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Abstract
Background and purpose  Tumor bed (TB) is the residual cavity of resected tumor after surgery. Delineating TB from 
CT is crucial in generating clinical target volume for radiotherapy. Due to multiple surgical effects and low image 
contrast, segmenting TB from soft tissue is challenging. In clinical practice, titanium clips were used as marks to guide 
the searching of TB. However, this information is limited and may cause large error. To provide more prior location 
information, the tumor regions on both pre-operative and post-operative CTs are both used by the deep learning 
model in segmenting TB from surrounding tissues.

Materials and methods  For breast cancer patient after surgery and going to be treated by radiotherapy, it is 
important to delineate the target volume for treatment planning. In clinical practice, the target volume is usually 
generated from TB by adding a certain margin. Therefore, it is crucial to identify TB from soft tissue. To facilitate this 
process, a deep learning model is developed to segment TB from CT with the guidance of prior tumor location. 
Initially, the tumor contour on the pre-operative CT is delineated by physician for surgical planning purpose. Then this 
contour is transformed to the post-operative CT via the deformable image registration between paired pre-operative 
and post-operative CTs. The original and transformed tumor regions are both used as inputs for predicting the 
possible region of TB by the deep-learning model.

Results  Compared to the one without prior tumor contour information, the dice similarity coefficient of the 
deep-learning model with the prior tumor contour information is improved significantly (0.812 vs. 0.520, P = 0.001). 
Compared to the traditional gray-level thresholding method, the dice similarity coefficient of the deep-learning 
model with the prior tumor contour information is improved significantly (0.812 vs.0.633, P = 0.0005).

Conclusions  The prior tumor contours on both pre-operative and post-operative CTs provide valuable information 
in searching for the precise location of TB on post-operative CT. The proposed method provided a feasible way to 
assist auto-segmentation of TB in treatment planning of radiotherapy after breast-conserving surgery.
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Introduction
For breast cancer patient after surgery and proceeding 
to radiotherapy, it is important to accurately delineate 
tumor bed (TB) for radiation treatment planning [1, 
2]. However, contouring TB from post-operative CT is 
affected by many factors including artifacts of titanium 
clips, size and clarity of seroma, inter-observer variability, 
surgical specimen volume, etc [3, 4]. In practice TB con-
tour is manually delineated by physicians in referencing 
tumor location before surgery and the surgical marks on 
post-operative image [5]. Given the intrinsic characteris-
tics, there are several difficulties in delineating TB from 
post-operative CT. First, the contrast of soft tissue on CT 
is relatively low and the clarity of seroma is poor. Also, 
the high-density marker (lead wires and titanium clips) 
cause metal artifacts. Second, the contrast between TB 
and surrounding normal tissue is lower. Third, the size, 
shape and location of TB varied considerably between 
patients. In brief, delineating TB from CT is difficult and 
challenging.

As deep-learning methods popularly used in auto-
matic segmentation of medical image, it also draws 
attention by researchers in TB segmentation [6, 7]. Cer-
tain efforts were made in this field and the results are 
encouraging. Dai employed a 3D U-Net to segment TB 
and several organs at risk (OAR) on planning CT and 
CBCT-generated synthetic CT [8]. The results showed 
that the tumor bed on synthetic CT is obviously larger 
than the one manually delineated by physicians. The 
dice similarity coefficient (DSC) is higher compared with 
those achieved in traditional medical image segmenta-
tion methods. Kazemimoghadam proposed a saliency-
based deep-learning method for segmenting TB from CT 
[9]. It incorporated the salient information provided by 
titanium clip into the deep-learning model. The DSC is 
improved comparing with that of Dai’s method.

Differing from Kazemimoghadam’s method which 
encoded titanium clips’ location information into the 
model learning, we propose a method to incorporate 
prior tumor contour information in the deep-learning 
model for segmenting TB on post-operative CT. Instead 
of titanium clip related location information, the original 
tumor contour on pre-operative CT and its transformed 
contour on post-operative CT are both used in model 
learning. The rest of the paper is organized as follows. 
In Sect. 2, the delineation of regions of interests (ROIs), 
deformable image registration (DIR), and deep-learning 
model are introduced. In Sect.  3, the performances of 
the proposed model and the other existing models are 
reported. In Sect.  4, the strengths and weaknesses of 
the proposed method are discussed, and future work is 
prospected.

