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ABSTRACT: In this study, we investigate the quaternary
ammonium-based ionic liquid (QAIL), methyltrioctylammonium
bis(trifluoromethylsulfonyl)imide, [N1888][TFSI], utilizing small
angle neutron scattering (SANS) measurements and polarizable
molecular dynamics (MD) simulations to characterize the short-
and long-range liquid structure. Scattering structure factors show
signatures of three length scales in reciprocal space indicative of
alternating polarity (k ∼ 0.44 Å−1), charge (k ∼ 0.75 Å−1), and
neighboring or adjacent (k ∼ 1.46 Å−1) domains. Excellent
agreement between simulation and experimental scattering
structure factors validates various simulation analyses that provide
detailed atomistic characterization of the different length scale
correlations. The first solvation shell structure is illustrated by
obtaining radial, angular, dihedral, and combined distribution functions, where two dominant spatial motifs, N+···N− and N+···O−,
compete for optimal packing around the polar head of the [N1888]+ cation. Intermediate and long-range structures are governed by
the balance between local electroneutrality and octyl chain networking, respectively. By computing the charge-correlation structure
factor, SZZ, and the spatial extent of the octyl chain network using graph theory, the bulk-phase structure of [N1888][TFSI] is
characterized in terms of electrostatic screening and apolar domain formation length scales.

1. INTRODUCTION
Ionic liquids (ILs) are multifaceted materials that have
accelerated innovation in diverse domains, including carbon
capture and sequestration (CCS),1 rare earth element (REE)
extraction,2,3 water desalination,4 nanoparticle (NP) coating,5

rocket propulsion,6 and solar cell manufacturing.7 ILs are used
as electrolytes in electrochemical applications and have
garnered recent interest as replacements to typical organic
electrolytes in lithium-ion batteries because of their numerous
advantageous properties: broad electrochemical windows (>4
V),8,9 high thermal stabilities (250−400 °C),10 low vapor
pressures, and nonflammability. Such macroscopic properties
are a direct consequence of the fundamental electrostatic and
structural characteristics. For example, strong intermolecular
Coulombic attractive forces between cations and anions lead to
large cohesive energies that dictate ion transport (i.e., high
viscosity) and thermodynamics (i.e., low vapor pressure).
More broadly, ILs have hypothetical tunability, where
“targeted” molecular and compositional modifications�size
and mass,11−14 side-chain length,15−18 conformational flexi-
bility,11,13,18−23,23,24 charge asymmetry,25−30 chemical func-
tionalization,23,31−35 mixture concentration and solva-
tion36−41�can influence (and ideally control) thermophysical
properties.42

The bulk-phase liquid structure plays an instrumental role in
many of the mentioned applications of ILs. In electrochemical
applications, the interfacial IL structure in addition to the bulk
structure has an important influence on the system behavior.
As a solvation shell transitions from the bulk to an interface,
the ion packing is altered, and resulting electrical double layers
(EDLs) form layers of alternating charge for up to several
nanometers away from an electrode surface.43−48 Character-
izing EDL formation and behavior for ILs is an ongoing
research area.46,49,50 Notable features of the EDL, such as ion
ordering and layering, applied voltage-dependence, or
electrode-surface-dependence, are commonly explored by
measuring the differential capacitance profile, =C Ud /dd ,
where σ is the surface charge density, and U is the applied
voltage.46,51−61 Developing transferable EDL models across the
diverse chemical composition space of ILs remains a significant
challenge, however.49,62,63 Our present work is motivated by
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the importance of understanding the bulk-phase, structural
characteristics of relatively complex ILs as a prerequisite for
better understanding the interfacial structural properties of
similar IL systems.64,65

Quaternary ammonium cation (QA)-based ILs (QAILs)
make up one structurally unique class of ILs. QAILs have
drawn a burgeoning interest due to their high thermal
stabilities,66 high conductivities,67 and miscibility with a wide
range of solvents68,69 while benefiting from lower cost and
facile synthesis.70 In the context of electrochemical interfaces,
QA cations provide enhanced EDL tunability through
substantial structural variation, e.g., altering Cd profiles by
changing alkyl chain length,71,72 and/or functionalization, e.g.,
stabilizing cathodic decomposition reactions via aliphatic
moieties67 or improving miscibility via introducing hydrox-
yethyl moieties.69 Optimal tuning remains a challenge,
however, due to the complex and broad-spanning bulk-phase
structural behavior that QAILs encompass. Depending on the
QA ion choice, the resulting bulk phase behavior can resemble
typical room temperature ILs (RTILs), IL crystals (smectic,
nematic, or columnar), or even ionic plastic crystals.73

QAILs are typically composed of tetraalkylammonium-based
cations, N+R4, in which aliphatic or aromatic substituents, R,
link to a positive nitrogen center; the length, symmetry, and
type of the R group heavily influence physical properties and
crystallinity.73 Just as the well-known ansatz, “If you want to
understand function, study structure!”,74 defining features of
QAILs are commonly explored through their bulk-phase,
structural properties.75 In the case of aprotic, tetraalkylammo-
nium-based ILs (i.e., trialkylmethylammonium, [N1nnn]+, for
some alkyl chain length n), a limited number of experimental
(e.g., neutron76,77 or X-ray scattering78−84) and molecular
simulation85−88 studies have sparked debate regarding the
nature of their short- and long-range ordering.
Pott and Meĺeárd79 conducted one of the first systematic

