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Estimation of cerebrovascular reactivity
amplitude and lag using breath-holding
fMRI and the global BOLD signal:
Application in diabetes and hypertension

Nuwan D Nanayakkara1 , Liesel-Ann Meusel1,
Nicole D Anderson1,2 and J Jean Chen1,3,4

Abstract

In this work, we demonstrate a data-driven approach for estimating cerebrovascular reactivity (CVR) amplitude and lag

from breathhold (BH) fMRI data alone. Our approach employs a frequency-domain approach that is independent of

external recordings. CVR amplitude is estimated from the BOLD frequency spectrum and CVR lag is estimated from the

Fourier phase using the global-mean BOLD signal as reference. Unlike referencing to external recordings, these lags are

specific to the brain. We demonstrated our method in detecting regional CVR amplitude and lag differences across

healthy (CTL), hypertensive (HT) and hypertension-plus-type-2-diabetes (HTþDM) groups of similar ages and sex

ratios, with a total N of 49. We found CVR amplitude to be significantly higher in CTL compared to HTþDM, with

minimal difference between CTL and HT. Also, voxelwise CVR lag estimated in the Fourier domain is a more sensitive

marker of vascular dysfunction than CVR amplitude. CVR lag in HT is significantly shorter than in CTL, with minimal

difference between CTL and HTþDM. Our results support the importance of joint CVR amplitude and lag assessments

in clinical applications.
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Introduction

When mapping cerebrovascular reactivity (CVR) map-

ping,1–3 inhalation-based (gas challenge) methods can

involve elaborate set up. Breath-hold (BH) tasks involve

minimal setup and have been suggested as a robust alter-

native to gas challenges.4–7 BH tasks have been well

tolerated by participants of vulnerable groups8,9 and

have been successfully applied in clinical studies.9–12

A typical BH task follows a protocol consisting of a

block design with alternating periods of normal breath-

ing and breath holding for a simple reproducible volun-

tary breathing modulation task.5,13,14 Nonetheless,

well-known caveats of BH methods include the greater

need for participant cooperation6,15 and the unavailabil-

ity of expired gas measurements during the BH periods,

especially as a given BH task pattern across multiple

participants do not necessarily produce similar increases

in CO2 partial pressure values in the blood.6 To help

address this source of uncertainty, some studies have

incorporated measurement of end-tidal carbon dioxide
partial pressure (PETCO2) using a mask or nasal can-
nula.4,14,16 A short BH period of 6 s can result in hyper-
capnia17 while the spatial extent of the significant BOLD
response reaches a plateau at a BH length of around
20 s.18 Many studies have reported a BH length of
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15 s for successful estimation of CVR from BOLD
data.5,11,19–21 With careful analysis, the performances of
BH can be comparable to those involving gas manipula-
tion techniques.15,22–24 However, at the CVR estimation
step, uncertainties in participant compliance can present
major data-analysis challenges, especially when PETCO2

recordings are unavailable.
Model-driven approaches such as the general linear

model (GLM) have been employed to estimate CVR
from BOLD responses to a BH task, whereby the BH
paradigm is modelled as a boxcar25,26 or ramp function
convolved with a hemodynamic response function
(HRF) to approximate linear BOLD signal increases.4

Additional temporal derivatives of the HRF are
required to account for the longer delays in respiratory
responses to appear in the BOLD signal.27,28 The GLM
model-driven approaches use a single fixed time lag in
HRF to fully describe the BOLD signal across the
whole brain. However, different brain regions exhibit
different temporal CVR dynamics, both in healthy par-
ticipants and in patients.14,20,21,29,30 Previous studies
incorporating cross-correlations to estimate optimal
time lags of the BOLD response have demonstrated
substantial response-time variations across the
brain.20,21 The global BOLD time series (GMS) has
also been used in some studies as a whole-brain refer-
ence for shifting the PETCO2 regressor20 through iter-
ative GLM fitting to estimate voxelwise CVR
lag.14,20,27,31,32 However, it is evident that GLM meth-
ods work best when PETCO2 recordings are available
as input, allowing both inter-participant variations in
BH compliance and in respiratory physiology to be
accounted for.4,5,27,33 Moreover, the canonical hemo-
dynamic response function is derived using the BOLD
response to neuronal activity and not CO2.

We propose a data-driven approach for estimating
the amplitude and timing of the BH BOLD response
without modelling or correlation with other signals
(e.g. PETCO2). Our approach makes use of the
Fourier representation of the spectrum of BOLD
data, as it has been found that the BH CVR response
can be successfully approximated as a sinusoidal signal
by assuming the BH task is approximately symmetrical
(equivalent BH and baseline periods), even if it is
not.5,27 This sinusoidal approach was shown to outper-
form the use of an HRF-based regressor (the PETCO2

trace convolved with the HRF31) prompting us to esti-
mate CVR in the Fourier domain. Our data-driven
Fourier-based approach does not require regressors
but instead detects and accounts for deviations from
task designs directly from the BOLD fMRI data.
Importantly, using the phase information in the
GMS, we also demonstrate the estimation of CVR
lags. In this study, we used a typical BH task design
similar to the studies mentioned earlier. We

demonstrate our method by assessing differences in

CVR amplitude and lag among patients with hyperten-

sion (HT), hypertension-plus-type-2 diabetes

(HTþDM), and age-matched controls (CTL).