Materials and methods
Patient dataset
The dataset consisted of 110 Paris of CTs that were 
obtained when patients were positioned in supine. These 
patients were diagnosed with early-staged breast cancer 
and underwent breast-conserving surgery and post-oper-
ative radiotherapy in our hospital. The pre-operative CT 
were acquired about one week before surgery and used 
for diagnostic purpose. The parameters of pre-opera-
tive CT are: pixel size 0.68–0.94  mm, matrix 512 × 512, 
and slice thickness 5  mm. The post-operative CT were 
acquired about ten weeks after surgery and used for 
treatment planning purpose in radiotherapy. The param-
eters of post-operative CT are: pixel size 1.18–1.37 mm, 
matrix 512 × 512, and slice thickness 5 mm. All CTs were 
pre-processed using 3D Slicer [10, 11]. They were first 
resampled as isotropic resolution of 1 × 1 × 5  mm and 
then identically cropped to dimensions of 256 × 256 × 32 
around the breast’s centroid [12].

The study was conducted in accordance with the Dec-
laration of Helsinki (as revised in 2013). The need for 
informed consent was waived by the ethics committee/
Institutional Review Board of [Cancer Hospital, Chinese 
Academy of Medical Sciences and Peking Union Medical 
College], because of the retrospective nature of the study. 
The authors are accountable for all aspects of the work in 
ensuring that questions related to the accuracy or integ-
rity of any part of the work are appropriately investigated 
and resolved. The patient identification information on 
these CT data is anonymized before they are processed 
by the subsequent processing in this study. The patient 
data is stored and processed in workstation located in 
our institute. We don’t share and distribute the patient 
data with the other institutes and organizations.

Delineation of ROIs
Before surgery, patient is scanned and the contour of pri-
mary tumor (PT) is delineated manually by physicians 
for surgical planning purpose. After surgery, the major 
tumor volume is resected and its pathological volume 
(PV) is measured as shown in Fig. 1. Accordingly, the sur-
gical volume (SV) of tumor on pre-operative CT is cre-
ated based on the PV as illustrated in Fig. 2A. In practice, 
certain margins (1 –3 cm) are added to PT to form SV in 
approximating the measured sizes of PV. 2 cm margin is 
mostly used which result in the size of SV on CT closed 
to the measured size of PV.

For treatment planning purpose another CT, post-
operative CT, is obtained after 3–6 months of surgery. 
The important ROIs are illustrated in Fig. 2B. Due to 
complex surgical effects during this period, such as 
seroma and fibrosis, the volume of TB varies rapidly and 
changes considerably between patients. Also, the con-
trast of TB is nearly identical to the surrounding soft 
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tissue which is hardly identified visually. In clinical prac-
tice, TB is usually contoured based on the marks such as 
surgical clips, seroma, and fibrosis. Also, the contour of 
PT and SV on pre-operative CT provides an important 
guidance in searching for the possible contour of TB on 
post-operative CT.

As TB is the region surrounds the SV, the contour of 
SV on pre-operative CT should overlap with the contour 
of TB on post-operative CT. Therefore, in clinical prac-
tice the contour of SV is usually mapped onto the post-
operative CT. With the mapped region of SV in mind, 
physicians can derive TB contour based on the few vis-
ible surgical marks. Thus the transformed SV (T-SV) 
contour on post-operative CT is a good indication of the 
potential TB contour. For this purpose, the pre-operative 
and post-operative CTs are aligned via DIR. The resulted 
deformation vector field (DVF) is then applied to the SV 

contour on pre-operative CT to create the T-SV contour 
on post-operative CT as shown in Fig. 2B.

