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Abstract
Background The early and specific detection of abiotic and biotic stresses, particularly their combinations, is a major 
challenge for maintaining and increasing plant productivity in sustainable agriculture under changing environmental 
conditions. Optical imaging techniques enable cost-efficient and non-destructive quantification of plant stress 
states. Monomodal detection of certain stressors is usually based on non-specific/indirect features and therefore is 
commonly limited in their cross-specificity to other stressors. The fusion of multi-domain sensor systems can provide 
more potentially discriminative features for machine learning models and potentially provide synergistic information 
to increase cross-specificity in plant disease detection when image data are fused at the pixel level.

Results In this study, we demonstrate successful multi-modal image registration of RGB, hyperspectral (HSI) and 
chlorophyll fluorescence (ChlF) kinetics data at the pixel level for high-throughput phenotyping of A. thaliana grown 
in Multi-well plates and an assay with detached leaf discs of Rosa × hybrida inoculated with the black spot disease-
inducing fungus Diplocarpon rosae. Here, we showcase the effects of (i) selection of reference image selection, (ii) 
different registrations methods and (iii) frame selection on the performance of image registration via affine transform. 
In addition, we developed a combined approach for registration methods through NCC-based selection for each 
file, resulting in a robust and accurate approach that sacrifices computational time. Since image data encompass 
multiple objects, the initial coarse image registration using a global transformation matrix exhibited heterogeneity 
across different image regions. By employing an additional fine registration on the object-separated image data, we 
achieved a high overlap ratio. Specifically, for the A. thaliana test set, the overlap ratios (ORConvex) were 98.0 ± 2.3% for 
RGB-to-ChlF and 96.6 ± 4.2% for HSI-to-ChlF. For the Rosa × hybrida test set, the values were 98.9 ± 0.5% for RGB-to-
ChlF and 98.3 ± 1.3% for HSI-to-ChlF.

Conclusion The presented multi-modal imaging pipeline enables high-throughput, high-dimensional phenotyping 
of different plant species with respect to various biotic or abiotic stressors. This paves the way for in-depth studies 
investigating the correlative relationships of the multi-domain data or the performance enhancement of machine 
learning models via multi modal image fusion.
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Background
Early and specific detection of plant responses to abiotic 
and biotic stress factors, particularly their combinations, 
is a major challenge for maintaining and increasing plant 
productivity in precision agriculture [1]. In this context, 
precision agriculture attempts to selectively consider 
heterogeneous plant canopies through the perception of 
individual plant phenotypes [2]. The information content 
of common sensor-based phenotypic detection is there-
fore crucial for deriving a plant-specific recommenda-
tion for interactions/counteractive measures. In addition, 
phenotyping of plants is essential for the identification of 
stress-related genes by providing phenotypic data for the 
breeding of stress-resilient genotypes. Recent technologi-
cal advances in genotyping have accelerated the demand 
for automation and precision in phenotyping, but the 
rate of progress in phenotyping has not kept pace, cre-
ating a bottleneck [3]. As part of the breeding process, a 
large number of different genotypes are exposed to vari-
ous biotic and abiotic stress factors in order to quanti-
tatively evaluate their yield and stress resilience [4]. In 
contrast to yield, some breeding-relevant traits can be 
tested at an early stage of plant development. Recently, 
Li et al. (2023) proposed a space-efficient culture system 
(PhenoWell®) [5] uniquely designed for high-throughput 
screening of various abiotic stress factors on the growth 
performance of Arabidopsis thaliana and Zea mays. This 
system allows for the rapid and efficient evaluation of 
stress responses, facilitating early-stage identification of 
resilient genotypes.

Optical imaging techniques enable cost-efficient and 
non-destructive quantification of the stress state of plants 
[6–8]. Monomodal detection of certain stressors is usu-
ally based on non-specific/indirect features and there-
fore is commonly limited in their cross-specificity to 
other stressors [9]. The fusion of multi-domain sensor 
systems can provide more discriminative features for 
machine learning models and potentially provide syner-
gistic information to increase cross-specificity in plant 
disease detection [1, 10]. Multi-modal image registration 
is a promising tool for (i) fusing low-contrast but high-
dimensional data with high-contrast but low-dimen-
sional data to enable automated plant segmentation [11], 
(ii) enhancing the predictive performance of machine 
learning models by increasing the number of potentially 
discriminative features [10], and (iii) combining multi-
domain data to develop new plant status proxies. To date, 
most research has focused on the development of stress 
proxies from single-sensor systems rather than making 
use of the benefits of a multi-sensor approach [1], likely 

due to the lack of an automated data processing pipe-
line, limited commercial multi-sensor systems, higher 
costs and limited practical applicability. Enhancing infor-
mation content by multi-modal data acquisition could 
address limitations like low cross-specificity in pheno-
typing; but requires the superposition of the different 
modalities.