Methods

Study participants

Older adults of ages 65-85 were recruited and placed in

control (CTL), hypertension (HT), or hypertension-

plus-type-2-diabetes (HTþDM) groups based on

screening measures. The study was approved by the

Baycrest Ethics Board, which grants ethical approval

guided by the Canadian Tri-Council policy statement

titled “Ethical Conduct for Research Involving

Humans”, drafted in accordance with the Declaration

of Helsinki. A written informed consent was obtained

from all participants. Participants were excluded from

the study if they met any of the following criteria: (1) a

score �31 on the Telephone Interview for Cognitive

Status – modified version34 in order to exclude partic-

ipants with possible dementia; (2) the use of insulin to

treat DM; (3) the presence of DM complications, based

on self-report, including clinically significant gastropa-

resis, retinopathy, nephropathy, neuropathy, hepatic

disease, or a recent coronary heart disease event as

determined by a physician; (4) other significant medical

or psychiatric disorders affecting cognitive function,

such as stroke and major depressive disorder; (5)

current or recent use of central nervous system-active

medications, including those for the treatment of

depression, sleep disorders, and migraine headaches;

(6) major inflammatory disorders, heart failure, and

chronic lung disease; or (7) hormone replacement ther-

apy in female participants. The included participants

were screened to ensure group status as listed below:

• CTL: Participants had a mean systolic BP

� 140mmHg, a mean diastolic BP� 90mmHg, no

history of antihypertensive medication use, and a

fasting glucose level (FGL) � 6.1mmol/L.
• HT: Participants were using antihypertensive medi-

cation under physician prescription for a minimum

of two years, with current blood pressure within a

normal or HT range and limited to those who were

using long-acting antihypertensive medications (e.g.,

ACEIs, angiotensin II receptor blockers, diuretics)

in order to capture the most commonly prescribed

medications.
• HTþDM: Participants had a physician diagnosis of

type 2 DM for a duration of at least two years, were

controlling their DM through diet or hypoglycemic

medication alone, and were free of major DM
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complications as defined in the exclusion criteria, in

addition to the criteria for the HT.

Data on the use and duration of all medications and

the disease duration of HT and DM were collected.

Participants provided a fasting blood sample for mea-

surement of hematocrit, lipid profile (triacylglycerides

(TG), total cholesterol (TC), low-density lipoprotein

(LDL), and high-density lipoprotein (HDL)), CRP,

glucose, insulin, and HbA1c. Blood pressure, weight,

height, and waist circumference were also measured.

These measurements were followed by a practice ses-

sion of the breath hold task in an MRI simulator to

ensure that the participant was comfortable with the

fMRI scanning protocol. Participants were asked to

continue their usual diet, medications, and activity

level for the duration of their involvement in the

study. Available data from 56 participants (CTL:21,

HT: 23, and HTþDM: 12) were preprocessed as

described below. Data from seven participants

(CTL:3, HT:3, and HTþDM:1) were removed from

analysis due to excessive head-motion artifacts larger

than 10 rotation and 1mm translation as detected by

FSL motion correction. This study consisted of

remaining data from 49 participants (CTL: 18, HT:

20, and HTþDM: 11) with mean ages of 70.2� 3.3,

71.9� 4.7, and 71.7� 3.6 years, and male/female ratios

of 1.25, 0.43 and 0.57, respectively.

Data acquisition

Each participant followed a set of 6 repetitions of a 30 s

resting and 2 s exhale followed by a 15 s BH guided by

visual clues (total duration, T¼ 47 s) during a dual-echo

pCASL fMRI image acquisition session on a Siemens

Trio 3T system (T2*-weighted echo-planar imaging,

FOV¼ 220mm, acquisition matrix¼ 220� 220, voxel

size¼ 3.4� 3.4� 6.0mm, bandwidth¼ 2790Hz/Pixel,

TE1/TE2/TR¼ 9.1/25/4000ms, flip angle¼ 90 degrees,

slices¼ 16, averages¼ 1, concatenations¼ 1, scan

duration¼ 5:24). The labelling duration was 1500ms,

and the post-labelling delay was 1000ms. The data asso-

ciated with the second TE were used to compute the

BOLD time series. Respiratory bellows were recorded

using the scanner’s built-in belt. A T1 anatomical scan

(FOV¼ 256mm, acquisition matrix¼ 192� 256, voxel

size¼ 1.0mm3, bandwidth¼ 200Hz/Pixel, TI/TE/TR¼
1100/2.63/2000ms, flip angle¼ 9 degrees, slices¼ 160)

was acquired for anatomical reference and tissue

segmentation.

Preprocessing

The dual-echo pCASL time series data were prepro-

cessed using FSL35,36 and AFNI37,38 tools, and steps

include slice timing correction, motion correction (for
the BOLD echo separately and registration into MNI
space using flirt. The BOLD time series was obtained
by surround averating to produce 78 frames of BOLD
data, which were then high-pass filtered to remove low-
frequency noise from the data with a 0.01Hz cut-off
frequency, resulting in the “preprocessed BOLD signal”.