Deformable image registration
The intensity-based B-Splines registration algorithm is 
used to align pre-operative CT with post-operative CT. 
The resulted DVF is applied to transform the SV contour 
on pre-operative CT to T-SV contour on post-operative 
CT. The two contours then act as prior information in the 
deep-learning model. To achieve this goal, the similarity 
metric between both CTs is used to evaluate the qual-
ity of image alignment. In our work mutual information 
is employed as it is suitable for the situations in which 
intensities of the corresponding structures are inherently 
different. The registration code was developed based on 
the functions provided by Elastix registration software 
(https://elastix.lumc.nl) [13, 14].

Initially, the images are registered by rigid and affine 
transformation. Then, multi-resolution strategy for 
B-Splines transformation is performed. Gaussian pyra-
mid (3 scales) is used to smooth and down-sample the 
image at different scales. The control points’ grid size is 
set to 12. Each scale’s grid space is set to [4 2 1] times a 
physical unit (mm). The larger grid size is used to match 
larger structures and skip smaller structures, while the 
smaller grid size is used to match detailed structures. 
An iterative stochastic gradient descent method is used 
for optimization in each scale. The desktop computer 
equipped with Inter® dual core processor (3.0  GHz) is 
used to perform all the tasks of image registrations.

Deep-learning model
V-Net is a popular model used to segment objects from 
background in computer vision and medical imaging 
[15–18]. It is specially designed for volumetric images 
instead of planar images in segmentation application, 

Fig. 2  Illustration of target volume on pre- and post-operative CTs. (A) The primary tumor and surgical volume on pre-operative CT; (B) The tumor bed 
and transformed surgical volume on post-operative CT

 

Fig. 1  The pathological volume (PV) of the primary tumor (PT) after 
surgery

 

https://elastix.lumc.nl
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such as U-Net [19–21]. It composed of a contractive and 
an expanding path which aims to build a bottleneck in its 
centermost part through a combination of convolution 
and down-sampling. After the bottleneck, the image is 
reconstructed through a combination of convolution and 
up-sampling. To improve the training, skip connections 
are added to assist the backward flow of gradients.

As both SV and T-SV provide prior tumor contour 
information, their effects on CT images are enhanced. In 
practice, the values of pixels of SV and T-SV are multi-
plied by an integer number such as 25, while the values 
of pixels outside SV and T-SV are multiplied by a frac-
tion number such as 0.1. After the preprocessing of 
image enhancement, the regions of SV and T-SV are 
highlighted on CT images and become more visible by 
the deep-learning model. In this study, there were two 3D 
input channels (pre-operative and post-operative CTs) 
and one 3D output channel (for predicted label image) in 
the deep-learning model. To improve the capability of the 
model, a five-fold cross-validation strategy is applied to 
the 110 patient data. In the process of cross-validation, 
three folds (66 patients) are used for training and one fold 
(22 patients) is used for validation to tune hyper-param-
eters, and the remaining one fold (22 patients) is used for 
testing.

The weights of convolution layers are initialized by a 
normal distribution according to the published stud-
ies [19]. The loss function used for model training is 
DSC [20]. The Adaptive moment estimation (Adam) 
optimizer with batch size of 4 and weight decay of 3e-5 
is used [22]. The main parameters are described as fol-
lows: initial learning rate 0.0005, learning rate drop fac-
tor 0.95, and validation frequency 20. The V-Net model 
is implemented on Matlab (MathWorks, Natick, MA 
01760) and trained with maximal 500 epochs. The exper-
iments are performed on a workstation equipped with 
one NVIDIA Geforce GTX 1080 TI GPU and 64GB DRR 
RAM. It would be more favorable if the advanced GPU, 
such as NVIDIA Geforce GTX 4090, is used in the test 
and the learning time would be greatly reduced. Actu-
ally, the training of V-Net is time-consuming but can 
be performed at background nightly. When the model 
is trained and applied to the new case, the predication 
task of tumor bed can be completed within few seconds. 

Therefore, it would be more convenient to install the 
trained V-Net model on a personal computer, such as 
laptop and desktop, and use it to perform the segmenta-
tion task on the new cases in clinical setting.

