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Abstract
Background: Early detection and intervention are crucial for preventing vision-threatening diabetic retinopathy (DR) in 
adults with type 1 diabetes (T1D). This exploratory study uses machine learning on continuous glucose monitoring (CGM) 
data to identify factors influencing DR and predict high-risk individuals for timely intervention.

Methods: Between June 2018 and March 2022, adults with T1D with incident DR or no retinopathy (control) were 
identified. The CGM data were collected retrospectively for up to seven years before the date of defining incident DR or 
no retinopathy. A mixture of three machine learning algorithms was trained and evaluated in two different scenarios, using 
different glycemic features extracted from CGM traces (scenario 1), and the two principal components (two PCs; exposure 
to hyperglycemia and hypoglycemia risk) of those features (scenario 2). Classifiers were evaluated through 10-fold cross-
validation using the receiver operating characteristic area under the curve (AUC-ROC) to select the best classification 
model.

Results: The CGM data of 30 adults with incident DR (mean±SD age of 21.2±9.4 years, glycated hemoglobin [HbA1c] 
of 8.6%±1.0%, and body mass index [BMI] of 24.5±4.8 kg/m2) and 30 adults without DR (age of 41.8±14.7 years, HbA1c 
of 7.0%±0.9%, and BMI of 26.2±3.6 kg/m2) were included in this analysis. In scenario 2, classifiers outperformed scenario 
1, resulting in an average AUC-ROC increase to 0.92 for two of three models, indicating that the two PCs captured vital 
classification data, representing the most discriminative aspects and enhancing model performance.

Conclusion: Machine learning approaches using CGM data may have potential to aid in identifying adults with T1D at risk 
of DR.
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Introduction

Diabetic retinopathy (DR) remains one of the most prevalent 
complications of diabetes and stands as the foremost cause of 
irreversible blindness among individuals of working age 
worldwide.1-3 The susceptibility of adults with type 1 diabe-
tes (T1D) to DR complications is heightened due to the ear-
lier onset and inherent glycemic variability characteristic of 
T1D.4 In addition to its impact on vision, DR indicates an 
increased risk of severe systemic vascular complications, 
posing significant threats to overall health.5 Early detection 
and new treatments could prevent vision loss, blindness, and 
significantly reduce disease burden.

With increasing recognition of limitations of glycated 
hemoglobin (HbA1c) in diabetes management, continuous 

glucose monitoring (CGM) metrics and its goal have been 
proposed.6 To validate CGM-based time in range (TIR; 
70-180 mg/dL) and its association with DR, Dr Beck and 
colleagues estimated TIR using seven-point finger stick glu-
cose data obtained every three months in the Diabetes 
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Control and Complications Trial (DCCT) and found a sig-
nificant association between TIR derived from blood glucose 
measurements and the advancement of microvascular com-
plications.7 Many cross-sectional studies have also indicated 
a link between TIR derived from CGM and diabetes compli-
cations.8-11 In addition, a recent first longitudinal study using 
up to seven years of CGM data for evaluating the association 
of CGM metrics with incident DR in adults with TID has 
reported that TIR, time in tight target range 70-140 mg/dL, 
time above 180 mg/dL, and mean glucose are highly corre-
lated and similarly strongly associated with DR risk.12

Lately, it has been demonstrated that the incorporation of 
CGM data into machine learning models can aid in the cre-
ation of predictive models, facilitating clinicians in enhanc-
ing diabetes screening and treatment. For instance, a logistic 
regression model utilized glycemic variability features 
extracted from CGM data to classify individuals according 
to their diabetes type (ie, with or without diabetes).13 Besides 
that, we recently used a one-week CGM home test with a 
linear support vector machine (SVM) model to classify indi-
viduals’ autoantibody status (ie, antibody positive vs anti-
body negative) and used the same model to classify healthy 
individuals’ risk status (low-risk vs high-risk) of developing 
T1D.14,15 Nevertheless, the challenge of visualizing CGM 
data in a particular format and automatically predicting the 
occurrence of DR from CGM data remains unexplored. 
Here, we want to explore the feasibility of using CGM pro-
files to predict DR risk in adults with T1D. The objective of 
this work is to classify adults with T1D with incident  
DR versus without DR by using CGM data and machine-
learning approaches.