studies of [N1nnn]+ for n = 4, 6, and 8 with the common anion,
bis(trifluoromethanesulfonyl)imide, or [TFSI]−. With corrob-
orating molecular dynamics (MD) simulations,88 low wave-
vector “prepeaks” (k ≈ 0.4−0.6 Å−1) in static X-ray scattering
structure factors, S(k), were reported as signatures of a
“disordered smectic phase A”, which is indicative of
interdigitated bilayers demarcated by polar and hydrophobic
regions. These conclusions suggested that, ostensibly, [N1nnn]+-
based ILs behave like 1-alkyl-3-methylimidazolium, [Cnmim]+-
based IL crystals with n 11.89−91 However, upon further
inspection by Santos et al.,80 experimental and computational
analyses of temperature-dependent S(k) for [N1444][TFSI]
showed no sign of mesoscopic ordering, but rather that, the
low k prepeaks were more appropriately ascribed to the IL’s
anisotropic solvation environment. Evidently, the challenge of
interpreting low k peaks has necessitated numerous other
investigations.77,82,86,87,90,92 Nonetheless, more recent efforts
increasingly agree that ILs generally exhibit three disparate
S(k) domains, where low, intermediate, and high k peaks
highlight the existence of nanoscale structural heterogeneity
from polar−apolar group alternation, positive−negative charge
alternation, and adjacency of neighboring cation−anion pairs,
respectively.92,93

In this work, we contribute to the ongoing discourse on
long-range structure of [N1nnn]+-based QAILs by presenting a
detailed structural analysis of the methyltrioctylammonium
bis(trifluoromethylsulfonyl)imide, [N1888][TFSI]. The present
study is partially motivated by recent experimental inves-

tigations of [N1888][TFSI] at electrochemical interfaces, for
which there are open questions regarding the interfacial IL
structure.64,65,94 For instance, Klein et al.65 posit two equally
plausible, yet distinct, EDL models based on neutron
reflectometry (NR) experiments for various solid−[N1888]-
[TFSI] interfaces: the interfacial structure either (1) remains
indistinguishable from the bulk on an unbiased surface or (2)
contains one ion-rich layer of like-species (i.e., cations or
anions) near the natively charged solid surface. In this work,
we conduct small angle neutron scattering (SANS) experi-
ments on the bulk [N1888][TFSI] to investigate the liquid
structure at temperatures of 300, 330, 360, and 400 K. The
neutron structure factors reported here complement X-ray
structure factors that have been previously reported for
[N1888][TFSI] IL.

79 In addition, we perform molecular
dynamics (MD) simulations utilizing an ab initio, polarizable
force field to characterize short- and long-range coordination
environments with atomistic resolution. The structure factors
computed from the MD simulations are in excellent agreement
with both the experimental neutron and the X-ray scattering
data, validating the reliability of subsequent simulation analysis.
From the simulations, we compute radial, angular, dihedral,
and combined distribution functions to illustrate the ion
structuring, as well as a novel analysis of structurally
heterogeneous domains using graph theory.95,96

2. METHODS
2.1. Small Angle Neutron Scattering. Small angle

neutron scattering experiments were conducted on the EQ-
SANS instrument at Spallation Neutron Source at Oak Ridge
National Laboratory.97,98 Measurements were performed at a
1.3 m sample-to-detector distance using a wavelength band
defined by a minimum wavelength of 1 Å, covering scattering
wavevectors ranging from 0.07 to 1.5 Å−1. The sample was
loaded in a 1 mm quartz cell and measured at 300, 330, 360,
and 400 K. The obtained data were reduced after correcting for
the detector sensitivity and subtracting background scatterings.
The data were converted into absolute scale intensities (cm−1)
using a porous silica standard sample.97 Methyltrioctylammo-
nium bis(trifluoromethylsulfonyl)imide, [N1888][TFSI] (purity
99%), was purchased from Iolitec (Alabama, US) and used as
received.
2.2. Molecular Dynamics Simulations. We perform MD

simulations of bulk [N1888][TFSI] IL in the NPT ensemble at
300, 400, 450, and 500 K temperatures and 1 bar pressure. The
chemical structures of the ion pairs are shown in Figure 1a,b.
The relatively long alkyl chains result in an overall, highly
viscous (∼600 mPa s64) bulk liquid, requiring careful attention
to statistical sampling in the simulations. Moreover, given the
structurally complex and relatively bulky [N1888]+ cation
(Figure 1a), we rigorously search for potential artifacts of
finite simulation domain size, as discussed in Section 3.1.
While Section 3.1 contains simulation benchmarks for a range
of system sizes consisting of 200, 900, and 1600 ion pairs,
unless otherwise stated, the remainder of the manuscript
focuses on simulations of the 1600 ion pair system. Each
simulation utilizes the previously developed SAPT-FF force
field, which is an ab initio, polarizable atomistic model.99,100

Simulations are carried out with the OpenMM simulation
software version 7.7.101 We utilize a dual-Langevin thermostat
scheme102 for efficient treatment of Drude oscillators and set
the friction coefficients for both thermostats to 1 ps−1; a Monte
Carlo barostat was used for pressure coupling. Long-range
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electrostatics were computed using the particle mesh Ewald
(PME) method,103 and van der Waals (VDW) interactions
were truncated at 1.4 nm. All simulations were conducted on
NVIDIA Tesla V100 GPUs for 100 ns to 1 μs of total sampling
time at timesteps of 1 fs, with the longer trajectories for
improved sampling at the lower temperature (e.g., 300 K);
systems requiring greater sampling time were split up over
several, separate MD trajectories as described in the
Supporting Information. All simulation conditions are
summarized in Table S1. All force field files and relevant
scripts are given in the Supporting Information. A
representative snapshot of the equilibrated ionic liquid system
is shown in Figure 1c.
2.2.1. Force Field Evaluation. To verify force field accuracy,

a number of macroscopic properties were computed from
ensemble averages of the simulation trajectory. The trans-
ferability of bond, angle, improper dihedral, and nonbonded
terms for the SAPT-FF force field has been discussed in
previous work;99,100 however, we further investigate the anion
and cation proper dihedral angles as they are a key source of
conformational flexibility and consequently affect bulk-phase
behavior.13,104 As similar to other ILs,100 the population of
TFSI anions is composed of ∼67/15% cisoid ( < | | <0 60)
and transoid ( < | | <120 180) conformers, as shown by the
“pseudo” dihedral distribution functions (DDFs) of ϕC−S−S−C
in Figure S1. Note that this is a stark contrast from the
transoid-dominated [N1444][TFSI] simulations conducted by
Santos et al.80 and Lima et al!82 This behavior is rationalized
by the influence of cation/anion ion-pair interactions, resulting
in steric and packing constraints not present in the gas
phase,105 as discussed at the length by McDaniel et al.100