Workflow of auto-segmentation
The workflow of the prior information guided auto-seg-
mentation process is shown in Fig. 3:(1) DIR is performed 
on both pre-operative and post-operative CTs and the 
DVF is achieved; (2) PT is obtained from pre-operative 
CT by physician for surgical planning purpose, and SV 
contour is generated from PT by adding a certain margin; 
(3) SV contour on pre-operative CT is transformed onto 
post-operative CT via DVF to create T-SV; (4)The SV and 
T-SV contours are enhanced on pre-operative and post-
operative CTs, respectively; (5) These CTs with enhanced 
contours are processed by the deep-learning model and 
the TB contour is predicted on post-operative CT; (6) 
The similarity coefficients (DSC and HD) between the 
predicted and clinically approved TB contours is com-
puted and the segmentation accuracy is evaluated.

Experiments
The segmentation accuracy was quantified by the averag-
ing errors of five-fold cross-validation results. The simi-
larity between the predicted and clinically approved TB 
contours is assessed with dice similarity coefficient (DSC) 
[23] and 95% percentile Hausdorff distance (HD95) [24]. 
In order to validate the effectiveness of prior contour 
information on the high accuracy of the segmentation 
model, the ablation study is performed by four V-Net 
models with different input CTs. The input of V-Net 
Model 1 consists of both sets of the original pre-op CT 
and post-op CT. The input of V-Net Model 2 consists of 
pre-op CT with the enhanced SV contour and the origi-
nal post-op CT. The input of V-Net Model 3 consists 
of the original pre-op CT and the post-op CT with the 
enhanced T-SV contour. The input of V-Net Model 4 
consists of the pre-op CT with the enhanced SV contour 
and the post-op CT with the enhanced T-SV contour. 
Note that Model 4 is the primary model used in the fol-
lowing testing.

In addition, the deep-learning model is also compared 
with the traditional gray-level thresholding method [25] 

Fig. 3  The workflow of prior information guided auto-segmentation of TB. Pre-op: Pre-operative; Post-op: Post-operative
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and the other three existing deep-learning methods [8, 9, 
20]. Gray-level thresholding method generates a binary 
image from a given gray-scale image by separating it 
into two regions based on a threshold value. For statis-
tical comparison, if the data are in normal distribution, 
the paired t-test is performed. Otherwise, if the data are 
in abnormal distribution, the Wilcoxon signed-rank test 
for paired samples (non-parametric test) is performed. 
P < 0.05 is regarded as statistically significant. R Project 
for Statistical Computing (version 3.6.3) is used for sta-
tistics analysis.

Results
Ablation test
The results of V-Net Models with and without prior 
contour information are compared in Table  1. Among 
the four models with different input CTs, V-Net model 
4 has the best performance. The average values of 
DSC (mean ± standard deviation)  are 0.812 ± 0.053 and 
0.520 ± 0.095 for V-Net Model 4 (with prior contour 
information) and Model 1 (without prior contour infor-
mation). The average values of HD95 (mean ± standard 
deviation) are 18.243 ± 5.135 for V-Net Model 4 and 
59.570 ± 26.012 for V-Net Model 1. The Shapiro-Wilk 
normality test confirmed that the results are in normal 
distribution, thus the paired t-test is employed for sta-
tistical comparison. Statistically significant differences 
between V-Net Model 4 and V-Net Model 1, respectively 
are found in DSC (0.812 vs. 0.520, P = 0.001) and HD95 
(18.243 vs. 59.570, P = 0.002).

The average values of DSC (mean ± standard deviation) 
are 0.751 ± 0.081 for V-Net Model 2 (with SV contour on 
pre-operative CT) and 0.765 ± 0.078 for V-Net Model 3 
(without T-SV contour on post-operative CT). While The 
average values of HD95 (mean ± standard deviation) are 
46.876 ± 21.265 for V-Net Model 2 (with SV contour on 
pre-operative CT) and 39.240 ± 15.790 for V-Net Model 3 
(without T-SV contour on post-operative CT). The DSCs 
and HD95s of V-Net Model 2 and V-Net Model 3 are 
both higher than that of V-Net Model 1 and lower than 
that of V-Net Model 4. The result shows that the inclu-
sion of prior tumor contour information in V-Net model 
can improve the prediction accuracy of TB contour 
significantly.

