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Abstract

Study Design: Retrospective cohort study.

Objectives: Prolonged ICU stay is a driver of higher costs and inferior outcomes in Adult Spinal Deformity (ASD) patients.
Machine learning (ML) models have recently been seen as a viable method of predicting pre-operative risk but are often ‘black
boxes’ that do not fully explain the decision-making process. This study aims to demonstrate ML can achieve similar or greater
predictive power as traditional statistical methods and follows traditional clinical decision-making processes.

Methods: Five MLmodels (Decision Tree, Random Forest, Support Vector Classifier, GradBoost, and a CNN) were trained on
data collected from a large urban academic center to predict whether prolonged ICU stay would be required post-operatively.
535 patients who underwent posterior fusion or combined fusion for treatment of ASD were included in each model with a 70-
20-10 train-test-validation split. Further analysis was performed using Shapley Additive Explanation (SHAP) values to provide
insight into each model’s decision-making process.

Results: The model’s Area Under the Receiver Operating Curve (AUROC) ranged from 0.67 to 0.83. The Random Forest
model achieved the highest score. The model considered length of surgery, complications, and estimated blood loss to be the
greatest predictors of prolonged ICU stay based on SHAP values.

Conclusions:We developed a ML model that was able to predict whether prolonged ICU stay was required in ASD patients.
Further SHAP analysis demonstrated our model aligned with traditional clinical thinking. Thus, ML models have strong potential
to assist with risk stratification and more effective and cost-efficient care.
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Introduction

As health care costs continue to rise in the US,1 cost op-
timization has become increasingly essential. The treatment
of adult spinal deformity (ASD) is especially costly, with
approximately US$290 billion spent on fusion-related spine
procedures in the United States between 2000 and 2010.2

Further, the annual number of ASD surgeries appears to be
increasing.3 A major contributor to ASD surgery cost is
prolonged postoperative hospital length of stay (LOS),
which often includes expensive intensive care unit (ICU)
stays and can exceed US$38,000.4 Prior studies have sought
to assist in cost optimization by using regression modeling
to predict the impact of various variables on likelihood of
hospital LOS following ASD surgery.5,6 However, re-
gression modeling is often an oversimplification failing to
account for the interactions between variables that occur in
real situations.

As such, there has been recent interest in the use of
machine learning (ML) to predict discharge following
spine surgery more accurately. However, ML models often
derive very complex algorithms based on data resulting in
‘black boxes’ where the decision-making process is un-
known or cannot be easily explained. Recent spine
research has demonstrated the addition of Shapley Ad-
ditive Explanation (SHAP) values can clearly explain the
model’s decision-making process while maintaining high
predictive power. For example, three prior studies utilized
ML to examine surgical spine cohorts and consistently
determined using ML models with SHAP values were
highly accurate in predicting postoperative prolonged stay
or non-home discharge (NHD).7-9 One study demonstrated
the explainable “SHAP-derived features” model out-
performed each individual feature domain model and had a
comparable predictive capacity to the more complicated
“full feature” model.7 Importantly, these studies empha-
sized and explained risks of prolonged stay or NHD were
multifactorial, with variables like intraoperative and so-
ciodemographic factors having bidirectional influences on
risk and other variables (such as older age and multiple
fusion levels) having a compounded positive impact on
risk.7-9

Prior studies have demonstrated the use of ML models
with SHAP-derived features successfully predicts NHD or
prolonged LOS while elucidating the effects of variable
interactions in spine surgeries. However, to our knowledge,
the current study is the first to utilize ML models to predict
whether ASD patients will require prolonged ICU stay. We
aim to apply five ML models with SHAP analysis to an ASD
cohort to make predictions more in line with clinical rea-
soning in an effort to enhance cost-related efficiency, risk
stratification, and care effectiveness. The main problem that
this predictive model seeks to address is to serve as an
example of a risk stratification model particularly for pro-
longed ICU stay in ASD patients.10,11

Methods

Patient Data

All data was retrospectively gathered from a large, tertiary,
urban academic center. 535 patients who underwent posterior
fusion or combined anterior and posterior fusion were isolated
using Current Procedural Terminology (CPT) codes. An in-
stitutional dataset of spine deformity cases was created using
CPT codes 22800, 22802, 22804, 22614, or 22634 where
patients had 4 or more segments fused. Patients less than 18
years old were excluded and adult spinal deformity cases were
confirmed via manual chart review. IRB approval was granted
by the Icahn School ofMedicine at Mount Sinai (IRB approval
number: STUDY-17-00660). Request for waiver of informed
consent was approved for this study.