Methods

Study Design and Data Overview

We used the data from a previously reported study aimed to 
evaluate the association between CGM metrics and incident 
DR in adults with T1D. The detailed methods of this study 
were published previously.12 In brief, we used CGM data 
spanning up to seven years on a subset of individuals with 
incident DR (DR group; n=30) and those without DR (con-
trol group; n=30), chosen randomly from the original study. 
Incident DR was defined as the presence of DR in at least 
one retinal examination during the study period, with the two 
preceding retinal examinations showing no DR. Retinal 
examination reports, whether quantitative or qualitative, 
were manually checked from the electronic medical record 
(EMR) system, to ensure the accuracy of DR classification. 
Only patients with CGM use for at least one year and at least 
one clinic visit in the year before the date of eye examination 
were included in these analyses.

In addition, we applied strict criteria for the inclusion of 
daily CGM profiles, accepting only those with less than 60 
minutes of missing data (out of 288 glucose readings per 

24-hour period). Profiles with more than 60 minutes of miss-
ing data or those affected by calibration errors were excluded 
from the analysis. Missing data within acceptable profiles 
were interpolated to maintain the integrity of the data set.

The CGM-Based Glycemia Metrics  
and DR Group Comparison

The CGM-based metrics and assessment of glycemia by two 
groups (DR group vs control group) were conducted using 
daily CGM profiles. The CGM traces from the participants 
were collected and 16 glycemic metrics were extracted and 
computed, including (1) mean glucose (MG), (2) standard 
deviation (SD), (3) coefficient of variation (CV), (4) percent 
time of glucose >180 mg/dL (T>180), (5) >250 mg/dL 
(T>250), (6) >300 mg/dL (T>300), (7) <70 mg/dL 
(T<70), (8) <54 mg/dL (T<54), (9) TIR (70-180 mg/dL), 
(10) time in tight range (TITR; 70-140 mg/dL), (11) low 
blood glucose index (LBGI, measures the frequency and 
magnitude of hypoglycemia), (12) high blood glucose index 
(HBGI, measures the frequency and magnitude of hypergly-
cemia), (13) range (glucose range, difference between the 
highest and lowest CGM values), (14) the AUC above the 
baseline value at t=0 (IAUCN; incremental area under the 
curve for the night CGM traces from 12:00 am to 06:00 am), 
(15) glucose management indicator (GMI), and (16) the 
interquartile range (IQR). We used these 16 glycemic metrics 
as most of these metrics are clinically used for diabetes man-
agement and captures the dynamic characteristics of CGM 
profiles for each participant.

The DR Classification/Grouping Procedure

The extracted glycemic metrics from daily CGM profiles 
were used to define different classifier models based on the 
DR class. Then, these metrics were aggregated per partici-
pant and each metric was mean-centered and scaled before 
entering the classification procedure (categorization/group-
ing process). Principal component analysis (PCA)16 was 
used as a dimensionality reduction technique for this analy-
sis to address the collinearity among glycemic features and 
this technique has been used widely in machine learning to 
condense a vast data set into a more compact form, retaining 
essential patterns and trends. The PCA serves multiple func-
tions within machine learning, encompassing tasks such as 
data visualization, feature extraction, noise mitigation, and 
enhancing algorithm efficiency through diminished compu-
tational intricacy. By reducing the dimensionality of the data, 
PCA can help uncover hidden patterns and relationships, 
making it a valuable tool in exploratory data analysis and 
model building. The number of PCs accounting for most of 
the total variance in the data was selected using the Kaiser 
criterion;17 the percentage of variance explained by the 
selected PCs was then calculated. A mixture of three different 
classification models (linear, complex linear, and complex 
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nonlinear models) was used to develop a DR classifier and 
define the best classifier model: linear discriminant analysis 
(LDA), SVM with linear kernel, and random forest (RF).18,19 
For all methods, the Caret function used to build the classi-
fiers was used with default tuning parameters.

A 10-fold cross-validation technique was implemented in 
this analysis.20 The entire data set of 16 glycemic features 
from all participants is aggregated per participant and is ran-
domly shuffled. Then, it was subdivided into 10 approxi-
mately equal-sized folds with stratified sampling. Stratified 
sampling plays a crucial role in ensuring that the proportions 
of different DR classes are maintained in each fold of the 
cross-validation process. One of the 10 folds was used as a 
test set to evaluate classification performance, while the 
remaining nine folds were used to train the classifier models 
with the optimal features. The process was iterated 10 times 
to gauge the average performance of diverse classifier mod-
els. Ensuring that data from each participant is either included 
in the training or test set aims to prevent overfitting and 
enhance the overall applicability of the findings.