Multi-modal image registration in plant science ranges 
from 2D registration of thermal to RGB images by 
manual control points [12], 2D registration of thermal 
to RGB images by an automated registration of Canny 
edge-filtered images [13], 2D registration of thermal to 
RGB-D images by automated registration of edge-filtered 
images and feature-based detectors [14], 2D registration 
of fluorescence to RGB images by automated registration 
approach [11, 15, 16], 3D stereo registration of multi-
spectral and NIR images [17] and 3D image registration 
of RGB-D, thermal and hyperspectral data by a ray cast-
ing approach [18]. The challenge in multi-modal image 
registration lies in the different representation of image 
scenes. This is particularly pronounced when key features 
show limited similarity, and direct correlations between 
image intensities are absent. To tackle these complexi-
ties, a comprehensive array of registration techniques 
has been established, encompassing phase correlation, 
feature-based approaches, and mutual information. Fre-
quency-based methods such as phase correlation, trans-
form both input images into the Fourier domain and 
estimate the transform by finding the global peak corre-
lation of Fourier parameters, such as amplitude or phase 
information [19]. The phase-only correlation (POC) 
method [20] focuses exclusively on phase information 
and is therefore robust to intensity differences and noise, 
captured in the amplitude parameter. Feature-based 
methods attempt to identify key points such as edges, 
corners or gradients in the pixel neighborhoods of both 
images. These key points are then used to calculate the 
transformation matrix between the images through fea-
ture matching and filtering, for example, via the random 
sample consensus (RANSAC [21]), algorithm [22]. The 
enhanced correlation coefficient (ECC [23]), is a simi-
larity metric, an extension of normalized cross correla-
tion (NCC, Eq. 1), that can be interpreted as a measure 
of correlation between zero-mean and variance-normal-
ized image values. Unlike the sum of squared differences 
(SSD), which directly computes the squared differences 
between image intensities, ECC focuses on the nor-
malized values to account for intensity variations and 
achieve robust image alignment. To date, only a few stud-
ies have reported the application of multi-modal image 
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registration in plant science. The systematic investiga-
tion of the performance of the registration method also 
focuses on the use of licensed MATLAB software [11, 
15–17, 24, 25]. This project aimed to investigate auto-
mated image registration algorithms (Table 1) for pixel-
perfect data registration of multi-domain image data of 
plants via open-source and license-free python packages.

Here, data from (i) RGB imaging as a basic reference 
method for human inspection and assessment of plant 
stress, (ii) hyperspectral imaging as high-dimensional 
data, providing biochemical information mainly on the 
composition of plant pigments, and (iii) chlorophyll fluo-
rescence imaging providing high-contrast data and func-
tional information on photosynthesis, are fused at the 
data/pixel level. The main objectives of this study are as 
follows:

1. To investigate the impact on image registration 
performance when the reference image of the 
multidomain approach used is varied.

2. To evaluate the performance of commonly used 
automated image registration algorithms such as 
feature-based ORB and phase-only-correlation of 
the Fourier transform are tested. Additionally, we 
propose a new NCC-based approach for image 
registration.

3. To study the effect of changing the frame/wavelength 
for the moving and reference images on the 
performance of image registration.To study the effect 
of changing the frame/wavelength for the moving 
and reference images on the performance of image 
registration.

4. To establish a data processing pipeline for the 
investigation of synergistic information via multi-
domain imaging of plants via high-throughput 
phenotyping systems.

Results
In this study, we demonstrate multi-modal image reg-
istration of RGB, hyperspectral (HSI) and chlorophyll 
fluorescence (ChlF) kinetics data (Fig. 1) and investigate 
the effects of target image data selection, different regis-
tration algorithms and frame selection choices on image 
registration performance.

Experimental setup for multi-modal image registration
We set up a data acquisition pipeline (SI. 2) to transform 
image data from a sensor system (Fig. 1, HAIP BlackBox 
V2) consisting of an HSI system (operating between the 
VIS and the NIR region, 500–1000 nm) with push broom 
line scanner and a slightly tilted RGB camera to a chlo-
rophyll fluorescence imager (PhenoVation Plant Explorer 
XS) capable of capturing various fluorescence parameters 
as well as red and far-red reflectance images.

The main challenges with this approach are the man-
agement of multi-modal data and the high degrees of 
freedom required for accurate image registration. This 
includes addressing for translation, rotation, scaling, and 
shearing, as well as accounting for potential non-linear 
effects (Table  2). Even if the position of the Multi-well 
plates under the ChlF imager was kept constant, the 
plates were only roughly aligned with the same orienta-
tion under the RGB and HSI sensor system. Furthermore, 
pixel-accurate registration of multiple objects within 
an image with a single global transformation matrix is 
exceptionally problematic, as the matrix must be esti-
mated correctly across all subregions of the whole image.