Model Selection and Training

Five different machine learning models were tested and
trained on the data with a 70-20-10 train-test-validation split: a
Decision Tree, a Random Forest Classifier, a Support Vector
Classifier, a Gradient Boost (GradBoost) model, and a CNN.
These were compared to a logistic regression model. The
demographic features included in the models were age,
gender, ethnicity, BMI, insurance type, and ASA status. The
perioperative features included in the models were length of
surgery, estimated blood loss, segments operated, combined
posterior/anterior approach, and incidence of complications.

Shapley Analysis

To achieve greater insight into the decision-making process of
the best-performing model, a Shapley Additive Explanation
(SHAP) analysis was performed. A SHAP analysis determines
the effect of each feature input to the model on the outcome, in
this case, the effect of each demographic and perioperative
feature on predicting whether prolonged ICU stay was re-
quired for the patient. In addition to calculating the mean
absolute SHAP values for each feature, beeswarm plots were
generated to examine the magnitude and direction of impact of
each feature and dependency plots were generated to examine
the interaction effects between each pair of features. Fur-
thermore, waterfall plots were generated for a sample of
patients to investigate the model’s decision-making process
for individual patients. These plots depict the direction and
magnitude of impact of each feature value on predicting the
patient’s outcome.

Results

Patient demographics are summarized in Table 1. Of the 535
patients included in this analysis who underwent posterior
fusion or combined fusion for treatment of ASD, 110 (20.6%)
required a prolonged ICU stay, defined as the top 20th
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percentile of the cohort with an average ICU stay of 2.3 days.
Patients who required a prolonged ICU stay tended to have
longer lengths of surgery, higher estimated blood loss, and
more segments fused. The average length of surgery of the
required prolonged ICU stay cohort was two hours longer than
the non-prolonged ICU stay cohort, and the average estimated
blood loss of the required prolonged ICU stay cohort was more
than double the non-prolonged ICU stay cohort. The required
prolonged ICU stay cohort was also more likely to experience
complications compared to patients who did not require
prolonged ICU stay, and the racial composition of the two
cohorts was significantly different.

Comparison of Different Models

Model performances are summarized in Figure 1. The models’
AUROC values ranged from 0.67 to 0.83. From lowest to
highest AUROC, the Grid Search SVM model achieved an
AUROC of 0.67, the Neural Net achieved 0.748, the Decision
Tree Classifier achieved 0.78, the Gradient Boosting Classifier
and the Logistic Regression models both achieved 0.79, and
the Random Forest Classifier achieved the highest AUROC
value of 0.83.

Most Important Features Based on SHAP Values

The SHAP analysis revealed which demographic, peri-
operative, and postoperative features had the largest relative
impact on whether or not a patient would require a pro-
longed ICU stay. A SHAP value was calculated for each of
the eleven features for each patient. For a binary prediction
in our case – prolonged ICU stay required or not – the values
take the form of a log odds, or the natural log of the
probability of required prolonged ICU stay occurring. Av-
eraging these (absolute) values for each feature across all
patients gives the mean SHAP value, where larger values
indicate the feature had a greater impact on prediction of
prolonged ICU stay. Length of surgery had the largest
impact on predicting prolonged ICU stay, followed by
complications, estimated blood loss, BMI, Age, and ASA
status, which all had a SHAP value greater than 0.5, while
ethnicity, gender, number of segments, insurance, and type
of approach did not have a significant impact on predicting
prolonged ICU stay (Figure 2).

A beeswarm plot reveals the relationship between each
feature and its impact on ICU stay by visualizing all SHAP
values from the dataset. In Figure 3, the features along the

Table 1. Patient Demographics.