Classifier Model Evaluation

To evaluate the performance of three models, a confusion matrix 
was employed to depict the four possible outcomes resulting 
from comparing the true and predicted classes: true negatives 
(TN), false negatives (FN), true positives (TP), and false posi-
tives (FP). The selection of the best performing classifier mod-
els was based on the receiver operating characteristic area under 
the curve (AUC-ROC), which provides a numerical representa-
tion of the trade-off between sensitivity (true-positive rate) and 
(one-specificity; false-positive rate) across various cutoff points. 
As the AUC-ROC value approaches 1, the model demonstrates 
increasingly effectiveness in discriminating between partici-
pants with and without DR.

Statistical Procedures

All statistical analyses were conducted using R Statistical 
Software version 4.0.5 (R Foundation for Statistical 

Computing). Continuous variables were described as 
mean±SD, and categorical variables were summarized as 
frequency (percentage). The Shapiro-Wilk test assessed 
the normality of glycemic feature distributions. For nor-
mally distributed continuous variables, a t test was used to 
compare the means between DR and without DR groups. 
Non-normally distributed variables were analyzed using 
the Wilcoxon signed-rank test to detect differences between 
glycemic features across DR groups. Significance was set 
at P < .05. Pearson correlation matrix was calculated to 
assess the collinearity between glycemic metrics.

Results

Demographic Characteristics

Adults without DR were older (41.8±14.7 years vs 21.2±9.4 
years, P = .001), had a longer duration of diabetes (21.6±9.9 
years vs 11.7±4.5 years, P = .001), and had a lower HbA1c 
compared with adults with DR (7.0%±0.9% vs 8.6%±1.0%, 
P = .001), as shown in Table 1.

Glycemic Profile Between Two Groups

The supplementary figure shows the single ambulatory glu-
cose profile (AGP) display between two groups. A total of 
6414 complete daily CGM profiles were obtained from 30 
adults with DR, whereas 8983 complete daily CGM profiles 
were collected from 30 adults without DR. The daily CGM 
profiles were different between two groups as shown in the 
supplementary figure.

Of 16 glycemic metrics, 13 were significantly different 
between adults without DR and with DR, and three metrics, 
namely, CV (P = .506), IAUCN (P = .101), and T<54 (P = 
.197) were statistically not different between two groups as 
shown in Figure 1. Compared with the adults without DR, 
mean TIR (66.1% vs 44.4%, P = .001) and TITR (43.9% vs 
25.8%, P = .001) were significantly lower in adults with 
DR. The most distinguishable metrics between the two 
groups were the hyperglycemia-related metrics, such as T> 

Table 1. Clinical and Demographic Characteristics of 60 Subjects in the Two Different Classes of Incident Diabetic Retinopathy (DR) 
Used for Analysis.

Characteristic Control group (without DR) DR group (with DR) P value

No. of subjects (N) 30 30 —
Age (y) 41.8 (14.7) 21.2 (9.4) .001
Sex, % female 50 60 .604
Race, % non-Hispanic white/other 93.3 83.3 .195
HbA1C (%) 7.0 (0.9) 8.6 (1.0) .001
BMI (kg/m2) 26.2 (3.6) 24.5 (4.8) .234
Diabetes duration (y) 21.6 (9.9) 11.7 (4.5) .001

Statistics are presented as N, mean (SD), or (%).
Abbreviations: BMI, body mass index; HbA1c, glycated hemoglobin.
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250 (8.5% vs 25.9%, P = .001), and T> 300 (3.0% vs 
13.1%, P = .001).

Defining Classifier Models Based on  
the DR Groups

Scenario 1. The three binary classifier models with a 10-fold 
cross-validation technique were implemented with all glyce-
mic features (ie, 16 glycemic features) to classify partici-
pants in terms of Without DR versus With DR. A linear 
SVM classifier model outperformed the other classifier mod-
els with a mean AUC-ROC of 0.90. The LDA model and 
linear SVM model performed better than RF with a mean 
AUC-ROC of 0.86, 0.90, and 0.81 respectively, as shown in 
Figure 2.

Scenario 2. As MG shows a strong correlation with  
hyperglycemia-related features, such as T>180, T>250, 
T>300, and HBGI (correlation range: 0.83-1.0), and GMI is 
a linear function of MG, indicating a correlation of 1.0, we 
applied PCA in this scenario to eliminate collinearity among 
glycemic features. The PCA was applied to the 16 CGM 

metrics separately for both DR groups and for the entire data 
set. In the overall data, two principal components (PCs) were 
selected based on the Kaiser criterion, explaining 87.09% of 
the original variance. The first PC accounted for 69.96% of 
the variability, and the second PC accounted for 17.13%. In 
the control group, the two PCs explained 87.53% of the vari-
ance, with the first PC accounting for 69.07% and the second 
PC accounting for 18.46% (Figure 3a). In the DR group, the 
two PCs explained 88.03% of the variance, with the first PC 
accounting for 62.58% and the second PC accounting for 
25.45% (Figure 3b). The loadings for the two selected PCs in 
both DR groups are shown in Figure 3. As illustrated, the 
first PC (dimension 1 [dim 1]) is characterized by high load-
ings of MG and hyperglycemia-related metrics, such as 
T>180 and T>250, indicating exposure to hyperglycemia or 
therapy efficacy. The second PC (dimension 2 [Dim 2]) has 
high positive loadings of T<54, T<70, LBGI, and CV, 
reflecting the risk for hypoglycemia or therapy safety.