Data-driven CVR estimation: amplitude and lag

Previous work demonstrated that the BH CVR
response can be successfully approximated as a sinu-
soidal signal by assuming the BH task is approximately
symmetrical (equivalent BH and baseline periods), even
if it is not.5,27 The sinusoidal regressor outperformed
block-design regressors (convolved with the hemody-
namic response function), prompting us to visualize
the CVR estimation in the Fourier domain. Indeed,
identifying the maximum cross-correlation between
the BOLD signal and a sinusoidal regressor is mathe-
matically equivalent to extracting the spectral coher-
ence of the BOLD signal and the sinusoid at the
nominal task frequency that characterizes the sinusoid.
Since the Fourier transform of a sinusoid is a delta
function, the coherence function reduces to the
Fourier transform of the BOLD signal. In our case,
instead of focusing on the nominal task frequency, we
extract the peak frequency from the BOLD signal. The
phase angle of the Fourier transform at the estimated
BH frequency is taken to represent the voxel-wise CVR
lag. A biologically meaningful lag, however, needs to
be estimated from a reference phase that reflects the
time at which the CVR effects first entered the brain.
One choice is to get the reference from PETCO2 or
respiratory belt signals, but these signals are not
always available. Moreover, a lag referenced to these
signals incorporates the transit delay from the lungs to
the brain instead of reflecting the brain-tissue specific
lags. This hampers the detection of negative CVR,
which are in theory at a phase between p and 2p rela-
tive to the “earliest arrival time” of the CVR effect in
the brain. In response, one can try to isolate the BOLD
signal at the internal carotid as an “earliest arrival”
signal, but localizing major arteries solely from
BOLD data is not always possible due to poor resolu-
tion or the lack of coverage of the base of the brain. We
propose that the global BOLD signal, which represents
an intermediate point of arrival for the CVR effects
and has shown considerable similarity between partic-
ipants in resting state fMRI studies,39 can be leveraged
to estimate the “earliest arrival” time.

The CVR estimation pipeline is shown in Figure 1.
The BOLD data is first normalized by the mean of the
first 8 frames of the series corresponding to the baseline
before the first BH period. The time series data was
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then converted to %DBOLD by voxelwise demeaning.

As described earlier, the identification of the BH fre-

quency (BHF) can be hampered by variations in task

compliance as well as in participant physiology. Thus,

the identification of the BHF in our pipeline undergoes

a two-step process to ensure flexibility and robustness.

First, we identify the BH task paradigm used in the

study that can be considered as a repetitive signal of

period T¼ 47 s, corresponding to a fundamental BHF

of 1
T (0.0213Hz). The voxelwise BOLD signal was

passed through a bandpass filter of cut-off frequencies
1

Tþ0:33Tð Þ ;
1

T�0:33Tð Þ
h i

¼ 0:0158; 0:0323½ � Hz, corre-

sponding to T�T/3. The pipeline finds the BHF

from the BOLD data spectrum within this frequency

range, such that the BHF can deviate slightly from the

nominal frequency due to variations in participant

compliance with the task design, but is not allowed to

deviate too far away from the expected task frequency

to ensure robustness against noise. Second, the pipeline

finds the BHF corresponding to the maximum ampli-

tude of the Fourier spectrum of the BOLD signal at

each cortical voxel. Lastly, for the grey matter (GM) of

each data set, a histogram is constructed using the
voxel-wise BHF, and the BHF found at the peak occur-

rence is chosen as the dominant BHF for that data set.
This second step further constrains the BHF to maxi-

mize inter-regional comparability, assuming that

variations in respiratory physiology contribute to
inter-participant but not within-participant inter-

regional CVR differences. That is, the dominant BHF
can vary between participants but not between brain

regions.
The voxelwise phase (/s) of the CVR at BHF rela-

tive to a reference at the same frequency can be used to

compute the response lag for the CVR response. For
reasons mentioned earlier, a reference that reflects the

CO2 stimulus specific to the brain is desirable. Thus, we

propose that it is more feasible to use the BOLD dis-
tribution signal phase at BHF of the GMS (based on all

GM and white matter (WM) voxels) to estimate the
reference phase angle.

• Global-mean signal (GMS) reference: The histo-
gram of the phase angle distribution of the Fourier

spectrum of the BOLD signal in the whole brain

Figure 1. Signal processing pipeline. The normalized and demeaned %DBOLD data are bandpass filtered to retain signals around the
targeted BH frequency (BHF). The dominant frequency of the filtered signal in the cortex is selected as the BHF. The amplitude of the
spectrum of each voxel at the BHF is selected as the CVR amplitude. The CVR lag of each voxel is calculated relative to a reference
phase angle. We propose to use the GMS to extract the reference phase angle, the results of which are compared to those of an
alternate reference, in this case, the respiratory belt signal at the BHF.
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(total GM and WM) region is created with a bin size
of p=36 rad. The histogram is then shifted to start at
the phase angle bin corresponding to the minimum
count. The selected minimum phase angle (/m) at
10% of the cumulative distribution of shifted
phase angles is selected as the reference phase for
the CVR lag calculation (see sample phase distribu-
tion in Supplymentary Figure S1).

CVR lag ¼ /s � /mð Þ
2p� BHF

(1)

CVR amplitude values in voxels with lags longer
than 23.5 s (corresponding to a phase lag of p) are
considered negative.
In this work, we cross-validate the GMS-based lag

values through correlation with lags estimated using a
respiratory recording as the reference.