Non-Prolonged ICU Stay (n = 425) Prolonged ICU Stay (n = 110) P-Value

Age, yr. (SDa) 59.7 (12.8) 59.3 (15.4) 0.79
Length of surgery, minb (SD) 239.1 (101.9) 360.1 (153.7) <0.001
Estimated blood loss, mL (SD) 494.5 (523.1) 1165.2 (1552.2) <0.001
Sex, no. (%) 0.19
Female 206 (48.5) 45 (40.9)
Male 219 (51.5) 65 (59.1)

ASA status, no. (%) 0.32
1 11 (2.6) 5 (4.5)
2 223 (52.5) 48 (43.6)
3 174 (40.9) 51 (46.4)
4 17 (4.0) 6 (5.5)

Race, no. (%) 0.01
Asian 26 (6.1) 2 (1.8)
Black 46 (10.8) 14 (12.7)
White 246 (57.9) 79 (71.8)
Other 107 (25.2) 15 (13.6)
Segments, no. (SD) 5.21 (1.88) 5.79 0.007

Insurance, no. (%) 0.147
Medicaid 28 (6.6) 10 (9.1)
Medicare 163 (38.4) 40 (36.4)
Private 187 (44.0) 55 (50.0)
Other 47 (11.1) 5 (4.5)

BMI (SD) 29.83 (16.34) 31.59 (21.9) 0.351
Complications 117 (27.5) 64 (58.2) <0.001
Combined posterior/Anterior approach 11 (2.6) 9 (8.2) 0.013

aSD = Standard Deviation;
bmin = minute(s);
P-value α = 0.05.

Zaidat et al. 3



y-axis are ordered by their overall impact on ICU stay as in
Figure 2, and the color of dots indicates whether the value
of the feature is high (red) or low (blue). For binary
features, such as female gender, red indicates the feature is
true (female) or false (male). The x-axis shows the SHAP
value, which indicates the impact of each feature value on
predicting prolonged ICU stay. Longer length of surgery,
presence of complications, and higher estimated blood
loss were strong predictors of required prolonged ICU stay
as shown by the prevalence of red dots in the long right-
hand tail; conversely, shorter lengths of surgery, the

absence of complications, and lower estimated blood loss
had a smaller impact on predicting non-prolonged ICU
stay, as shown by the short, blue, left-hand tails. The
relationship between BMI and age with prolonged ICU
stay prediction is unclear, as shown by the lack of an
obvious division of red and blue values. Higher ASA
status, white ethnicity, and male gender were also asso-
ciated with prolonged ICU stay, and these three features
were more balanced – ie, lower ASA status, non-white
ethnicity, and female gender were associated with non-
prolonged ICU stay with similar predictive power as their

Figure 1. Model performance.
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complements. Finally, the number of segments fused,
medicare insurance, and type of approach had little pre-
dictive power in prolonged ICU stay.

Waterfall plots can be made for each individual patient
to demonstrate the predictive power of each feature on
requiring prolonged ICU stay. E [f(x)] is the average

predicted log odds of prolonged ICU stay across all pa-
tients, which in this analysis was 0.14, while f(x) is the
predicted log odds. The horizontal bars then show how
each feature value contributed to the deviance of the
predicted log odds from the average. In Figure 4(A), f(x) =
1, meaning the model predicted that this specific patient

Figure 2. Random forest mean SHAP values.

Figure 3. Random forest beeswarm plot.
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Figure 4. Sample waterfall plots for prediction of prolonged ICU stay.
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was more likely to require prolonged ICU stay than the
average patient. Estimated blood loss had the highest
impact on this prediction, increasing the log odds by 0.48,
followed by length of surgery, which increased the log odds
by 0.25. BMI also had a small positive effect on increasing
prolonged ICU stay probability, while the other eight
features had smaller impacts. In Figure 4(B), we see a
different patient for whom the model predicted prolonged
ICU stay was much less likely compared to the cohort
average, with length of surgery having the greatest neg-
ative impact on the log odds. Finally, Figure 4(C) shows a

patient for whom each feature increased the probability of
required prolonged ICU stay.

Variable Interactions and Dependence

Dependency plots provide deeper information about how
different features interact to influence the likelihood of pro-
longed ICU stay. A feature’s effects on this prediction can then
be broken into its main effect, described above, and its in-
teraction effects. The dependency plots in Figure 5 show the
interaction effects for six pairs of features. For example, when

Figure 5. Intervariable interactions for top performing variables.
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a complication is present (red), there is a negative interaction
effect with age until age = 60, after which there is a positive
interaction effect, and the opposite relationship exists when a
complication is not present (blue) (Figure 5(A)). The main
effect of complications is positive, that is, the presence of a
complication increases the probability that ICU is required
(Figure 3). When the main and interaction effects align, the
predictive power of those features is enhanced, and vice versa.
So, the dependency plot shows that for patients under 60, the
presence of complications did not have a strong effect on
whether prolonged ICU stay would be required, while for
patients over 60, the presence of complications did have a
strong effect on prolonged ICU stay. The presence of com-
plications also had a strong positive interaction with estimated
blood loss, meaning high estimated blood loss was an even
stronger predictor of prolonged ICU stay if the patient also
experienced a complication (Figure 5(D)). No strong inter-
action effects were observed between length of surgery and
age (Figure 5(B)), length of surgery and estimated blood loss
(Figure 5(C)), or estimated blood loss and age (Figure 5(E)).

