic and transcriptional risk
scores, both based on spirometry, identified “high dis-
ease activity” and “severe disease risk” subtypes with
distinct clinical and biological characteristics. Proteomic
and drug repurposing analysis identified subtype-
specific enrichment for therapies, some of which were
previously hypothesised in COPD.
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