The three binary classifier models with a 10-fold cross-
validation technique were implemented with the two PCs to 
classify participants in terms of without DR versus with DR. 
The LDA model and linear SVM model performed better 

Figure 1. Characterization of daily CGM profiles through various glycemic features. Boxplots for 16 features were extracted from daily 
CGM profiles of 60 participants across two different groups of diabetic retinopathy (DR).
Abbreviations: CV, coefficient of variation; CGM, continuous glucose monitoring; GMI, glucose management indicator; HBGI, high blood glucose index; 
IAUCN, incremental area under the curve for the night CGM traces (mg/min/dL); IQR, interquartile range (mg/dL); LBGI, low blood glucose index; MG, 
mean glucose; SD, standard deviation; T>180, percent time >180 mg/dL; T>250, percent time >250 mg/dL; T>300, percent time >300 mg/dL; T<54, 
percent time <54 mg/dL; T<70, percent time <70 mg/dL; TIR, percent time in target range 70-180 mg/dL; TITR, percent time in tight target range 70-
140 mg/dL.
A significance level of 5% (P value <.05) was considered to be significant to distinguish between the different groups of DR.
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Figure 2. Comparison of classification performance of three models (LDA, SVM with a linear kernel, and RF) in terms of AUC-ROC 
based on different classes of DR (ie, without DR vs with DR) in two different scenarios (all features vs two PCs). (a) Represents the 
ROC curves for the 10-fold cross-validation, with the average AUC values annotated in red, by using 16 glycemic features in the three 
models (scenario 1). (b) Represents the ROC curves for the 10-fold cross-validation, by using only the two PCs in the three models 
(scenario 2). The color gradient represents the AUC values of individual folds, ranging from 0.4 (blue) to 1.0 (red). The dashed diagonal 
line represents a random classifier with an AUC of 0.5.
Abbreviations: LDA, linear discriminant analysis; SVM, support vector machine; RF, random forest; AUC-ROC, receiver operating characteristic area 
under the curve; PCs, principal components.

Figure 3. The PCA for the 16 CGM metrics in the two different DR groups (control group (a); vs DR group (b)). The black vectors 
represent the coordinates of each metric (ie, loadings multiplied by the component standard deviations). On dimension 1 (dim 1), 
metrics have large positive loadings, such as MG, T>180, and T>250. On dimension 2 (dim 2), metrics have large positive loadings such 
as low blood glucose index (LBGI), T<54, and T<70. Positively correlated metrics point to the same side of the graph.
Abbreviations: PCA, principal component analysis CGM, continuous glucose monitoring; DR, diabetic retinopathy.
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than RF with a mean AUC-ROC of 0.92, 0.92, and 0.85 
respectively, as shown in Figure 2.

Discussion

In this work, we used data from the first longitudinal study 
(retrospective study) that used up to seven years of CGM 
data prior to eye examination for predicting incident DR in 
adults with T1D. Although DR typically affects about 20% 
of people with diabetes, our study employed a case-control 
design with a balanced sample of 30 individuals with DR and 
30 without DR. This approach ensures robust comparisons 
between groups while focusing on identifying predictive fac-
tors for DR. We found that lower TIR, lower TITR, higher 
T>180, higher T>250 (hyperglycemia-related glycemic 
features), and higher MG were all strongly associated with 
an increased risk of incident DR in adults with T1D (DR 
group). These glycemic features showed statistically signifi-
cant differences between the DR groups. These results are 
consistent with prior studies that cross-sectionally, in both 
T1D and type 2 diabetes (T2D), assessed the association of 
CGM metrics with DR.7-10,21