We restricted our image registration task to affine 
transformation because of benefits in terms of compu-
tational speed, reversibility, putative higher robustness 
(fewer parameters to be estimated) and minimal altera-
tion of the original data. To address anticipated non-lin-
ear effects in the image data from each sensor — arising 
from factors such as imperfect optical path alignment, 
lens distortion, or potential geometric distortion in HSI 
push broom scanners due to misalignment of captured 
image lines — we implemented camera calibration to 
rectify these distortions. After camera calibration we 

Table 1 Image registration algorithms used in this study
Method Feature Python library References
Phase correlation Frequency domain Imregpoc Ri & Fujimoto (2018) [26]
Phase correlation + ECC Frequency domain Imregpoc Ri & Fujimoto (2018) [26]

Evangelidis & Psarakis (2008) [23]
ORB Key point (Spatial domain) OpenCV Rublee et al. (2011) [27]
ORB + ECC Key point & intensity (Spatial domain) OpenCV Rublee et al. (2011) [27]

Evangelidis & Psarakis (2008) [23]
ORB Para.tuned Key point (Spatial domain) OpenCV Rublee et al. (2011) [27]
ORB Para.tuned + ECC Key point & intensity (Spatial domain) OpenCV Rublee et al. (2011) [27]

Evangelidis & Psarakis (2008) [23]
NCC- adaptive approach Depending of selected method — In this study
Note: Detailed parameter description of the methods in Supplementary information SI.1
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Table 2 Multi-modal imaging sensor setup
Sensor Acquisition type Image size [px] Scaling [% ] Dimensionality Calibration error [px]
RGB Top view

(slightly tilted)
1410 × 1410 132% 3

(blue, green, red)
0.44 ± 0.25 (0.31 ± 0.18)1

HSI Top view
(push broom)

1080 × 1080 132% 250
(2 nm sampling)

2.15 ± 1.12 (2.07 ± 1.04)1

ChlF Top view 2240 × 2240 100% 13
(raw parameters)

0.26 ± 0.12 (0.11 ± 0.05)1

1Note: Normalized to the amount of sensor pixel. Normalized error = Calibration error x 1000/√Image size according to Stumpe et al. 2024. Camera calibration was 
conducted with the following frames RGB: Composite gray image, HSI: Far red reflection (728–768 nm), ChlF: Far red reflection (730 nm)

Fig. 1 Pixel-perfect multidomain image registration of A. thaliana. A) The central image displays a montage of the registered output data of three dif-
ferent sensor systems: an RGB sensor, a hyperspectral imaging sensor (HSI) and a chlorophyll fluorescence camera (ChlF). B-E) Frist row shows the seg-
mented RGB, NDVIHSI, and Fv/Fm data and the grayscale of ChlF intensity. The images in the side column display data analysis by vegetation indices such as 
F) the anthocyanin reflectance index (ARI1), G) the chlorophyll: carotinoid index (CCI), H) the normalized difference vegetation index (NDVI) or calculated 
parameters from ChlF, such as I) non-photochemica quenching (NPQ). Images of A. thaliana of a salt treated variant (50 mM NaCl) and cultivated in the 
modified PhenoWell® culture system were taken at 21 days after treatment (DAT). Image registration was performed via NCC-adaptive approach in which 
a transformation matrix was derived by transforming the green channel of the RGB camera and the mean intensity from 540–560 nm of the HSI camera 
to the far-red reflectance (730 nm) of the ChlF image sensor as the target image. The white scale bar indicates 10 mm
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reported the mean reprojection error (Table  2) in sub-
pixel range, with normalized errors of 0.31 ± 0.18 and 
0.26 ± 0.12 for the RGB camera and ChlF imager respec-
tively. In the case of the hyperspectral camera, we could 
document a slightly higher normalized mean error of 
2.07 ± 1.04 for the 25 calibration images. This higher 
value can be explained by a lower signal-to-noise ratio, 
imperfect focusing, an intensity average across multiple 
frames, and the inherent characteristics of line-scanner 
data acquisition technology.

Effect of reference image selection on registration 
performance
The first step of our RGB/HSI/ChlF multi-modal image 
registration approach is to decide which of the sensor 
systems is most suitable in terms of registration perfor-
mance to serve as a reference/target image. Here, we 
assume that we only have to estimate the transformation 
matrix for a single frame of each sensor system and then 
can apply this transformation matrix to the whole image 
stack of the respective sensor. However, this is not neces-
sarily the case with HSI data due to potential chromatic 
aberrations.

We used a manually annotated test set (15 image trios) 
of A. thaliana subjected to different stress treatments 
to assess the performance of the different registration 
approaches for the non-stressed and stressed phenotypes 
(Table 3).

We applied a phase-only-correlation algorithm and 
investigated the registration performance (Fig. 2) via nor-
malized cross-correlation (NCC) and the overlap ratio of 
convex-hull transform binary objects (ORConvex or OR if 
related to non-convex transformed objects; see the Meth-
ods section for a detailed description). As we detected 
the highest NCC (and low standard deviation indicating 
no occurrence of total failures) with values of 0.84 ± 0.03 
for RGB-to-ChlF and 0.92 ± 0.01 for HSI-to-ChlF and the 
highest values of ORConvex of 96.6 ± 1.5% and 90.9 ± 4.1%, 
respectively for the transformation to ChlF data, we 
selected the ChlF data as the reference for further inves-
tigations. A low standard deviation indicates that no total 
failures have occurred. Accordingly, the ChlF data was 
selected as the reference for further investigations.