• Respiratory-belt signal as reference: the envelope of
the respiratory signal is extracted from the record-
ing, which also allowed us to verify each partici-
pant’s compliance with the BH task. The phase
(/r) of the de-meaned respiratory belt signal enve-
lope Fourier spectrum at the BHF is selected as the
reference for CVR lag, calculations as

CVR lag ¼ /s � /rð Þ
2p� BHF

(2)

Statistical analysis

We also computed the Framingham Risk Score (FRS)40

and Diabetes Epidemiology: Collaborative Analysis of
Diagnostic Criteria in Europe (DECODE) scores.41

FRS and/or DECODE scores are widely used in cardio-
vascular disease (CVD) risk estimates to decide on ther-
apeutic strategies for patients at risk of CVD events.
Higher values for these scores indicate an elevated risk
of such events. Differences in demographics and physi-
ological measurements across groups, including the FRS
and DECODE metrics, were detected by ordinary
one-way ANOVA corrected for multiple comparisons
by controlling the false discovery rate using the
Benjamini-Hochberg procedure.

The CVR amplitude and lag were compared voxel-
wise and region-wise across the three groups (namely
CTL, HT, and HTþDM) using GLM42 followed by
multiple comparisons correction via threshold-free
cluster enhancement.43 Brain parcellations were gener-
ated using FreeSurfer (Version 6.0.1, available at
surfer.nmr.mgh.harvard.edu) were used to calculate
regional-mean CVR amplitudes and mean CVR lags.

The normality of data distributions in all three groups
were confirmed using the D’Agostino-Pearson test.44

Two-way ANOVA with multiple comparisons was
used to separately compare the overall means of
region-wise (ROI) CVR amplitude and lag corrected
for multiple comparisons by controlling the false discov-
ery rate (Benjamini-Hochberg procedure) between
groups. Regional CVR amplitude and lag were com-
pared separately in each cortical region of interest
(ROI) using the Kruskal-Wallis test corrected for mul-
tiple comparisons by controlling the false discovery rate.

Results

The age of participants was not significantly different
across the groups (see Supplementary Figure S2a). HT
and HTþDM groups did not exhibit significant differ-
ences in systolic BP (SBP) compared to CTL
(Supplementary Figure 2b). Participants in HT and
HTþDM were using antihypertensive medication
under physician prescription for a minimum of two
years. Hence their hypertension is mostly controlled
showing no statistically significant difference in the
SBP to participants in CTL. The HTþDM group
showed significantly higher HbA1C and lower LDL cho-
lesterol values compared to the HT and CTL groups
(Supplementary Figure 2c, d). The FRS and DECODE
scores were both significantly lower in CTL compared to
HT and HTþDM, but only the DECODE score showed
a significantly lower score for HT compared to
HTþDM (Supplementary Figure 2e, f).

Robustness to participant compliance

Shown in Figure 2 are sample signals from the inter-
mediate steps of the signal processing pipeline for a
participant compliant (2a) and a participant non-
compliant (2b) to the BH task design. Bandpass filter-
ing suppressed spurious signals outside the targeted
BHF range, as in Figure 2a(ii) and b(ii). The histo-
grams of maximum amplitudes of the bandpass-
filtered BOLD spectra in all cortical voxels are shown
in Figure 2a(i) and b(i) for sample participants. The
peaks of the histograms correspond to the dominant
CVR frequencies. In addition, the BOLD signal at
the dominant frequency is well-modelled by the sinu-
soidal approximation and closely follows the respirato-
ry belt signal as shown in Figure 2a(v) and b(v), even
when the participant performance on the BH task devi-
ated from the task design.

Figure 2 also shows the recorded full respiratory-
belt signal and the extracted BH pattern from the
smoothed envelope details with corresponding frequen-
cy spectrums for a participant who followed the BH
task paradigm (Figure 2a(iii) and (iv) respectively)
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and for a participant who was not compliant

(Figure 2b(iii) and b(iv) respectively). As indicated by

dashed lines on respective frequency spectrums, the

proposed data-driven approach was able to correctly

estimate the BHF in both cases avoiding peaks from

unexpected frequencies.

Comparison of GMS- and belt-based lag estimates

Figure 3 shows a high correlation between the CVR lag

calculated using the references estimated from the

selected minimum phase angle of the GMS phase dis-

tribution and from the respiratory belt signal. That is,

irrespective of the actual lag values, the relative pat-

terns of GMS-based and belt-based lags agree. This

finding establishes the feasibility of voxel-wise CVR

lag estimation solely from the BOLD data without a

requirement to collect any other external signal and

enables us to map negative CVR values using Fourier

data alone. We use the selected minimum phase angle

of the GMS phase distribution for all analyses reported

in the paper.

