Table 2.
Performance metrics of six machine learning algorithms in the training set | |||||
---|---|---|---|---|---|
Model | AUC | Acc | F1 | Precision | Recall |
Random Forest | 0.877 | 0.829 | 0.829 | 0.829 | 0.829 |
Gradient Boosting | 0.837 | 0.817 | 0.816 | 0.818 | 0.817 |
Neural Network | 0.835 | 0.780 | 0.780 | 0.780 | 0.780 |
Decision Tree | 0.809 | 0.732 | 0.732 | 0.732 | 0.732 |
Logistic Regression | 0.779 | 0.659 | 0.658 | 0.658 | 0.659 |
Support Vector Machine | 0.775 | 0.707 | 0.707 | 0.707 | 0.707 |
AUC: area under curve; Acc: Accuracy.