Effects of the registration method on registration 
performance
After defining the reference image data, we investi-
gated various registration algorithms with respect to 
their image registration performance (Tables  4 and 5). 
Here, the feature-based method with a limited number 
of features (ORB and ORB + ECC, max. Features = 1000) 
required the shortest computation time to determine 
the transformation matrix, but concurrently produced 
the highest rates of total failure (TF rate) of 31.0% and 
29.0%, respectively, when transforming RGB-to-ChlF 
in the full dataset. As the study of Henke et al. (2019b) 
demonstrated that parameterization of feature-based 
methods is crucial for successful image registration, we 
included two methods with increased maximal features 
(ORB Para. tuned, ORB Para. tuned + ECC) [16]. None 
of the algorithms examined in the case of HSI-to-ChlF 
showed a total failure of image registration. Furthermore, 
POC + ECC and ORB Para.tuned + ECC for RGB-to-ChlF 
and ORB + ECC for HSI-to-ChlF reached the highest OR 
and ORConvex on the test set. Upon closer inspection of 
the image registration performance, we observe that the 
algorithm achieving the highest Overlap Ratio (OR) var-
ies across the image files and is thus file-specific. Notably, 
this algorithm also attains the highest normalized cross-
correlation (NCC) value simultaneously. Methods based 
on phase correlation are robust to noise but sensitive to 
structurally similar patterns and nonlinear effects such as 
deformations [15]. Additionally, feature-based methods 
have the disadvantage of depending on the detection of 
corresponding features. Therefore, a file-specific decision 
could increase robustness. We therefore tested the NCC-
adaptive approach, in which the method with the highest 
NCC value for a single file is selected. This means that the 
method that resulted in the highest similarity between 
the registered frames was selected. Even though the reg-
istration time was approximately doubled compared with 
that of the other methods, we were still able to further 
improve the image registration performance for ORConvex 
with 98.8 ± 1.6% for RGB-ChlF (Table  4) and 94.3 ± 2.8% 
for HSI-ChlF (Table  5) on the test data. Moreover, the 
lowest standard deviation indicates a high level of robust-
ness and the avoidance of total failure. In addition to the 
overlap ratio (OR, ORConvex), we attempt to track the 

Table 3 Dataset for image registration
Plant species Explant type Treatments within dataset Total image trios

[RGB + HSI + ChlF]
Time points [DAT] Test image trios

[RGB + HSI + ChlF]
A. thaliana Seedling Control (WHC = 80%)

Water stress (WHC = 100%)
Drought stress (WHC = 50%)
Salt stress (50 mM NaCl)
Copper stress (200 µM CuSO4)

140 0, 3, 7, 14, 15, 21 15

Rosa spp. Detached leaf disc Control (H2O)
D. rosae inoculated

69 0, 2, 4, 6, 8 15
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Table 4 Registration performance of algorithms transforming RGB-to-ChlF on the A. thaliana dataset
Method Full set Test set

Time [s] TF rate [%] NCC 
[-]

NCC 
[-]

ΔMP [px] OR 
[%]

ΔMPConvex
[px]

ORConvex [%]

POC 1.36 ± 0.10 0.0 0.82 ± 0.04 0.84 ± 0.03 4.90 ± 2.65 91.2 ± 2.7 2.36 ± 1.51 96.6 ± 1.5
POC + ECC 2.11 ± 0.05 0.0 0.82 ± 0.04 0.84 ± 0.03 5.01 ± 2.27 91.8 ± 3.1 2.29 ± 1.62 96.7 ± 1.7
ORB 0.07 ± 0.01 31.0 0.74 ± 0.20 0.84 ± 0.03 4.75 ± 2.52 91.2 ± 7.4 2.25 ± 1.80 96.5 ± 3.2
ORB + ECC 0.26 ± 0.03 29.0 0.75 ± 0.19 0.84 ± 0.03 4.87 ± 2.31 90.9 ± 5.3 2.25 ± 1.80 96.3 ± 2.3
ORB Para.tuned 17.43 ± 0.65 0.0 0.82 ± 0.04 0.84 ± 0.03 4.99 ± 2.58 90.2 ± 3.0 2.25 ± 1.42 96.1 ± 1.7
ORB Para.tuned + ECC 17.60 ± 0.65 0.0 0.82 ± 0.04 0.84 ± 0.03 4.85 ± 2.19 91.7 ± 3.3 2.29 ± 0.43 96.7 ± 1.7
NCC-adaptive approach 40.13 ± 1.57 0.0 0.82 ± 0.04 0.84 ± 0.03 4.91 ± 2.25 92.0 ± 3.1 2.35 ± 1.51 96.8 ± 1.6
Note: Image metrics were investigated with the following frames: RGB: Composite gray image, HSI: Far red reflection (mean of 740–760 nm), ChlF: Far red reflection 
(730 nm). Mean ± SD

Fig. 2 Hardware and output data of Multi-modal imaging of A. thaliana cultivated in modified PhenoWell®-plates. The upper row shows the two com-
mercially available sensor systems (hyperspectral and chlorophyll fluorescence imager). The middle row displays exemplary output data of the used 
imaging sensor. The lower row shows the difference in the dimionsality of the output data of a subregion (green squares) ranging from 3 channels of RGB 
data, 250 spectral channels of hyperspectral camera and at least five raw/base fluorescence signals of the chlorophyll fluorescence imager (F0,Fm,Fm’,Fs’,F0’ 
colored red in chlorophyll fluorescence kinetic data)

 



Page 7 of 18Bethge et al. Plant Methods          (2024) 20:175 

registration performance on the test set by the average 
deviation of the centroid/midpoint (ΔMP, ΔMPConvex) 
coordinates of the manually segmented image data (see 
Methods section for a detailed description).