Comparison of group-mean maps

Figure 4(a) shows the mean CVR amplitude maps in

each group. GM regions in the cortex generally have a

higher CVR amplitude compared to other areas of the

brain. The mean CVR amplitude in CTL was signifi-

cantly higher than both HT and HTþDM across cor-

tical GM and higher in HT compared to HTþDM (see

supplementary Figure S3a). Note that CVR amplitudes

in voxels with lags longer than 23.5 s (corresponding to

a phase lag of p) are considered negative (shown in

blue). We illustrate the occurrence of negative CVRs

in the medial prefrontal region. Lags are shortest in the

Figure 2. Samples outputs from intermediate signal-processing steps. Samples from the signal processing pipeline for a participant
(a) compliant and (b) non-compliant to BH task design. Each includes (i) the histogram of maximum amplitudes at all cortical voxels
with corresponding frequencies, (ii) the frequency spectrum of the pre-processed and band-pass filtered BOLD at a sample voxel in
the cortex, (iii) the respiratory belt signal with the smoothened envelope, (iv) respective frequency spectrum of the belt signal, and
(v) bandpass filtered the BOLD signal, and the estimated CVR response at the BHF at the sample voxel in the cortex.
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occipital lobe and longest in the ventricles and WM. In

the remainder of the results, we only compare the mag-

nitudes of CVR values across groups, which means we

do not restrict lags to a phase of p. We believe this

approach is more generalizable than comparing posi-

tive CVRs against negative CVRs. Nonetheless, regions

associated with negative CVR are represented by

phases of >p (i.e.> lags of 23.5 s).
Figure 4(b) shows the mean CVR lag maps in each

group. GM regions in the cortex generally have a shorter

delay than in other areas of the brain. The mean CVR

lag in HTþDMwas significantly longer than both CTL

and HT across cortical GM and longer in CTL com-

pared to HT (see supplementary Figure S3b).

Voxel-wise associations with disease variables

Figure 5 shows voxels that demonstrate statistically

significant differences (p< 0.05) where CVR magni-

tudes in CTL>HT and CTL>HTþDM. Most

CVR amplitude differences are either reduced or elim-

inated when controlling for sex, duration of previously

detected hypercholesterolemia, or systolic blood

pressure. No statistical significance voxels were

detected when controlling for LDL or HbA1c. No sig-

nificant voxelwise differences in CVR magnitude were

detected between HT and HTþDM.
Figure 6 shows voxels that demonstrate statistically

significant differences (p< 0.05) where CVR lags in

CTL>HT and HT<HTþDM. More significant dif-

ferences were detected for HT<HTþDM than

CTL>HT and those differences were reduced when

controlling for the duration of previously detected

hypercholesterolemia and disappeared when control-

ling for LDL and HbA1c. Significant differences

in CVR lag were not detected between CTL and

HTþDM.
There is no statistically significant association of

CVR amplitude or lag with FRS or DECODE scores

detected between groups.

ROI-based differences between groups

Figure 7(a) shows the regional means of CVR magni-

tude and lag of each cortical ROI for CTL, the regional

means of CVR magnitude (b) and lag (c) of each

Figure 3. The relationship between CVR lag calculated using the references estimated from the selected minimum phase angle of the
GMS phase distribution and the respiratory belt signal shows a high correlation. Each symbol represents the group average for each ROI.
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cortical ROI for HT and HTþDM. CVR magnitude

in HTþDM is significantly lower than both CTL and

HT in the cuneus, the pericalcarine, the lingual, the

lateral occipital, and significantly lower than CTL in

the posterior cingulate, the fusiform, the pallidum, and

the hippocampus. CVR amplitude in HT is significant-

ly lower than both CTL in the pallidum. HT exhibited

significantly shorter lags than CTL in the cerebellum

cortex, the cuneus, the pericalcarine, the lingual, the

superior temporal, and the rostral anterior cingulate.

The CVR lag was significantly longer in HTþDM

than HT in the precuneus, the cuneus, the pericalcar-

ine, the caudal anterior-cingulate, the lingual, the pos-

terior cingulate, the banks of the superior temporal

sulcus, the fusiform, the superior temporal, the rostral

anterior cingulate.

Discussion

In this work, we present a simple, frequency-domain-
based, data-driven approach for estimating CVR
amplitude and lag from BH fMRI data, helping to
reduce errors due to participant non-compliance and
regional CVR lag variability. It thus can have a wide
range of applications in studying patient populations.
Moreover, our Fourier-spectrum approach provides an
elegant means to estimate voxelwise CVR lag estima-
tions using phase differences relative to any non-neural
biological signal that depends on the BH task.7,45 We
demonstrate our method in the study of diabetes and
hypertension. We found that:

1. It is feasible to use the phase distribution of the
BOLD signal relative to a GMS reference to

Figure 4. Group-mean CVR estimation results sampled to MNI space. (a) Mean CVR amplitudes (%DBOLD) for all participants in
each group. CVR amplitude values in voxels with lags longer than 23.5 s (corresponding to a phase lag of p) are considered negative.
The grey matter (GM) regions in the cortex have a higher CVR amplitude than the white matter (WM) and other areas of the brain.
The HTþDM participants showed the lowest CVR amplitudes consistently throughout all brain regions and (b) Mean CVR lag (s)
relative to the GMS min phase in each group. The GM regions in the cortex have a shorter CVR lag than the WM and other areas of
the brain. The HT group showed the lowest CVR lag while the HTþDM group showed the longest lag. Parts of the ventricles are
masked out indicated as zero for both CVR amplitude and lag to aid the visualization, but CVR was estimated in all voxels. The z value
indicates slice coordinates in MNI152 space.
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estimate brain-specific CVR lags, and to use these
lags to detect the presence of negative CVR;

2. CVR lag is a more sensitive marker of differences
between CTL and patient groups than CVR
magnitude;

3. HT is associated with comparable regional CVR
magnitudes as CTL, but shorter CVR lags;

4. HTþDM is associated with lower regional CVR
magnitudes than both HT and CTL as well as
longer CVR lags relative to HT but not CTL;

Figure 5. Voxelwise comparisons of CVR magnitudes. The statistical testing on CVR magnitudes of CTL>HTand CTL>HTþDM
shows significant voxels (p< 0.05) for permutation inference for the general linear model after threshold-free cluster enhancement.
The values in the significant ROIs are shown in the corresponding violin plots. The significance of differences in most voxels is either
reduced or eliminated when controlled for other variables. Significant differences in CVR amplitude were not detected between HT
and HTþDM.
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5. CVR lag differed between groups in more brain
regions than CVR magnitude.