Similarly, the C−C−C−C DDFs are composed of ∼20/75%
gauche ( < | | <30 120) and trans ( < | | <150 180) con-
formers. This distribution is in semiquantitative agreement
with quantum mechanical potential energy scans106 and
numerous n-alkane conformational statistics in bulk liquids107

(e.g., liquid octane108,109).,
Furthermore, the simulated density (1.126 g cm−3) shows

excellent agreement within 2% of the experimental density
(1.110 g cm−3).79 We also computed the liquid cohesive
energies, Ecoh, which is a fundamental measure of how strongly
bound the cations and anions are in the liquid. For neutral
organic solvents, Ecoh is directly related to the enthalpy of
vaporization ΔHvap, but for ILs, such a comparison is

considerably more complex due to ion pairing/association in
the gas-phase;99 furthermore, we are not aware of experimental
ΔHvap data for the [N1888][TFSI] IL. As shown in Figure S2,
the order-of-magnitude Ecoh ∼ −550 kJ/mol and temperature-
dependence are in qualitative agreement with common
alkylimidazolium ILs benchmarked in previous work.99

Interestingly, the cohesive energy of [N1888][TFSI] is ∼50−
100 kJ mol−1 larger in magnitude (per ion pair) than typical
a l k y l i m i d a z o l i u m / B F 4 - b a s e d I L s :

> > >[ ][ ] [ ][ ] [ ][ ] [ ][ ]E E E Ecoh
N TFSI

coh
EMIM BF

coh
BMIM BF

coh
C MIM BF1888 4 4 6 4 . This

is consistent with the higher viscosity of [N1888][TFSI]
compared to the alkylimidazolium ILs. The long alkyl side-
chains of the [N1888]+ cation increase the van der Waals
interactions (and thus cohesive energy) of the liquid; while a
typical rule of thumb is that electrostatic interactions should
decrease for larger molecular ions, in this case, the charge
density of the [N1888]+ cation is very localized, and TFSI
anions effectively pack around the positive nitrogen center
(Section 3.4). Thus, the exact Ecoh of [N1888][TFSI] comes
from the subtle interplay between nonbonded interactions and
the specific liquid structure.42 It is important to note, however,
that this comparison of energy density per ion pair is not
equivalent to comparison of volumetric energy density, due to
the disparate sizes of the ions.

3. RESULTS AND DISCUSSION
3.1. Finite-Size Effects. For computer simulations of

complex liquids such as [N1888][TFSI], it is important to
consider possible artifacts/finite-size effects introduced by the
use of periodic simulation domains that are typically on the
order of several to tens of nanometers. To circumvent larger
and longer simulations, numerous corrective finite-size
“scaling” methods have been developed that improve similar
long-range asymptotic calculations (e.g., RDFs, Kirkwood−
Buff integrals).110−123 However, finite-size scaling requires
method-specific parametrization and is not necessarily trans-
ferable across all simulation analyses.124 Because [N1888]-
[TFSI] is an electrolyte, its structural correlation functions are
expected to satisfy macroscopic electrostatic screening
conditions or sum rules.125 While early simulation studies of
molten salts126 and ionic solutions127 emphasized the
evaluation of sum rules as “an important test of the
convergence of the electrolyte system to an equilibrium
state”,127 to our knowledge, we report here the first example of
applying sum rules to characterize finite-size effects in
simulations of room-temperature ILs.
One unifying structural feature of ILs and molten salts is the

anticorrelated nature of concentric coordination shells of
cations and anions, which results from both charge neutrality
and screening requirements.128 At a local, microscopic level,
the electroneutrality condition gives rise to the following
constraint on the pair-correlation or radial distribution
functions,125

=r q g r r q4 ( )d
0

2

(1)

where μ and ν are types of cations or anions, = N V/ is the
ion type number density for Nν number of ions within a
volume V of species ν, qν is the charge of the ion, and g r( ) is
the ion−ion radial distribution function (RDF). Effectively, eq
1 implies that the total charge cloud surrounding a central ion

Figure 1. Molecular and bulk-phase structure of [N1888][TFSI]
cation/anion pairs. Atoms include hydrogen (white), carbon (gray),
oxygen (red), nitrogen (blue), sulfur (yellow), and fluorine (green).
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must be equal and opposite to the tagged ion’s charge, to
ensure charge neutrality.
Electrostatic screening also markedly dictates the long-range

behavior of the IL pair distribution functions. Being an
electrolyte, the ionic liquid is expected to exhibit electrostatic
screening at long-range, as quantified by the requirement on
the dielectric response function (in Fourier-space) that

=klim ( ) 0k
1 . Within linear response theory, this

screening requirement mandates conditions that the pairwise
correlation functions of the IL must satisfy. These constraints
are known as the Stillinger−Lovett sum rules, which when
equivalently written in terms of the reciprocal space, structure
factor, take the form126−133

=
| |k T

S k
k

4
lim

( )
1

1
,ZZ

kB 0 2 (2)

where ϵ∞ is the infinite frequency dielectric response. SZZ is the
charge-correlation structure factor given by,