In this study, we used these glycemic features in two dif-
ferent scenarios to predict incident DR and classify partici-
pants with incident DR versus without DR by using CGM 
data and three machine-learning models (LDA, SVM with 
linear kernel, and RF). In scenario 1, through using 16 glyce-
mic features extracted from daily CGM profiles, a linear 
SVM outperformed LDA, and RF with an average AUC-
ROC of 0.90. In scenario 2, the use of two PCs instead of all 
16 glycemic features resulted in an increase in the average 
AUC for all three models. This indicates that the two PCs 
captured important information from the data that are rele-
vant for classification. These PCs likely represent the most 
discriminative aspects of the data, leading to improved model 
performance. Among the models tested, SVM with linear 
kernel consistently achieved the highest average AUC, 
regardless of the feature set used. We highlight that our study 
uniquely concentrates on glycemic features derived from 
daily CGM profiles, whereas previous studies incorporated 
tabular features, such as risk factors, patient demographics, 
and comorbidity status into their machine-learning mod-
els.22,23 In addition, demographic and clinical data, such as 
gender, diabetes type and duration, glycated hemoglobin 
(HbA1c) or average blood glucose levels, blood pressure, and 
current retinopathy grade, were incorporated into a mathe-
matical algorithm to estimate personalized screening inter-
vals.24 Our study is distinctive in its longitudinal design, 
analyzing CGM data collected over several years prior to the 
onset of DR, thus avoiding the potential biases inherent in 
cross-sectional studies where CGM data is gathered post-DR 
development. This is also the first longitudinal study to 
employ CGM features and machine-learning approaches for 
predicting DR in adults with T1D. Additional strengths of 

our study include a well-characterized cohort of participants 
in both DR groups and DR determinations based on retinal 
eye examination records rather than self-reports.

In scenario 2, PCA identified two key metrics: quantify-
ing hyperglycemia exposure (treatment efficacy) and assess-
ing hypoglycemia risk (treatment safety). These metrics 
explained approximately 90% of the variance in both DR 
groups, consistent with previous studies.25,26 The high per-
centage of variance accounted for by the two PCs in both 
groups indicates that the PCA model effectively captures the 
essential variability in the CGM data for both groups. In both 
groups, the first PC accounts for the majority of the variance, 
with a higher percentage in the control group (69.07%) com-
pared with the DR group (62.58%). This suggests that the 
CGM data’s variability is predominantly captured by one 
component in the control group, indicating more uniform 
glucose control and more homogeneous glucose variability 
patterns among individuals without DR. In contrast, the sec-
ond PC explains more of the variance in the DR group 
(25.45%) compared with the control group (18.46%). This 
higher contribution in the DR group indicates more complex 
and varied glucose control patterns, likely linked to the pres-
ence and progression of DR. These additional significant 
patterns in the CGM data of the DR group reflect the 
increased complexity and variability of glucose regulation in 
individuals with DR.

Limitations of the current exploratory study include a 
relatively small sample size although it did not hinder the 
identification of significant differences between groups. 
Retinopathy data were collected retrospectively from the 
EMR system (qualitative or quantitative reports) rather than 
through standardized eye examinations, such as those in the 
DCCT trial. Most of our cohort participants were non- 
Hispanic Whites, which may limit the generalizability of our 
findings to more diverse populations. We also acknowledge 
that the LDA model assumes equal variance and normality, 
assumptions that might not hold in our data set. However, the 
inclusion of LDA was exploratory and aimed at comparing 
its performance with more flexible models, such as SVM and 
RF, which do not require such assumptions. The LDA’s per-
formance was evaluated within this broader context of model 
comparison, where the primary focus remained on more 
robust models. Furthermore, although the high AUC-ROC 
values observed are encouraging, we recognize that they do 
not necessarily translate into immediate clinical usefulness. 
Our models were evaluated for their predictive power within 
the current data set, with steps taken to avoid overfitting 
through techniques, such as cross-validation and PCA. 
However, further validation of these models in larger, inde-
pendent data sets is necessary to establish their generalizabil-
ity. Future studies should incorporate larger and more diverse 
cohorts to validate the performance of our models and the 
predictive power of the selected features. In addition, inte-
grating demographic and clinical variables, such as age and 
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diabetes duration, alongside CGM metrics within the PCA 
framework, would allow for a more nuanced investigation of 
their interactions. This could provide a more comprehensive 
understanding of DR risk and how these factors contribute to 
its development.

Conclusion

In this exploratory study, we demonstrate that integrating 
CGM into diabetes management not only enhances glycemic 
control but also significantly lowers the risk of DR and other 
microvascular complications. By leveraging machine learn-
ing, we developed a method to differentiate CGM patterns 
between individuals with and without DR, independent of 
eye examinations. Broad application of this approach could 
prevent DR progression before clinical signs emerge, thereby 
reducing the risk of vision loss, blindness, and overall dis-
ease burden significantly.
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