These are the first MRI-based observations of CVR
lag differences between HT-DM patients and healthy
controls.

Estimation and interpretation of CVR amplitude
using BH

A BH task is a simple method to induce cerebrovascu-
lar response due to an increase of arterial CO2 levels
by ceasing ventilation. It provides a reproducible

Figure 6. Voxelwise comparisons of CVR lag. The statistical testing on the CVR lag of CTL>HT and HT<HTþDM showed
significant voxels (p< 0.05) for permutation inference for the general linear model after threshold-free cluster enhancement. More
significant differences were detected for HT<HTþDM than for CTL>HT; these were reduced when controlling for the duration of
previously detected hypercholesterolemia and disappeared when controlling for LDL and HbA1c. Significant differences in CVR lag
were not detected between CTL and HTþDM.
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technique estimation of CVR even in less cooperative

populations.5,13,46 The BH-induced CVR has been

shown to be comparable to CVR estimated with

inhaled CO2 challenges.9,47–49 In the conventional,

GLM-based method, the block BH design is convolved

with the hemodynamic response function.25,26 The

GLM models perform well when PETCO2 recordings

are available for modelling BOLD response to accom-

modate for inter- and intra-participant variations,4,14

but may be sensitive to non-compliant participants.28

BOLD fMRI signal changes due to head motion, con-

founding physiological fluctuations, and other sources

of noise can all affect the CVR estimation from BH

BOLD data.32,50,51

Alternatively, Fourier basis modelling has been used

effectively, assuming sinusoidal signal variations at

the paradigm design frequency.4,14,27 Fourier-based

approaches have been reported as being robust and

versatile, but are seemingly more ideal for BH designs

that are symmetrical. In practice, the BOLD response

to BH tasks can easily deviate from the sinusoidal fre-

quency, and it is unclear what the implications are for

CVR estimation.

In our data-driven approach, we addressed this issue

by estimating fundamental frequency from the BOLD

signal spectrum for accurate sinusoidal approximation

of CVR. GM regions in the cortex generally have a

higher CVR amplitude (Figure 3) than the WM and

other areas of the brain. Regional variations within

the GM are also visible. Frontal regions generally

have a higher CVR amplitude compared to temporal

regions, the cerebellum cortex, the fusiform, and the

putamen. These overall and regional differences are con-

sistent with previous similar studies,32,52,53 and attest to

the robustness of our simple approach.

CVR amplitude in diabetes and hypertension

CVR changes have been reported in various chronic

conditions.10,20,54–57 Chronic hypertension58 has been

associated with CVR impairments.54,56,57,59,60

Specifically, in HT, CVR is extensively reduced in hyper-

tensive rats compared to controls.57 In older adults, HT

is well known to be associated with arterial stiffness and

blood-flow reduction61 in addition to reductions in

whole-brain CVR.62 This CVR reduction is also

Figure 7. (a) Mean regional CVR amplitude and lag for CTL arranged in the ascending order of CTL in subregions of the cortex. The
order of CVR magnitudes does not show any link to CVR lag in different subregions. Mean regional CVR (b) magnitude and (c) lag for
HTand HTþDM groups arranged in the same ascending order of CTL CVR magnitude. HTþDM shows statistically significant lower
CVR magnitudes (p< 0.05) in multiple cortical regions than both CTL and HT, marked by blue (*) and red (*) asterisks, respectively.
The Kruskal-Wallis test corrected for multiple comparisons by controlling the false discovery rate. The CVR lag shows statistically
significant differences in more regions than those for magnitude. Statistically significant shorter CVR lag compared to CTL is marked
with blue asterisks (*), and longer CVR lags compared HT are marked by red (*) asterisks. Subcortical regions are marked by
diamonds (�).
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reflected in reduced resting-state fMRI signal fluctua-
tions across the brain in the presence of arterial stiff-
ness.63 The reduced CVR is in turn associated with
impaired executive function,64 and can be attributed to
shear stress on the endothelial membrane that contrib-
utes to atherosclerosis.65 In the current study, however,
CVR amplitude was not significantly altered in the HT
group – we observed lower CVRmagnitude in HT in the
pallidum alone. This leads us to think that the incorpo-
ration of voxel-wise CVR lags, which had not been done
in previous studies, may have led to the underestimation
of CVR in HT previously. Our results suggest that HT is
rather associated with CVR lag. This is consistent with
the higher pulse-wave velocity and less dampened HRF
that we expected from stiff vessels. There was minimal
evidence of sex differences in the CVR impairment, per-
haps due to the limited sample size.