Discussion

This study serves to design a machine learning model to
explain drivers of prolonged postoperative ICU stay and
explore the model’s decision-making using a novel analysis.
The results demonstrate that length of surgery, complications,
estimated blood loss, BMI, and age are predictors of pro-
longed ICU stay. Moreover, intervariable interaction analysis
reveals varying additive effects between variables in the
model. To the author’s knowledge this is the first study to
analyze drivers of prolonged ICU stay in adult spinal de-
formity patients.

Prior efforts to improve ASD surgery have primarily fo-
cused on minimizing morbidity and mortality, and more re-
cently improving quality of life.12,13 However, the financial
burden on the patient is another crucial variable to consider.
Many ASD patients enter the ICU postoperatively for pain
management, blood volume and pressure management, and
airway precaution.14,15 Unfortunately, the cost of ASD surgery
is higher in part due to higher costs of ICU stay.16,17 A cost
analysis of two surgical ICUs estimates the median cost of
postoperative ICU stay to be US$2636 (interquartile range:
US$1834–US$4282) for the first day alone.18 Thus, the length
of postoperative ICU stay is a critical factor in ASD surgery as
it reflects the duality of the medical and financial burden on the
recovering ASD surgical patient. Rafael De la Garza-Ramos
et al examined predictors of ICU-level complications in 826
ASD long-segment fusion patients using multivariate re-
gression. Older age, diabetes, being dependent on others for
activities of daily living, or having combined approaches (P =
0.044, P = 0.048, P = 0.004, P = 0.023, respectively) were risk
factors for postoperative ICU-level complications, which
occurred in 5.4% of patients across the cohort.19 Similarly,
Amin et al20 reviewed 244 ASD surgical patients and

determined class II/III obesity (BMI ≥35, n = 17) were at
significantly higher risk for ICU stay (>2 days, P = 0.001) and
high episode-of-care costs (P = 0.013). Higher costs-of-care
and length of ICU stay are likely closely interrelated and thus
the present study focuses on delineating predictors of pro-
longed ICU stay using an explainable ML approach.

Traditional statistical models rely on top-down approaches
to modeling the data. For example, an assumption of linear
regression models is that the model output and input is
characterized by a linear relationship. Machine learning
models present a unique opportunity in that they do not rely on
the statistician to come up with a model they believe best fits
the data. Instead these models offer the distinct advantage of
fitting themselves to the data in a “bottom-up” approach,
enabling them to be flexible and handle more elaborate data.21

SHAP analysis further benefits these models as it assists in
explainability, and may help with the hesitancy surrounding
application of ML models in the clinical setting.

Recent spine studies using ML demonstrate its clear
benefits over the traditional logistic regression approach in its
ability to account for and explain inter-variable interactions.
For example, Martini et al examined a cohort of 11,150 spine
patients, 29.7% who had prolonged LOS using ML. They
demonstrated the explainable “SHAP-derived features”model
(C-statistic [C] = 0.87) outperformed each individual feature
domain model (“demographic”: C = 0.77; “perioperative”: C =
0.84; “postoperative”: C = 0.72) and had a comparable pre-
dictive capacity to the more complicated “full feature” model
(C = 0.89).7 Importantly, this study emphasized prolonged
stay risk was multifactorial, with intraoperative and socio-
demographic factors having bidirectional influences on risk.7

This aligns with another study by Valliani et al8 which used
SHAP values on ML prediction of NHD following 492,312
thoracolumbar spine surgery cases, in which the model
achieved an area under the receiver operating characteristic
curve (AUROC) of 0.77.8 Age, total Elixhauser comorbidities,
Medicare insurance, weighted Elixhauser score, and female
sex were among the most important predictors of NHD.
Furthermore, a 2023 study on ML prediction of NHD fol-
lowing 2227 anterior cervical discectomy and fusion (ACDF)
cases also achieved a high AUROC of 0.83.9 ASA scores had
positive interaction effects with female sex, levels fused and
body-mass index (BMI), and female patients over 65 with
greater fusion levels were more likely to undergo NHD.9 The
issues with ML models lie in their lack of explainability, as
they are often described as “black-box” models. Thus, we
expand on the growing literature by including SHAP analysis.