Model comparison
The average values of DSC (mean ± standard deviation) 
is 0.633 ± 0.086 for the traditional gray-level threshold-
ing method. The average value of HD95 (mean ± standard 
deviation) is 58.275 ± 27.659 for the traditional gray-level 
thresholding method. The Shapiro-Wilk normality test 
confirmed that the results are in normal distribution, 
thus the paired t-test is employed for statistical compari-
son. Statistically, significant differences between V-Net 
Model 4 (with prior contour information) and the tradi-
tional gray-level thresholding method are also found in 
DSC (0.812 vs. 0.633, P = 0.0005) and HD95 (18.243 vs. 
58.275, P = 0.001).

The result of V-Net Model 4 is also compared with 
the other three existing deep-learning models, Res-SE-
U-Net [8], SDL-Seg-U-Net [9] and U-Net [20], recently 
published for TB segmentation. As the data and source 
codes for them are not publically available, we can only 
assess them based on the published results. As shown 
in Table  2, the two similarity metrics, DSC and HD95, 
and the sizes of training and test sets for each model are 
listed. V-Net Model 4 has the highest DSC, while SDL-
Seg-U-Net [9] has the lowest HD95 among four models. 
Res-SE-U-Net [8] has the largest training and test sets 
but from two institutions. The CT and contours from two 
different institutions may vary considerably which cause 
lower DSC and higher HD95 of this model.

Discussion
In this study, a deep-learning model was developed for 
auto-segmenting TB from post-operative CT. The results 
show that the prior tumor contour information provides 
important information in searching for the precise loca-
tion of TB from low-contrast soft tissue on post-operative 
CT. This improvement of DSC would be attributed to the 
introduction of SV and T-SV contours in the deep-learn-
ing model, which brings the high-probability region of 
TB on post-operative CT. The improvement of segmenta-
tion accuracy also means that planning target volume can 
be more close to the real volume and then the radiation 
dose can be more precisely delivered to it. This would be 
favorable for promoting tumor control probability and 
lowering normal tissue complication probability in clini-
cal radiotherapy. In addition to the introduction of prior 

Table 1  The result of ablation tests with different inputs
Types of prior contour information DSC (%) HD95 (mm)
V-Net Model 1: [Pre-op CT & Post-op 
CT]

0.520 ± 0.095 59.570 ± 26.012

V-Net Model 2: [Pre-op CT with SV & 
Post-op CT]

0.751 ± 0.081 46.876 ± 21.265

V-Net Model 3: [Pre-op CT & Post-op 
CT with T-SV]

0.765 ± 0.078 39.240 ± 15.790

V-Net Model 4:[Pre-op CT with SV & 
Post-op CT with T-SV]

0.812 ± 0.053 18.243 ± 5.135

Table 2  The comparison of the proposed and existing deep-
learning models for TB segmentation task
Methods DSC (%) HD95 (mm) Sizes of

training 
and test 
sets

Res-SE-U-Net [8] 0.630 ± 0.080 19.57 ± 17.01 252 − 222
SDL-Seg-U-Net [9] 0.764 ± 0.027 6.76 ± 1.83 24 − 5
U-Net [20] 0.626 ± 0.078 8.39 ± 2.90 24− 5
 V-Net [Model 4] 0.812 ± 0.053 18.24 ± 5.13 88 − 22
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tumor contour information, the image enhancement 
technique also brings a simple way to burn footprint 
on CT for more efficient network training. Without it, 
another two channels for SV and T-SV masks are needed 
in addition to the two existing CT channels, which would 
cause increased cost in network training.