=S
V

k k k( )
1

( ) ( ) ,ZZ Z Z (3)

where ⟨···⟩ denotes an ensemble average, k is the wavevector,
and

=
=

·qk( ) eZ
i

N

i
ik r

1

i

(4)

is the Fourier component of the microscopic charge density,
where qi is the partial atomic charge, ri is the position of the
atom i, and N is the total number of atoms in the system. As
the electrical susceptibility is proportional to SZZ/k2,

125 analysis
of SZZ provides detailed insight about the electrostatic
properties of the IL on microscopic length scales.134 Func-
tionally, SZZ elucidates the length scales of the cation and anion
correlations by weighting each pair correlation by the partial
atomic charge, as shown in eq 4.128 We note that because the
asymptotic limit of the charge correlation structure factor
depends on ϵ∞, MD simulations with polarizable versus
nonpolarizable force fields will fundamentally differ in their
predicted ion structuring, as previously discussed in detail.128

In this work, all simulations employ a polarizable force field
and thus ϵ∞ > 1, so that the right-hand side of eq 2 will be less
than unity, as illustrated below.
Verifying that eq 2 is satisfied within a computer simulation

of an IL or any other electrolyte is an important test of
equilibrium properties. Violation of the Stillinger−Lovett
condition (eq 2) would imply either that the simulation
provides insufficient statistics, is not at equilibrium, or is in a
metastable state, or that substantial finite-size effects exist.127

To this end, we evaluated the charge-correlation structure
factor from eq 3 for three equilibrated [N1888][TFSI] systems
with different computational domain sizes consisting of 200,
900, and 1600 ion pairs. Leveraging particle-mesh Ewald
(PME)103 algorithms, the structure factor SZZ was calculated
directly in reciprocal space based on previously described
methods.128 The resulting SZZ/k2 curves are plotted in units
kBT/4π for correspondence with eq 2, as shown in Figure 2 for
the three different sized systems.
As will be discussed in further detail in later sections, the

primary peaks in Figure 2 (k ∼ 0.85 Å−1) reflect length scales
of real-space charge oscillations. However, the Stillinger−
Lovett screening condition provides an important check on the

validity of the predictions from these different system-size
simulations. For various ILs (and indeed most liquids in
general), the infinite frequency dielectric constant is approx-
imately ϵ∞ ≈ 2,133,135,136 giving a value of ∼0.5 for the right-
hand side of eq 2. As highlighted by the inset in Figure 2, all
system sizes converge to the 1 − (ϵ∞ − 1)/ϵ∞ ≈ 0.5
asymptotic limit for typical ILs. The implications of mitigated
finite size effects are significant�all subsequent static and
structural analyses obey the charge sum rules and long-range
electrostatic behavior of electrolytes. Nonetheless, the
quantitative analysis of long-range correlations of such bulky
ILs requires sufficient temporal and spatial statistics. Practi-
cally, the 1600 ion pair system provides enough of a length
scale (L/2 ≈ 57.5 Å) to observe correlated behavior of the
apolar domains, as will be shown in later sections. Due to these
considerations, only simulation results for the large 1600 ion
pair system will thus be discussed for the remainder of the
paper.
3.2. Scattering Structure Factor Analysis. Like the

functional form of eq 3, the X-ray and neutron scattering
structure factors can be calculated from fluctuations of the
microscopic number density,

=S
V

k k k( )
1

( ) ( ) ,NN N N (5)

where now microscopic number density k( )N as a function of
the k momentum transfer variable is defined based on the type
of scattering. In the case of X-ray, the scattering amplitude is
determined by elastic interaction with the electron density of a
sample material, resulting in

=
=

·fk k( ) ( ) e ,N
i

N

i
ik r

1

i

(6)

such that the atomic form factor, f k( )i , serves to “weight” the
pairwise correlations observed in the scattering experiment.
For scattering at small wavevectors as considered in this work,
the k-dependence of f k( )i is typically small and f k( )i can be
approximated by the atomic number. The asymptotic limit of
the X-ray SNN is

[ ]
=

| |

S
f

k T
V

k
k

lim
( )
( )

NN

i
Tk 0 2

B
2

(7)

where χT is the isothermal compressibility of the liquid.

Figure 2. Charge-correlation structure factor SZZ for [N1888][TFSI]
system sizes of length 58 Å (200 ion pairs, black curve), 95 Å (900 ion
pairs, navy blue curve), and 115 Å (1600 ion pairs, red curve).
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Analogously, neutron SNN is the result of elastic interactions
with atomic nuclei, based on coherent scattering lengths. Thus,
we calculate the scattering amplitude for the neutron structure
factor by

=
=

·bk( ) e ,N
i

N

i
ik r

1

coh i

(8)

where bi
coh is the coherent scattering length of the nucleus of

atom i.137 Any incoherent scattering background is ignored in
the neutron SNN calculations, as it only adds a constant
background as with the experimental measurements.
Small angle neutron scattering (SANS) experiments were

performed on the bulk [N1888][TFSI] IL at four different
temperatures of 300 K, 330 K, 360 K, and 400 K. The results
from the SANS experiments are shown in Figure 3. The

scattering is governed by three characteristic local maxima, a
prepeak at k ∼ 0.44 Å−1 followed by two peaks at k ∼ 0.75 Å−1

and k ∼ 1.46 Å−1 within the k = 0.1−1.6 Å−1 range. Each peak
is a feature of alternation within the bulk [N1888][TFSI], a
behavior observed in common IL mixtures as well.138 At k ∼
0.44 Å−1, the prepeak indicates the alternation of the polar
(i.e., [TFSI] and the [N1111] ammonium head of [N1888]) and
apolar (i.e., the octyl chains of [N1888]) groups, a feature that
accounts for structural heterogeneity in a number of ILs.77,93

The strong peak at k ∼ 0.75 Å−1 reflects charge oscillation
patterns between cations and anions, which is a general feature
in molten salts and ILs, but the length scale for this feature is
system dependent (ion size, structure, etc.).125 The final peak
near k ∼ 1.46 Å−1 is attributed to correlations between
adjacent atoms with strong Coulomb interactions. We follow
the nomenclature by Araque et al.93 for each peak as the
“polarity”, “charge”, and “adjacency” domain.
In Figure 4a, we compare the predicted neutron structure

factor from the simulations to the experimental neutron
scattering data (Figure 3) at 300 K. Additionally in Figure 4b,
we compare the predicted X-ray structure factor to previous
experimental, small-angle X-ray scattering (SAXS) data for
[N1888][TFSI] reported by Pott and Meĺeárd.