Effects of frame selection on registration performance
We investigated the effect of frame selection on image 
registration performance. As expected, the highest NCC 
(0.91 ± 0.03) was detected for the Red channel and the 
composite gray of RGB against Red reflection of ChlF 
for RGB-to-ChlF (Table  6) registration. A similar pat-
tern was observed in the HSI-ChlF registration, where 
the Far red and NIR reflectance of the HSI reached the 
highest NCC (0.94 ± 0.01) when transformed to the Far 
red reflectance image of ChlF (Table  7). However, the 
best image performance in terms of ORConvex could be 
detected in both cases for Green channel of RGB with 
97.6 ± 1.6% and Green reflection of HSI with 95.7 ± 1.9% 
against the chlorophyll fluorescence emission of ChlF, 
despite rather low NCCs of 0.31 ± 0.07 and 0.41 ± 0.12, 
respectively (Tables 6 and 7). This scenario reflects a true 

multi-domain registration as it attempts to match RGB 
data to ChlF data. However, testing this on the full set 
revealed TF rates of 10% and 13.6% for RGB-to-ChlF and 
HSI-to-ChlF, respectively (data not shown).

To visualize the performance on the test data we cre-
ated a Pseudo-RGB image consisting of the manually 
annotated RGB binary mask as the blue channel, the HSI 
binary mask as the green channel and ChlF binary mask 
as red channel (Fig. 3).

In this study, we observed that image registration per-
formance was superior near the center of the image com-
pared to regions further away from the center. For the 
complete dataset, registrations using the Green channel 
and Green reflection to Far Red reflection of ChlF dem-
onstrated a TF rate of 0.0% in both cases. The normalized 
cross-correlation (NCC) was 0.84 ± 0.03 for RGB-to-ChlF 
and 0.87 ± 0.03 for HSI-to-ChlF.

Although the image data were only captured at a single 
time point, the fixed position of the Multi-well plate in 
the chlorophyll fluorescence camera allowed for monitor-
ing changes over time. Figure 4 illustrates the segmented 

Table 5 Registration performance of algorithms transforming HSI-to-ChlF on the A. thaliana dataset
Method Full set Test set

Time [s] TF rate
[%]

NCC
[-]

NCC
[-]

ΔMP
[px]

OR
[%]

ΔMPConvex
[px]

ORConvex
[%]

POC 0.54 ± 0.04 0.0 0.93 ± 0.01 0.92 ± 0.01 7.29 ± 3.68 83.0 ± 5.5 5.74 ± 2.67 90.9 ± 4.1
POC + ECC 0.88 ± 0.03 0.0 0.94 ± 0.01 0.94 ± 0.01 7.16 ± 3.65 86.8 ± 4.8 5.21 ± 2.39 93.0 ± 3.2
ORB 0.04 ± 0.01 0.0 0.94 ± 0.01 0.93 ± 0.01 7.46 ± 3.21 87.0 ± 4.8 5.58 ± 2.21 93.3 ± 3.4
ORB + ECC 0.15 ± 0.02 0.0 0.94 ± 0.01 0.94 ± 0.01 7.52 ± 3.52 88.8 ± 4.4 5.53 ± 2.38 94.3 ± 2.8
ORB Para. tuned 12.21 ± 1.46 0.0 0.93 ± 0.02 0.92 ± 0.01 7.48 ± 3.66 80.1 ± 3.6 5.53 ± 2.51 89.4 ± 3.2
ORB Para.tuned + ECC 12.29 ± 1.46 0.0 0.94 ± 0.01 0.93 ± 0.01 7.26 ± 3.78 85.4 ± 3.9 5.43 ± 2.24 92.3 ± 2.8
NCC-adaptive approach 26.71 ± 2.94 0.0 0.94 ± 0.01 0.94 ± 0.01 7.52 ± 3.52 88.8 ± 4.4 5.44 ± 2.30 94.3 ± 2.8
Note: Image metrics were investigated with the following frames: RGB: Composite gray image, HSI: Far red reflection (mean of 740–760 nm), ChlF: Far red reflection 
(730 nm). Mean ± SD

Table 6 Frame selection effect to image registration of RGB to ChlF on test data of A. thaliana
Moving/
Traget image

Metric Blue Channel
(~ 440 nm)

Green Channel
(~ 550 nm)

Red Channel
(~ 700 nm)

Composite
gray image

Red reflection 
(660 nm)