The deep-learning model was initially used in auto-
segmentation of TB on planning/synthetic CT and the 
result was not desired.8 Later, Kazemimoghadam incor-
porated the salient information provided by titanium clip 
in deep-learning model and the result was improved.9 In 
our study DSC is further improved compared with the 
previous reports. Compared with the DSC (0.63 ± 0.08) of 
Dai’s method, the DSC (0.764 ± 0.027) of Kazemimogha-
dam’s method shows a 21% improvement and the DSC 
(0.812 ± 0.053) of our method shows a 28% improvement. 
It should be noted that both Kazemimoghadam and our 
methods incorporated prior information in the deep-
learning model to assist the refinement of more precise 
contour of TB. Our prior contour information covers 
more region than that of Kazemimoghadam’s method. 
The proposed segmentation method not only provides an 
accurate tool for TB contouring, also improves the accu-
racy of treatment planning and delivery of radiotherapy. 
As suggested by clinical trials, the high contour quality 
improves patient survival [26].

To implement the deep-learning model in clinic, both 
pre-operative and post-operative CTs are extracted from 
clinical radiotherapy treatment planning system, such as 
Eclipse™ (Varian Medical System). These CT images are 
handled by an in-house developed program for subse-
quent image processing. First, DVF is obtained by per-
forming DIR on both sets of CTs. Then, the SV contour 
is automatically created based on the PT contour with 
a given margin and mapped onto post-operative CT via 
DVF to form T-SV contour. Next, the SV and T-SV con-
tours are enhanced on both sets of CTs for model learn-
ing. Finally, the TB contour on post-operative CT is 
predicted by the deep-learning model. The predicted TB 
contour is saved in DICOM RT structure set by the in-
house developed program and imported to the treatment 
planning system for clinical use.

So far, we implemented a V-NET model with prior 
tumor contour information in auto-segmentation of the 
TB contour. There are certain aspects to be improved for 
this method in regard to the input data and model con-
figuration. First, the SV contour can be generated more 
precisely from the PV with additional imaging. In previ-
ous study the SV contour is simply estimated from the 
PT contour by adding a given margin. This is not the 
true volume of SV. If feasible the on-site imaging (CT/
CBCT/MRI) of PV can be performed in surgery room 
and then fuse with the pre-operative CT, this will make 
the SV more close to the real one. Second, the attention 

mechanism should be introduced to calculate differ-
ent weight parameters for the input feature map, so that 
the model pays more attention to key information and 
ignores irrelevant information such as background. For 
this purpose, the model architecture could be changed by 
adding attention modules, including channel self-Atten-
tion module, spatial self-Attention module, and hybrid/
dual attention module [27].

There are several limitations in this study. First, the 
dataset is limited, which requires massive cross-valida-
tion to ensure the stability of deep-learning model. More 
data will be collected in the future to improve the gen-
eralization and robustness of the model. Second, the tra-
ditional intensity-based DIR is limited for certain clinical 
scenarios, especially when organs suffering from not only 
deformation but also mass changes. This mass change 
could cause difficulty in mapping voxel-to-voxel, such 
as in the case of tumor removal. The mechanical model 
based method, such as finite element method (FEM), 
computes a deformation field to satisfy both the elastic-
ity constraint and the similarity metric constraint, which 
could be a better solution for this case. Third, MRI scan 
is not available in this study. Since soft tissue contrast 
on MRI is better than CT, the tumor bed tissue would 
be more visible on MRI than that on CT. Thus it is ben-
eficial to include MRI in the deep-learning model in the 
future. Fourth, this method is only tested on the site of 
breast. Tumor bed after surgery on the other sites, such 
as pelvic and oral tumor, would be tested in the future. As 
the tumor bed volumes are larger and image contrast of 
these sites is better than the one in the site of breast, we 
are optimistic about the future of applying this method in 
these clinical scenarios.

Conclusions
Incorporating the prior tumor contour information in 
the deep-learning model can effectively improve the seg-
mentation accuracy of TB. Comparing with Dai’s and 
Kazemimoghadam’s methods, the DSC of the proposed 
method increases with 28% and 6%, respectively. Instead 
of point-related location information such as titanium 
clips, the region-related information such as tumor con-
tour is utilized in training deep-learning model in this 
study. The proposed method demonstrated a feasible way 
to auto-segment TB from CT in assisting the physician to 
delineate target volume for treatment planning in breast 
cancer radiotherapy.
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