79 It is observed
that both neutron and X-ray SNN comparisons show good
agreement between simulations and experiments. The peak
positions and relative error are provided in Table S2, showing
≤8% difference across all polarity, charge, and adjacency peaks.
The computed isothermal compressibility from the X-ray SNN

asymptotic limit, = ×63.7 10T
6 bar−1, is a reasonable value

relative to that for commonly studied, imidazolium ILs,128 but
to our knowledge, there is no existing experimental data for χT
for the [N1888][TFSI] IL. We note that there is slightly greater
error in the predicted neutron structure factor compared to
that of the X-ray when compared to experimental data (≤8%
for SANS and ≤5% for SAXS).
Figure S4 shows the temperature dependence of the neutron

and X-ray structure factors predicted from the simulations and
compared to the experimental data in Figure 3 as well as SAXS
data from Pott and Meĺeárd.79 Based on Figure S5, peak

Figure 3. Temperature-dependent small angle neutron scattering
(SANS) experimental measurements for [N1888][TFSI] ionic liquid.

Figure 4. Scattering structure factor comparisons between MD simulations and (4a) small angle neutron scattering (SANS) measurements and
(4b) small-angle X-ray scattering (SAXS) measurements at 300 K.
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locations vary 10% between experiment and simulation. Like
Santos et al. observed,80 Figure S5 shows that at increasing
length scales (or decreasing wavevectors k), variations in peak
position as a function of temperature decrease. However,
without any clear monotonic trends, as may be generally
expected, no definitive conclusions are made regarding the
temperature dependence. Santos et al.80 claim a similar
conclusion, albeit at a 185−351 K range for small- and wide-
angle X-ray scattering (SAXS-WAXS) measurements, where
“peak shifts are likely to be a simple consequence of density
changes in a material that has not undergone a first order
transition.”

We also highlight the importance and complementary role of
comparing SAXS and SANS experiments together. Lo Celso et
al.77 showed that some neutron diffraction features, namely the
initial low-k prepeak, can go undetected in SAXS measure-
ments for certain ILs. However, the consistent prepeak−peak−
peak pattern across both experimental studies shows strong
evidence for structural heterogeneity due to polarity
alternation in [N1888][TFSI]. Interestingly, in [N1444][TFSI],
this feature was consistently missing in multiple studies,79,80,82

suggesting that the octyl chain length (∼10−11 Å) surpasses
the threshold necessary for coordination of the apolar domains.
We explore this hypothesis in further detail in later sections.

Figure 5. Partial neutron (left column, a, c, e) and X-ray (right column, b, d, f) scattering structure factors based on polarity (a, b), charge (c, d),
and adjacency (e, f) domains. For Figures 5a−d, the colors correspond to the color of the polar/apolar or cation/anion group highlighted in the
inset; the adjacency domain subfigures show the total (black), intermolecular (green), cation−cation (blue), and intramolecular anion (yellow) and
cation (red) components of the structure factor.
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3.3. Partial Structure Factors. Unlike in experimental
studies, the scattering structure factors computed from MD
simulations can be further decomposed into partial structure
factors and analyzed within wavevector-dependent partitions
that elucidate the source of short- and long-range correlations.
The nature of eqs 4, 6, and 8 enable partitioning schemes for
the polarity,93 charge,128 and adjacency80 domains as
summarized in eqs S1−S7. In Figure 5, the total neutron (a,
c, e) and X-ray (b, d, f) SNN are shown with their respective
partial structure factors. For ease of comparison, each partial
structure factor was computed without the squared normal-
ization term (e.g., as in eq 7).
3.3.1. Polarity Domain. The low-k prepeak (k ∼ 0.44 Å−1)

is investigated via contributions from the polar−polar, polar−
apolar, and apolar−apolar interactions present in [N1888]-
[TFSI], as shown in Figure 5a,b. As highlighted in the inset,
the polar components consist of the entire [TFSI] anion and
cationic head, CH3N(CH2)3, while the apolar components
consist of the rest of the cation tail in the octyl chain. In both
the neutron and X-ray SNN, the low-k prepeak is
unambiguously dominated by the polar−polar contributions.
The polar−polar and apolar−polar peak−antipeak behavior
observed in the X-ray SNN has been previously referred to as
the “hallmark” of alternations present among “opposite-type”
species.93 Thus, the peak−antipeak behavior illustrates an
important structural feature, where a polar, cationic head−
anion network alternates with the apolar octyl chains. The
difference in relative peak heights between neutron and X-ray
SNN is accounted for by the different elemental contributions to
the scattering intensity, i.e., eqs 6 and 8. Namely, the partial X-
ray SNN show a greater sensitivity to the high electronic density
and consequently, the atomic form factors, of the TFSI anions
(i.e., the “reporters of structure”92) than the neutron coherent
scattering length scales.
3.3.2. Charge Domain. The intermediate peak (k ∼ 0.75