Our overall complication rate was 33.8%, which is well-
aligned with complication rates in prior ASD surgery studies
with rates in the range of approximately 27%–63%.22-25 At the
core of our analysis was the use of SHAP values for important
feature identification, which revealed length of surgery had the
largest impact on predicting prolonged ICU stay, followed by
complications, estimated blood loss, BMI, Age, and ASA
status. While no prior ML modeling studies to our knowledge
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have analyzed predictors of postoperative ICU stay duration,
these results align with a prior univariate analysis of 127 spinal
fusions patients with cerebral palsy (CP), which concluded
having at least one perioperative complication more than
doubled ICU stay duration (7.8 vs 3.2 days, P < 0.05).26

Furthermore, multivariate regression analysis revealed an
increased estimated blood loss was independently associated
with a major perioperative complication (P < 0.05). Our re-
sults on blood loss as an important predictor of ICU stay
duration also aligns with a prior linear regression study on 103
spine surgery patients which found intraoperative fluid
management (including total blood loss) was correlated with
prolonged (>1 day) ICU stay.27 While comparison to the
literature is limited by lack of focus on prior ML application to
ICU stay duration, the use of SHAP analysis in the current
study uniquely enabled more sophisticated delineation of
intervariable interactions in relation to risk of prolonged ICU
stay.

In addition, the current study’s five ML models achieved
relatively high AUROCs (0.67 to 0.83) and the best per-
forming models outperformed logistic regression. This ex-
tends prior research on the superiority of ML in the prediction
of ASD correction outcomes.7-9,28 For example, a prior ML
study on 4073 ASD patients determined artificial neural
networks (ANN) and logistic regression significantly out-
performed ASA scoring in predicting every examined post-
operative complication (cardiac complications, wound
complications, venous thromboembolism (VTE), and mor-
tality).28 Further, the ML algorithms outperformed logistic
regression in predicting individual risk for all complications
except VTE.28

Traditional analysis highlights the interactions of single
variables, but less is understood of the interaction between
these variables. SHAP intervariable interaction analysis re-
veals key insights into drivers of prolonged ICU stay as well.
The results demonstrate an additive effect when complications
are associated with higher estimated blood loss (Figure 5(D)).
Previous studies have demonstrated that higher estimated
blood loss is a predictor of longer ICU stay in patients un-
dergoing spine surgery.27 This interaction suggests that
complications that are associated with greater intraoperative
bleeding may be the complications driving longer ICU stays.
Another interesting interaction was between age and com-
plications. The results showed that either the absence or
presence of complication was more important for the model’s
decision making at younger ages and older ages, but less
impactful for middle-aged patients (Figure 5(A)). Age and
length of surgery seem to have little interaction effects and
thus suggest that their effects function separately, as did age
and estimated blood loss. Better understanding of these var-
iable interactions will assist surgeons in developing more
robust risk profiles for prolonged ICU stay.

Specifically, the results show that the presence of a com-
plication increased the likelihood of prolonged ICU stay for
patients less than 40 years old and more than 60 years old,

while this effect was much smaller for middle aged patients.
Similarly, the absence of a complication decreased the like-
lihood of prolonged ICU stay for patients less than 40 years
old and more than 60 years old. Dependency plots also re-
vealed that estimated blood loss had a positive interaction
effect with length of surgery but only after length of surgery
exceeded around 250 min. This suggests a combined effect
where both high blood loss and prolonged surgical time
significantly increase the risk, or more likely that there is a
synergistic interaction between longer operative times and
higher estimated blood loss on prolonged ICU stay. Finally,
complications increased the SHAP values for estimated blood
loss, indicating that complications amplify the effect of blood
loss on the risk of prolonged ICU stay as well.