Diabetes mellitus (DM) and HT are commonly
comorbid, and vascular dysfunction has long been
known as a part of DM pathology. Thickening of the
vascular membrane has been identified as one of the
hallmarks of DM, associated with reduced vascular
elasticity.66,67 Using transcranial Doppler ultrasound
(TCD), CO2-based CVR in the middle-cerebral artery
was found to be impaired in DM.60 However, studies of
the effect of DM on CVR in human populations are
still scarce. Ivankovic reported TCD-based vascular
reactivity reductions,54 echoing findings in the rat
model. Our previous study was one of the few human
MRI studies of DMþHT used the BH challenge, and
localized the CVR deficit to the occipital lobe.11 Like
HT, DM is also associated with blood-flow impair-
ment68,69 as well as psychological symptoms, such as
depression.68 Damage of the proximal tubule, involved
in the uptake of vascular endothelial growth factor
(VEGF),70 as well as a reduction in the brain-derived
neurotrophic factor (BDNF),71 have been implicated in
vascular and cognitive pathologies in DM, respectively.
In the current study, CVR amplitude was found to be
significantly reduced in the frontal, precuneus, posterior-
cingulate and pericalcarine regions (Figure 5). The
implicated regions are known to exhibit high rates of
metabolism72 and consequently, high blood flow,73 ren-
dering them more susceptible to vascular damage.
Abnormalties in regions is also consistent with function-
al impairments reported in previous studies.12 Like
in the case of HT, there is minimal evidence of sex differ-
ences in the CVR impairment.

Estimation and interpretation of CVR lag

In addition to CVR amplitude, CVR lag is increasingly
quantified.52,74–78 Specifically, Holmes et al. demon-
strated extended CVR lag as a marker with superior
sensitivity to the effects of age and Alzheimer’s disease,

even when compared to the long-established CVR

amplitude measures.79

The BOLD temporal-lag structure has also been

estimated in the resting-state BOLD signal by regress-

ing the low-frequency (�0.1Hz) arterial BOLD

signal,80 venous BOLD signal81,82 or GMS.83,84 It is
understood that the BOLD signal is an indirect mea-

sure of blood traversal, as it reflects variations in both

blood volume and blood oxygenation, which may

change due to neuronal activity as well. An alternative

is to track the BOLD signal change during a hyperoxic

or hypercapnic hyperoxic (i.e. carbogen) gas chal-

lenge.85 This latter alternative is easier to administer

clinically than blood tagging while eliciting a generally

robust BOLD response.74 Indeed, CVR-lag estimation

is more robust when performed for a respiratory chal-

lenge than using resting-state data.77,86,87

The BH task has previously been used for CVR-lag

mapping.20,32,88 Moreover, the use of Fourier analysis

to elegantly estimate the BOLD-CO2 response lag was

previously proposed with the use of a sinusoidal CO2

stimulus.45 It was noted that head motion could nega-

tively affect the accuracy of CVR lag estimation when

using BH BOLD fMRI.32 The delay times are most

commonly estimated as the time shift corresponding

to the maximum cross-correlation or most significant

linear regression in a GLM between the reference and

the BOLD signals, with the reference signal being: (1)

the PETCO2 recording, (2) the whole-grey-matter

(GM) BOLD signal,31,80 and (3) the respiratory vari-

ability signal (RVT).86

In our work, we propose a GMS-based CVR lag esti-

mation method, which is successfully cross-validated

with the respiratory-belt reference. However, unlike

GLM-based approaches, no assumptions about the

HRF are required in our approach. Moreover, consis-

tent with previous work demonstrating the advantages

of voxel-wise sinusoidal BOLD response frequency and

phase adjustments,31 our method was able to achieve

robust CVR lag estimates. Pinto et al. added higher-

frequency harmonics to the original single-frequency

sinusoidal regressor and demonstrated improvements

in CVR model fits.14 Equivalently, if needed, our
method could easily incorporate the phases of higher-

frequency spectral peaks in the lag calculation. Our

chosen GMS reference foregoes any need for external

recordings, and bypasses challenges posed in poor

recording quality.86 The CVR lag thus calculated con-

veniently allows us to detect negative CVR based on a

phase value being between p and 2p, but it is not equiv-
alent to the RVT reference, which embodies the transit

time for the CO2 bolus to reach the brain, in addition to

any regional specific CVR delays. The former reflects

both systemic blood-flow velocity and transit through
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the main cerebrovascular arteries, while the latter
reflects localized vascular elasticity.

In our work, CVR lag in healthy adults spans the
range of 10–15 s in the GM. Frontal cortical regions
and deep-grey regions exhibit the longest CVR lags,
while the temporal and parietal regions tend to exhibit
shorter lags. These observations are consistent with the
work of Trippleton et al.52 The long lags observed in
ventricular regions are consistent with negative lag-free
CVR observed in these regions in other studies.89

However, while many publications show maps of
CVR lag, few quantify regional differences, limiting
our ability for cross-validation. The observed spatial
diversity in CVR lag may in part be driven by differ-
ences in flow patterns in various cerebrovascular terri-
tories, including flow transit time and dispersion
among others. The temporal and frontal regions, for
instance, are supplied by different arterial offshoots,
and borrowing from the arterial-spin labelling litera-
ture, arterial transit time from the base of the brain is
thought to be longest in the occipital region and short-
est in deep GM, with flow dispersion following a sim-
ilar pattern.90 Thus, we are led to think that vascular
anatomy is not the main driver of these regional lag
differences, but rather, CVR lag is driven by regional
vascular elasticity. This supports the utility of CVR
lags as potential early indicators of regional physiolog-
ical integrity.