Å−1) is similarly investigated via contributions from the
cation−cation, cation−anion, and anion−anion interactions.
The total SNN show relatively subtle charge domain peaks (i.e.,

visibly a shoulder in Figure 4a and the smallest of all peaks in
Figure 4b), a commonly observed feature often explained by
complex interference cancellations.80,139−142 In reality, Figure
5c,d indicates definitive charge alternation based on the
anion−anion and cation−anion peak−antipeak behavior,
respectively. From the partial structure factor analysis, it is
concluded that the anion−anion correlations are a substantial
contribution to the peak (k ∼ 0.75 Å−1) in the charge domain
region; this is consistent with analysis of other ILs.128 As will
be discussed later, charge domain partitioning uncovers the
fundamental length scale of cation−anion Coulomb inter-
actions that align with the charge-correlation structure factor,
SZZ.
3.3.3. Adjacency Domain. Lastly, the final peak at k ∼ 1.46

Å−1 can be investigated in terms of the inter- and intra-
molecular interactions present in the bulk-phase IL. A
complimentary insight unveiled by the charge domain
partitioning is the relatively large cation−cation S(k)
contribution toward the high-k adjacency peak, both function-
ally and in relative weight, as shown in Figure 5e,f. From eq S6,
the cation−cation S(k) can be simply decomposed into its
relative inter- and intramolecular contributions�as shown by
the red curves in Figure 5e,f, the intramolecular components
were derived by sampling single molecular conformations from
bulk phase trajectories, recomputing the structure factor, and
scaling by the number of ions. The anion−anion intra-
molecular components contribute a nearly uniform back-
ground signal to the overall adjacency peak. Between the
neutron and X-ray SNN, it is clear that while the intramolecular
component adds a nontrivial contribution to the overall
adjacency peak height, the total intermolecular components
(including cation−anion cross terms) still remain the source of
the k ∼ 1.46 Å−1 peak. This result is comparable to small- and
wide-angle X-ray scattering and inter/intramolecular contribu-
tion comparisons for [N1444][TFSI] presented by Santos et
al.,142 where intramolecular contributions only began to align
with total scattering functions after k > 3 Å−1.

Figure 6. (a) Atomistic radial distribution function (solid lines) and corresponding running coordination number (dashed lines) for N+···N−

(black) and N+···O− (red) coordination sites. (b) Representative snapshot of first solvation shell consisting of three coordinated anions to single
cation; black and red lines highlight coordinated N− and O− atoms coordinated with cationic nitrogen, N+ within approximate first solvation shell
radius, respectively; corresponding 360 deg video provided in the Supporting Information.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.4c06255
J. Phys. Chem. B 2024, 128, 11313−11327

11319

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.4c06255/suppl_file/jp4c06255_si_004.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.4c06255/suppl_file/jp4c06255_si_004.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06255?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06255?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06255?fig=fig6&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.4c06255/suppl_file/jp4c06255_si_001.mp4
https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06255?fig=fig6&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.4c06255?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.4. Domains Analysis. 3.4.1. Real-Space Adjacency
Correlation Analysis. The structural signatures encoded by the
three peaks in the structure factors can be further investigated
via real-space analyses, as done in the ensuing sections. The
adjacency domain in real-space can be investigated by the
radial distribution functions (RDFs), shown in Figure 6a. The
peak heights of the N+···O− and N+···N− are located at ···+

rpeak,1
N O

= 4.18 Å and ···+
rpeak,1

N N = 4.33 Å, respectively. This length scale
aligns remarkably with the adjacency peaks in Figure 4, 2π/
1.46 ≈ 4.30 Å. The RDF peaks also highlight two underlining
motifs where the [TFSI] anion is facing the cation through the
N− or O−, as shown in Figure 6b. The relative heights of the
peaks indicate that the N+···O− coordination site is more
favorable than the N+···N−. The running coordination
numbers, N(r), provide further insight into the coordination
environment within the first solvation shell of the cation−
anion pairs. We compute the N(r) from eq 9,

=N r r g r r( ) 4 ( ) d ,
r

0

2
(9)

where is the average number density of the observed, anion
atoms, O and N . At the first local minima of the RDFs, the
competition of the two motifs is clearly quantified by

=···+N r( 5.6) 6N O as opposed to =···+N r( 5.0) 1N N .
The second local minima are ancillary; the secondary peaks are
simply induced by the motifs in the first peaks by the alternate
atom on the same molecule.
While the RDFs illustrate the connectivity of pairwise

coordination, the intricate detail of the first solvation shell may
be further elucidated with angular and dihedral distribution
functions (ADFs and DDFs, respectively). However, ADFs and
DDFs alone do not necessarily preserve the symmetries
recovered from the RDFs�thus, we apply combined
distribution functions (CDFs), which have shown to be a
powerful tool to illustrate ion coordination using the atomistic
detail provided by computer simulations.143 Concretely, Figure
7 shows a two-dimensional probability density of pairwise N+···
N− distances binned with N−···N+···N− angles (Figure 7a) and
proper C···S···S···C pseudodihedral angles (Figure 7b). The
N+···N− motif optimally packs within the first solvation shell by
forming an angle of 60° < θ < 120° with respect to a
neighboring N+···N− coordination site. Just as corroborated by
the snapshot in Figure 6b, anions pack within the bisector
defined by the octyl chains of the [N1888]+ cation, a similar

conclusion made by Lima et al.82 for a [N14444]+-based system.
Moreover, Figure 7b indicates that the first solvation shell is
predominantly composed of cisoid conformations based on the
high density of ±45° anions at the corresponding first peak in
the RDF.
Finally, we show the three-dimensional, spatial distribution

function (SDF) calculated in TRAVIS144 to fully illustrate the
short-range cation−anion packing. As shown in Figure 8a, the