This study is valuable in demonstrating the successful
application of ML models to illuminate predictors of pro-
longed ICU following ASD surgery. Prior research suggests
ICU stay is an understudied metric that can be a large
contributor to both high costs of surgery and an indirect
indicator of suboptimal perioperative recovery.16,17 Such
results may be useful in tailoring risk stratification and
highlight the importance of perioperative care programs. For
example, Dagal et al29 described the one-year-long im-
plementation of an institutional enhanced perioperative care
(EPOC) program tailored to timely and cost-effective care for
spine surgery patients and reported significant decreases in
postoperative ICU admissions and overall costs. For those
who are admitted to the ICU postoperatively, our results
suggest further emphasis on resource optimization to reduce
surgical time, complications, and blood loss may be espe-
cially useful in decreasing the duration of ICU stay, overall
costs, and optimizing recovery. This study paves the way for
further exploration of the role of ML in ASD surgery re-
covery including the use of newMLmodels and examination
of additional predictive variables and/or indicators of sub-
optimal recovery.

Currently, machine learning models are being used to
develop a number of web-based risk stratification
calculators.30-32 These calculators based on these algorithms
allow health care providers to quantify what the most con-
tributory risk factors are for a given individual patient. Using
these calculators, surgeons can isolate variables that are af-
fecting outcomes, such as prolonged ICU stay, and effectively
address them to the benefit of their patients. For example,
similar machine learning algorithms were used to stratify
patients who were at higher risk of venous thromboembolism
after posterior lumbar fusion.33 Using the results of our study,
ML models such as the Random Forest Classifier can be
applied to larger sample sizes, such that patients can be better
fit by demographic variables to a specific risk profile. This
paves the way for more robust ML calculators that surgeons
and their teams can use for optimal resource allocation given
an individual patient’s highest contributory risk factors, and
better improve preoperative and postoperative planning for
both patients and providers.

Zaidat et al. 9



Clinical Significance

Medical and research institutions around the world are now
utilizing machine learning models to aid in risk stratification and
postoperative management for patients undergoing a surgical
operation or other medical interventions. In this way, the utili-
zation of ML is clinically important on a global scale to patient
care and can improve patient outcomes. For example, Shah et al34

developed a ML model to predict major complications and re-
admissions after lumbar spinal fusion. Notably, this model out-
performed traditional logistic regression. Unlike conventional
regression techniques, ML models can detect complex nonlinear
or logistic relationships as well as better explain factor-factor
interactions. ML models have the unique ability to delineate and
account for variables with bidirectional influences on risk as well
as other variables that may have a compounded impact on risk.
These ML models are increasingly being employed in the spine
surgery field to predict outcomes including discharge disposition,
surgical site infection, vertebral compression fracture, and mor-
tality in metastatic disease and infection.34-37 Moreover, ML
models can be designed for different outcome measures and as
such there is a benefit to global institutions in seeing how this
model is designed and which types of models performed best.

While the primary predictors of prolonged ICU stay iden-
tified in our study are indeed based on operative and postop-
erative data in addition to preoperative risk factors, their
implications can be communicated preoperatively to enhance
patient understanding and involvement. Surgeons can use this
information to discuss potential risks and strategies to mitigate
these risks, such as optimizing surgical techniques to minimize
duration and blood loss. This proactive approach can demystify
the surgical process and engage patients more deeply in their
care journey, promoting informed consent and collaborative
decision making. By outlining the factors that influence out-
comes, this can allow patients to participate meaningfully in
discussions about their surgical options and expectations.

Limitations

This study was not without limitations. First, the data collected
was from a single, large, urban institution and as a result may
not be generalizable to other hospital systems or the general
population. This is a North American institution and as such
our postoperative measure may not be universally applicable.
Greater confidence in these results would require additional
cross validation with other external datasets. Furthermore, as a
retrospective analysis, this study is subject to potential biases
based on patient selection, the time frame of analysis, and
other factors. It is also important to note that the three strongest
predictors in this model are operative and postoperative
variables, which is not relevant to preoperative risk stratifi-
cation. In addition, our dataset had a class imbalance, with the
no required ICU stay cohort being almost four times as large as
the required ICU stay cohort, which may have impacted the
model performance. Finally, it must also be noted that despite

the limitation of the logistic regression’s top-down approach, it
still managed to perform the second-best of the five tested
models. This highlights not only the simple robustness of the
classic logistic regression model but also the fact that many
machine learning models require large amounts of data before
they can be adequately trained to out-perform the logistic
regression, as did the Random Forest model in this study.

Conclusion

The results of this study affirm the validity of machine learning
models for understanding drivers of prolonged ICU stay in
ASD patients. SHAP analysis allowed these models to be
explainable and assisted in determining that the findings were
in alignment with previous studies. The application of such
models in the clinical setting may allow providers to better
categorize patient risk profiles, to optimize cost-saving
measures and avoid prolonged ICU stay.
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