CVR lag in diabetes and hypertension

DM is well associated with reduced systemic91 and cere-
bral blood flow velocity.68,92 Reports of CVR amplitude
deficits have implicated the bilateral occipito-parietal
regions.11 In this work, the main DM-related finding is
that CVR lag is a more sensitive marker of diabetes than
CVR amplitude, as DMþHT participants exhibited
longer CVR lags than HTs in more GM regions than
did CVR magnitude (Figure 7), and CVR lag was asso-
ciated with more disease-related variables than ampli-
tude (Figure 6). The lengthened CVR lag can in
part be attributed to the reduced systemic blood-flow
velocity,62 but more likely slowed local HRF due to
cerebrovascular damage stemming such factors as
hyperglycemia67 and the reduction of the blood-
derived neurotropic factor.71 These in turn impair endo-
thelial repair and survival93 in what is potentially a
vicious cycle akin to those of other processes such as
Alzheimer’s disease and aging.94

One striking finding in this work is that the CVR lag
is generally shorter in the HT group than in either the
CTL or HTþDM group. In contrast, there was negli-
gible significant difference in CVR amplitude between
the HT and CTL groups (Figure 7), suggesting that a
healthy CVR amplitude may belie early endothelial

pathology65 and that using CVR amplitude alone
may lead to missed opportunities for understanding
the cerebrovascular mechanisms of HT. While counter-
intuitive, the finding of reduced CVR delay in HT is
consistent with prior ultrasound-based reports of
increased blood-flow velocity in the presence of elevat-
ed blood pressure.95 Hypertension is often comorbid
with diabetes mellitus.54 However, it is common for
diabetes patients to receive hypertension treatment,
and as demonstrated in this work, the effect of DM
on CVR lag in the DMþHT group surpasses that of
HT alone.

Given that our HT patients are medicated for at
least 2 years, the effects of common anti-hypertensive
medications should also be discussed. ACEIs (ACE
inhibitors) and angiotensin II blockers both lead to
vasodilation, which can increase blood flow leading
to reduced vascular lag. While we cannot rule out
this effect in our HT findings, especially given that
the SBP between the HT and CTL groups was not
significantly different, we noted that the HTþDM
patients, who also have medicated HT, do not display
reduced CVR lag. Thus, the effect of HT without DM
is likely distinct from that of the HT medication alone.

Interestingly, HT was associated with significantly
reduced CVR lag relative to CTL in numerous regions,
despite minimal CVR magnitude differences. Taking
the findings from CVR magnitude and phase suggests
that HT differs from CTL mainly through CVR lag,
while HTþDM differs from CTL mainly through
CVR magnitude. This is an interesting distinction
between the two conditions that could be clinically
meaningful.

Limitations

Our data-driven algorithm successfully estimated the
fundamental BHF from the BH BOLD data for sinu-
soidal modelling of CVR for BH paradigms with rea-
sonably similar ‘BH’ and ‘baseline’ periods. However,
we recognize that many studies may use highly asym-
metrical BH timing paradigms that may not be accu-
rately modelled by a sine-cosine function at the
fundamental frequency. This can be easily addressed
by adding harmonics into the signal as reported previ-
ously for sinusoidal modelling.14

Likewise, while we use a single most common fre-
quency to characterize the CVR for each participant in
this demonstrative study, secondary frequencies can be
added to the CVR calculation. Nonetheless, in our own
secondary analyses including 3 instead of 1 frequency
peak for CVR estimation, the CVR amplitude and lag
differences between the groups remained unchanged,
demonstrating the robustness of choosing a single
“representative” BH CVR frequency.
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Third, we cross-validated our results against those

obtained using a respiratory-belt recording, but could

not cross-validate against results based on PETCO2, as

it was not available in this data set. As such, we are also

unable to assess the effect of baseline differences in

PETCO2 across participants. However, we think the

novelty of using the GMS as a reference merits consid-

eration in light of the cross validation we provided, and

plan to include PETCO2 validation in our future work.
Finally, our sample included a modest number of par-

ticipants, including a comparatively small DMþHT

sample. In practice, it was challenging to meet our recruit-

ment criteria particularly for the HT and DMþHT

groups, resulting in a modest sample size. We hope to

replicate and expand on our findings in future studies.

Conclusions

Our algorithm successfully estimated voxel-wise CVR

amplitude, magnitude and lag from BH data, support-

ing a special role for the GMS. The CVR amplitude is

estimated in units of %DBOLD directly from the data-

driven BHF. Serious deviations from the designed task

paradigm were suppressed and thus did not bias the

estimated CVR values. Our method foregoes the need

for externally acquired recordings and can have a wide

range of applications in studying patient populations.

We demonstrated our method in the study of diabetes

and hypertension. The CVR magnitude was lowest in

HTþDM, and while CVR lag was lowest in HT.

Interestingly, the CVR lag was far more sensitive

than the CVR magnitude to differences between HT

and HTþDM. These results demonstrate the feasibil-

ity of extracting CVR lag using BH challenges and the

unique clinical value of CVR lag information.
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