solid red ( ···+N O1 4) and solid black (N
+···N−) isosurfaces

highlight how the anion preferentially occupies the space
between apolar octyl chains. When plotted at the same contour
level (11.3 nm−3), the SDF isosurfaces clearly show an increase
in surface of red, ···+N O1 4 “blobs” within the first solvation
shell (∼102 Å−2) compared to the black (∼63 Å2). The 360°
video included in the Supporting Information shows apparent
overlap of red and black isosurfaces and, thus, similarity in the
local position of the anion nitrogens and oxygens. Additionally,
the SDF in Figure 8b provides a local perspective of cation−
cation coordination. Based on the intercation carbon−carbon
RDFs (Figure S7), the most apparent structuring occurs at the
tail of the octyl chains; to this end, a single terminal carbon
(e.g., C8) was selected as a reference atom and the subsequent
SDF was computed for all possible terminal-carbon−carbon
coordination sites (C8···C1−25). The morphological difference
between the cation−anion (Figure 8a) and cation−cation
(Figure 8b) SDF isosurfaces corroborates the “punctured
sphere” versus “sleeve-like” spatial arrangement of the polar
and apolar networks, respectively.88 However, as we will
further investigate in Section 3.4.3, understanding structural

Figure 7. Combined distribution functions (CDFs) of radial distribution functions (RDFs) with (a) angular and (b) dihedral distribution
functions.

Figure 8. Spatial distribution functions (SDFs) of (a) ···+N O1 4
(solid red) and N+···N− (solid black) coordination sites at 11.3 nm−3

and (b) terminal carbon of one single octyl chain with every other
carbon (e.g., C8···C1−25) at 1.7 nm−3. Complete 360° videos are
included in the Supporting Information.
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nanosegregation requires analysis of apolar domain coordina-
tion globally, i.e., the local description of cation−cation
coordination provided by an SDF manifests in long-range
correlations.
3.4.2. Charge Alternation Analysis. Beyond the first

solvation shell, the intermediate and long-range structure is
governed by the charge sum rules and local electroneutrality in
ILs.125 While the intermediate wavevector peak (k ∼ 0.75 Å−1)
in neutron and X-ray scattering factors are typically subtle or
even missing, the charge correlation structure factor SZZ peak
(eq 5) (as was shown in Figure 2) shows a sharp peak near the
reciprocal space length scale, ∼0.85 Å−1 at 300 K. Equivalently,
in real space, anion−anion (Figure 9a) and cation−cation
(Figure 9b) RDFs show peaks within ∼7−10 Å in real-space,
as shown in Figure 9 with the SZZ peak shown as a solid,
vertical line. The atomistic RDFs involving localized negative
and positive charges, N−···N− and N+···N+, respectively, span
∼7−8 Å and show excellent agreement with the SZZ peak. In
previous work, this peak has been shown to identify the charge
alternation length scales of common ILs,128 and for
comparative purposes, Figure S6 shows the SZZ of [N1888]-
[TFSI] (peak of ∼0.85 Å−1) compared to that of the
prototypical, 1-butyl-3-methylimidazolium tetrafluoroborate
[BMIM][BF4] IL (peak of ∼1 Å−1). We also include the
C−···C− (green curve in Figure 9a) as another measure of
anion packing. The C−···C− exhibits a typical bifurcated peak
found in the literature,128,145,146 where a peak at ∼5 Å indicates
presence of hydrophobic domains on the anion (i.e., CF3) and
∼10 Å indicates longer-range coordination length scales.
Consequently, two conclusions are made evident. First, the

scattering structure factor peaks, either SNN or SZZ, directly
correspond to the distance between successive coordination
shells (i.e., with respect to some central ion) based on like-
species (i.e., cation−cation and anion−anion) coordination
distances. Second, compared to the common IL, [BMIM]-
[BF4], there is a clear shift toward larger like-species distances
due to the presence of apolar octyl chains that displace charged
species for favorable long-range packing.
3.4.3. Polarity Alternation Analysis. As was highlighted in

the Introduction, [N1888][TFSI] is a unique IL in that it
exhibits both typical charge alternation domains but also long-
range ordering based on low-k scattering peaks. However, the
degree of ordering is often difficult to interpret from scattering
peaks alone and has evidently warranted much discussion and
controversy in the literature. For example, low-k peaks similar
in intensity and location have been observed in ILs that span a

wide-range of phase behavior, anywhere from isotropic,
smectic mesophase to near-crystalline or glass-forming
liquids.75 In the case of TFSI-based ILs specifically, much
insight can be drawn from the vast body of X-ray78,81,147−151

and neutron152,153 scattering studies (e.g., alkyl chain length
increases ordering, hydroxyl-substitutions decreases ordering,
etc.). Nonetheless, interpreting phase-behavior from scattering
intensities alone is challenging, given its sensitive nature to the
anion electronic structure.93 To this end, we invoke a
theoretical, graph-based analysis to quantify the spatial extent
of the apolar, octyl-chain network, similar to previous studies.96

Only until recently have theoretical, graph-based analyses
been used to analyze MD trajectories. For instance, Lee et al.95

explored graph-theoretical approaches to understand ion
aggregation morphology of various salt-based solutions.
Recently, Stoppleman and McDaniel96 explored the spatial
extent of hydrogen bond networks by establishing edges
between neighboring water molecules (nodes) based on O···H
distance and O···H···O angle criteria. We build on this work to
understand the spatial extent of octyl chains within the
overarching molecular simulation domain. In doing so, we
define a graph ( , ) composed of molecular nodes vi
and criteria-based edges, eij . In each frame of the MD
trajectory, we search all [N1888]+ cations (within a cutoff) that
neighbor each other by two, tunable critical parameters:
minimum interatomic carbon−carbon distance, ···rC C, and the
minimum number of such coordination sites, n. To determine