NCC [-] 0.87 ± 0.02 0.90 ± 0.03 0.91 ± 0.03 0.91 ± 0.03
ΔMP [px] 4.85 ± 2.57 4.89 ± 2.51 4.83 ± 2.57 4.96 ± 2.48
OR [%] 89.5 ± 3.1 89.9 ± 3.2 88.9 ± 3.5 89.5 ± 3.4
ΔMPConvex [px] 2.46 ± 1.54 2.05 ± 1.65 2.06 ± 1.71 2.23 ± 1.59
ORConvex [%] 95.8 ± 1.8 96.0 ± 1.8 95.6 ± 2.0 95.8 ± 1.9

Far red reflection
(730 nm)

NCC [-] 0.71 ± 0.07 0.86 ± 0.02 0.85 ± 0.03 0.84 ± 0.03
ΔMP [px] 9.99 ± 14.59 4.81 ± 2.17 4.91 ± 2.23 4.91 ± 2.25
OR [%] 81.6 ± 21.5 92.6 ± 2.9 91.4 ± 3.5 92.0 ± 3.1
ΔMPConvex [px] 7.55 ± 14.98 2.26 ± 1.57 2.22 ± 1.54 2.35 ± 1.51
ORConvex [%] 88.8 ± 18.5 97.1 ± 1.6 96.6 ± 1.8 96.9 ± 1.6

Chlorophyll fluorescence
(> 650 nm)

NCC [-] 0.21 ± 0.05 0.31 ± 0.07 0.26 ± 0.07 0.27 ± 0.07
ΔMP [px] 107.25 ± 69.39 4.78 ± 2.44 47.33 ± 64.60 84.83 ± 123.26
OR [%] 7.4 ± 4.4 93.6 ± 2.8 58.9 ± 44.4 58.2 ± 45.5
ΔMPConvex [px] 108.57 ± 67.06 2.38 ± 1.65 45.53 ± 63.45 84.27 ± 126.42
ORConvex [%] 12.0 ± 8.2 97.6 ± 1.6 62.5 ± 44.6 61.4 ± 46.5

Note: Image metrics were investigated with NCC-adaptive approach and ChlF as reference registration target. Mean ± SD
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image data, highlighting changes in chlorophyll fluo-
rescence (ChlF) for a single A. thaliana plant over time. 
Minor deviations at the leaf edges were observed only 
at later time points (greater than 7 days after treatment, 
DAT). These deviations could be attributed to slight leaf 
movements during data acquisition (approximately 5 min 
per sample) or sample transportation between sensor 
systems. Alternatively, they may result from inadequate 
scaling of the hyperspectral imaging (HSI) data by the 
estimated transformation matrix, since key point detec-
tion may be limited by the low contrast characteristics 

of the data. The manifestation of stress symptoms at 21 
DAT in the shown plant of a control variant, indicates 
either limitations of the cultivation time in the multi-well 
plate system or the effect of an uncontrolled parameter in 
the new cultivation system, such as heat stress or nutri-
ent deficiency. But here only serves to demonstrate the 
registered image data.

Application to detached leaf assay of Rosa × Hybrida
Once various factors influencing image registration 
performance were investigated and optimized for A. 

Table 7 Frame selection effect to image registration of HSI to ChlF on test data of A. thaliana
Moving/
Traget image

Metric Green reflection
(540–560 nm)

Red reflection 
(640–660 nm)

Far red reflection
(740–760 nm)

NIR Channel
(840–860 nm)

Red reflection 
(660 nm)

NCC [-] 0.90 ± 0.01 0.93 ± 0.01 0.81 ± 0.06 0.81 ± 0.06
ΔMP [px] 7.87 ± 4.35 7.91 ± 3.86 16.97 ± 37.00 7.77 ± 4.21
OR [%] 84.8 ± 4.3 84.7 ± 4.3 78.5 ± 22.2 79.3 ± 0.22
ΔMPConvex [px] 5.51 ± 3.32 5.64 ± 2.64 15.10 ± 37.41 5.59 ± 2.86
ORConvex [%] 92.2 ± 2.7 92.0 ± 2.9 85.6 ± 23.8 85.9 ± 24.0

Far red reflection
(730 nm)

NCC [-] 0.90 ± 0.01 0.83 ± 0.05 0.94 ± 0.01 0.94 ± 0.01
ΔMP [px] 7.79 ± 4.42 7.81 ± 3.84 7.52 ± 3.52 7.31 ± 3.97
OR [%] 89.4 ± 4.2 85.9 ± 5.1 88.8 ± 4.4 88.6 ± 4.1
ΔMPConvex [px] 5.39 ± 3.20 5.60 ± 2.92 5.44 ± 2.30 5.44 ± 2.95
ORConvex [%] 94.9 ± 2.5 92.7 ± 3.1 94.3 ± 2.8 94.2 ± 2.6

Chlorophyll fluorescence
(> 650 nm)