···rC C, we compute all combinations of the atomistic, carbon−
carbon RDFs and report a select few in Figure S7. In Santos et
al.,80 it was sufficient to report such an RDF to discount the
interdigitated bilayer hypothesis specifically for [N1444][TFSI]
presented by Pott and Meĺeárd.79 However, we use this RDF
as a means to bound the ···rC C criterion in determining the
overall octyl-chain graph network. We tune n by expecting an
upper bound of 24�i.e., all octyl chains are interdigitated�
and lower bound of at least one. For each frame in the MD
trajectory, we compute the diameters, d, of all disjoint
subgraphs, g , defined as:

=d L i jmax ( , ),
i j g,

min (10)

where L i j( , )min is the minimum distance (in number of
nodes) between nodes i and j for all g .
The octyl chain network is then characterized by the

probability distribution for g to have a certain diameter, P(d).

Figure 9. Radial distribution functions (RDFs) for like-species coordination, including (a) anion−anion and (b) cation−cation pairwise
interactions.
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Parameter tuning was explored for [ ]···r 3, 8 ÅC C and
[ ]n 1, 24 ; as expected, extreme ends of the parameter

space ( ···r n4.0 4C C ) show very noisy and limited (if
any) statistics across the range of diameters that span the
length of the simulation box size, 115 Å. Figure 10a thus
illustrates the most representative behavior of P(d) for a
selected =···r 4.5 ÅC C and n = 1. While small probabilities of
octyl chains appear in apolar networks that span up to six
subsequent octyl chains (e.g., Figure 10b), the predominant
long-range motif is evident by the large peak at the d = 1 node.
By this measure, the apparent low-k peak from Figure 4 can be
interpreted as ∼2−3 neighboring [N1888]+ cations correlated
by their octyl chains.
So then why, despite its large, bulky molecular structure,

does [N1888][TFSI] more so resemble an isotropic liquid than
a liquid-crystalline material? Between a visual inspection from
Figure 1c and quantitative analysis from Figure 10a, it is clear
that nanoscale spatial heterogeneities exist; however, the
degree of ordering does not lead to “orientational and/or
positional long-range order in at least one direction” (e.g.,
periodic stacking of molecular layers), a requisite for ionic
liquid crystal (ILC) or mesomorphic behavior.154 The answer
is 2-fold, stemming from (1) the subtle balance between the
relative apolar to polar volume, i.e., Valkyl: Vpolar

155 and (2) the
crucial importance of electrostatic screening. It is known that
larger Valkyl: Vpolar ratios induce higher degrees of nano-
segregation of charged and uncharged domains, leading to
highly ordered systems and smectic behavior.89,154 In the case
of [N1888][TFSI], on one hand, the relatively large TFSI anion
can generally inhibit long-range ordering due to its charge
delocalization and increased configurational entropy from the
low N−S torsional energy barrier.156 As an example, the study
of several 1-methyl-3-(n-alkyl)imidazolium ([CnMIM])
[TFSI]−-based salts shows liquid crystal (LC) behavior only
after the alkyl chain length was increased to n = 22.154

Moreover, Goossens et al.154 highlight that variations in Valkyl:
Vpolar can “only show a smectic mesophase if the ionic
headgroups and the alkyl chains are able to project comparable
cross-sectional areas onto the ionic sublayer planes. As such,
the salts with three equivalent long n-alkyl chains require larger
anions than the corresponding salts with only two long n-alkyl
chains to exhibit a smectic LC phase.”

4. CONCLUSION
We present a joint simulation and experimental study of a
quaternary ammonium-based IL, [N1888][TFSI], to compre-
hensively characterize its bulk-phase structure. Small angle
neutron scattering (SANS) experiments were conducted for a
range of temperatures, and the measured structure factors were
utilized to validate simulation predictions; the predicted
structure factors show excellent agreement between simulation
and the experiment data, as well as previously published small-
angle X-ray scattering (SAXS) data.79 By partitioning the
computed scattering structure factors by polar/apolar, cation/
anion, and inter/intramolecular components, the reciprocal-
space results indicate alternation of polarity (k ∼ 0.44 Å−1),
charge (k ∼ 0.75 Å−1), and adjacency (k ∼ 1.46 Å−1) domains.
Moreover, we explore each domain via further real-space

analyses. For instance, the radial distribution functions (RDFs)
highlight two spatial motifs where the anion nitrogen and
oxygen competitively pack around the cationic polar head.
Combined distribution functions (CDFs) complete the
analysis of the first solvation shell by elucidating the favorable
packing of anions (1) within the bisector of the cation octyl
chains and (2) in the cisoid conformation. At the intermediate
range, the charge correlation structure factor, SZZ, recovers the
exact length scale of the distance between subsequent solvation
shells that manifest from charge oscillations. At long range, we
employ a novel, graph network analysis to conclude the spatial
extent of coordinated cations spanning two to three molecules,
enough to show signatures of nanoscale heterogeneity but still
resemble an isotropic IL.
Quaternary ammonium-based ionic liquids (QAILs) re-

semble a sandbox for tuning the chemical properties at
electrochemical interfaces. In practice, however, their funda-
mental behaviors in charged and dynamic environments are
inescapably linked to the static, bulk-phase liquid structure. In
future work, we aim to explore the pertinent question, how
does voltage modulate the electrical double layer of [N1888]-
[TFSI] at charged interfaces? The definitive understanding of
motifs and long-range phase behavior will provide a means to
assess at what length scales the electrode’s presence influences
the IL. Moreover, by combining both bulk-phase and
interfacial studies, tunability and optimization can be made
possible.

Figure 10. Probability distribution of (10a) octyl chain network diameters and (10b) visual snapshot of six [N1888]+ cations connected via distance
criterion.
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