NCC [-] 0.41 ± 0.12 0.25 ± 0.07 0.62 ± 0.15 0.55 ± 0.15
ΔMP [px] 7.82 ± 4.40 126.14 ± 42.28 7.37 ± 4.08 7.13 ± 4.10
OR [%] 91.0 ± 3.4 4.4 ± 6.4 90.1 ± 3.4 88.5 ± 9.1
ΔMPConvex [px] 5.39 ± 3.11 126.31 ± 42.54 5.52 ± 2.80 5.03 ± 2.71
ORConvex [%] 95.7 ± 1.9 6.2 ± 8.7 95.2 ± 1.8 93.8 ± 6.7

Note: Image metrics were investigated with NCC-adaptive approach and ChlF as reference registration target. Mean ± SD

Fig. 3 Effect of reference image selection on the registration performance on the A. thaliana test dataset. Image metrics were investigated with phase-
only-correlation algorithms and the following frames RGB: composite gray image, HSI: Far red reflection (740–760 nm), ChlF: Far red reflection (730 nm)
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thaliana, we applied the NCC-adaptive approach to 
multi-modal image data from a detached leaf assay of the 
black spot disease highly susceptible rose cultivar ‘Pariser 
Charme’ [27–29]. In the case of A. thaliana, the best 
image registration performance was reached when the 
transformation matrix from Green channel of RGB and 
Green reflection channel of HSI to Chlorophyll fluores-
cence frame of ChlF was estimated; however, this failed 
entirely for the leaf disc image data (Tables  8 and 9). 
Instead image registration of Green channel and Green 
reflection to Far red reflection of ChlF resulted in highly 
accurate image registration with nearly subpixel-accu-
racy for RGB-to-ChlF, as indicated by a low deviation 
of the mean midpoint ΔMP = 1.41 ± 1.00 and ORConvex = 
98.4 ± 0.3. HSI-to-ChlF resulted in a slightly lower per-
formance of ΔMP = 2.09 ± 1.20 and ORConvex = 96.8 ± 0.4. 
On the full dataset, both registrations resulted in 0.0% 
TF rate and NCC of 0.83 ± 0.01 for RGB-to-ChlF and 
0.90 ± 0.01 for HSI-to-ChlF.

We observed a similar improvement in image registra-
tion performance near the image center, consistent with 
our findings in A. thaliana (Fig. 5). It seems to be more 
obvious for the registration of HSI-to-ChlF (green-to-
red) than for RGB-to-ChlF (blue-to-red).

With successful image registration, we were able to 
monitor the inoculation of D. rosae in the detached 
leaf assay of Rosa × hybrida in a multi-domain manner 
(Fig.  6). These preliminary results highlighted the early 
response (DPI 4) of the ChlF parameters to inoculation. 
With respect to image registration performance, no mis-
alignment became obvious in the exemplary data (Fig. 6).

Table 8 Frame selection effect to image registration of RGB to 
ChlF on test data of Rosa spp
Moving/
Traget image

Metric Green Channel
(~ 550 nm)

Far red reflection
(730 nm)

NCC [-] 0.83 ± 0.01
ΔMP [px] 1.41 ± 1.00
OR [%] 98.3 ± 0.3
ΔMPConvex [px] 1.43 ± 0.97
ORConvex [%] 98.4 ± 0.3

Chlorophyll fluorescence
(> 650 nm)

NCC [-] 0.43 ± 0.02
ΔMP [px] 104.24 ± 72.24
OR [%] 29.9 ± 7.4
ΔMPConvex [px] 104.06 ± 71.95
ORConvex [%] 30.2 ± 7.4

Note: Image metrics were investigated with NCC-adaptive approach and ChlF as 
reference registration target. Mean ± SD

Table 9 Frame selection effect to image registration of HSI to 
ChlF on test data of Rosa spp
Moving/
Traget image

Metric Green reflection
(540–560 nm)

Far red reflection
(730 nm)

NCC [-] 0.91 ± 0.01
ΔMP [px] 2.09 ± 1.20
OR [%] 96.7 ± 0.4
ΔMPConvex [px] 2.27 ± 1.11
ORConvex [%] 96.8 ± 0.4

Chlorophyll fluorescence
(> 650 nm)

NCC [-] 0.67 ± 0.11
ΔMP [px] 16.62 ± 34.32
OR [%] 85.3 ± 24.2
ΔMPConvex [px] 16.9 ± 34.3
ORConvex [%] 85.5 ± 24.1

Note: Image metrics were investigated with NCC-adaptive approach and ChlF as 
reference registration target. Mean ± SD

Fig. 4 Illustration of the image registration performance of the NCC-adapative approach on test sets of A. thaliana via visualisation of the intersection. A) 
shows an enlarged version of one of the images from the test set (B–P). Pseudo RGB was composed of manually annotated binary images of test image 
trios. Here, the blue color represents the binary mask of the RGB dataset, the green color represents the binary mask of the HSI and the red color for the 
binary mask of the ChlF imaging sensor. Intersecting pixel of the two performed registrations (RGB→ChlF, HSI→ChlF) are coloured white, while violett 
represents the intersection between the RGB and ChlF data, and cyan represents the intersection between the RGB and the HSI data and yellow the HSI 
and the ChlF data overlap. Image registration was conducted with the NCC-adaptive approach and the following frames RGB: Green channel, HSI: Green 
reflection (540–560 nm), ChlF: Far red reflection (730 nm)
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Discussion
In this study, we systematically investigated different 
effects on the performance of multi-domain image reg-
istration. As the utilized ChlF camera also provided 

reflection-based frames (Red reflection, Far red reflec-
tion), this study was not restricted to the registration 
of fluorescence images from this sensor. The described 
multi-domain approach successfully registers data from 

Fig. 5 Full-registered and segmented image dataset of RGB, HSI, and ChlF data of A. thaliana. The Seedlings were precultivated for 7 days, after which 
experimental treatments were applied (defines as days after treatment 0). Here, the data of a control plant are presented over time. The frist row displays 
the RGB data. The second row illustrates the normalized difference vegeation index (NDVI) of HSI data. Rows 3 to 6 show different parameters (maximun 
quantum yield of photosynthesis: Fv/Fm; ground fluorescence: F0; maximum fluorescence: Fm; non-photochemical quenching: NPQ) from ChlF imaging. 
Image registration was performed via NCC-adaptive approach in which transformation matrices were derived by transforming the green channel of the 
RGB camera and the mean intensity from 540–560 nm of the HSI camera to the far-red reflectance (730 nm) of the ChlF image sensor as the target image. 
Each image stack (DAT 0, 2, 4, 6, 8) was registered individually. Scale bar = 10 mm
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different sensor systems, which represent deviations 
within the images such as tilted imaging angles, deviat-
ing wavelengths in exposure and/or detection or detec-
tor properties. The potential factors for optimizing image 
registration performance appear to be vast. This study 
examines a specific subset of these factors, while exclud-
ing certain promising methods, such as image prepro-
cessing techniques and mutual information strategies. 
Previous studies on multi-modal image registration in 
plants have focused on the effects of image scaling for 
phase correlation [15] and preprocessing for feature-
based registration [16]. In our study we concentrated on 
the selection of the reference sensor system, the method 
and the frame selection of the RGB, HSI and ChlF sensor 
systems used. In addition to the countless ways of per-
forming image registration, the complexity of quantify-
ing registration success—particularly with multi-modal 
image registration—turns the pursuit of pixel-perfect 
(Fig.  7) and automated registration into an extremely 
challenging task. Since there is no universal metric that 
can be optimized to guarantee the success of multi-
modal image registration, manual labeling or segmen-
tation of test images is one way to quantify registration 
accuracy. However, this approach is also influenced by 
the data quality-driven accuracy of labeling (projected 
plant area by HSI approx. 120%, and by RGB approx. 
101% of the projected plant area by ChlF). Thus, it can 
be affected by variations in the scene representation and 
the different resolutions of the output data across differ-
ent sensor systems. We therefore developed two strate-
gies to address the problem of varying data quality for 

labeling in the test set. First, we calculate OR and ΔMP 
additionally on convex-hull-transformed binary objects 
(ORConvex, ΔMPConvex) to minimize degradation due to 
unlabeled tiny plant structures. Second, the OR is related 
to the smallest represented plant area of the two sensor 
systems, since the intersection can never be larger than 
the smallest unit of the overlapping areas.

Furthermore, we focused on normalized cross-correla-
tion (NCC) as a similarity metric because of its robust-
ness and invariance to intensity differences and contrast 
in unimodal image registration. However, in multi-modal 
image registration, the assumption of a linear relation-
ship between image intensities is often not valid. None-
theless, the inherent edges of plant structures may retain 
their relative correlation across different sensor systems, 
providing a potential basis for intensity and feature-
based registration. Figure  2 revealed that both registra-
tions (RGB-ChlF and HSI-ChlF) performed well under 
phase-only-correlation when ChlF was set as the refer-
ence image. In that case, despite the higher NCC, the 
ORConvex of ~ 91% for HSI-to-ChlF was considerably 
lower than that of ~ 97% for RGB-to-ChlF. This observa-
tion can be at least partially attributed to lower resolution 
and the lower contrast of HSI data, which is also illus-
trated by a > sixfold greater normalized reprojection error 
of 2.07 ± 1.04 px for the HSI compared with 0.31 ± 0.18 px 
for the RGB camera calibration (Table 2).

Following this approach, we investigated various reg-
istration methods, including those operating in the 
frequency domain, in the spatial domain, and intensity-
based methods, to estimate affine transformations. For 

Fig. 6 Illustration of the image registration performance of the NCC-adapative approach on the test set of Rosa × hybrida via visualisation of the intersec-
tion. A) shows an enlarged version of one of the images from the test set (B–P). Pseudo RGB was composed of manually annotated binary images of test 
image trios. Here, the blue color represents the binary mask of the RGB dataset, the green color represents the binary mask of the HSI and the red color for 
the binary mask of the ChlF imaging sensor. Intersecting pixel of the two performed registrations (RGB→ChlF, HSI→ChlF) are coloured white, while violett 
represents the intersection between the RGB and ChlF data, and cyan represents the intersection between the RGB and the HSI data and yellow the HSI 
and the ChlF data overlap. Image registration was conducted with the NCC-adaptive approach and the following frames RGB: Green channel, HSI: Green 
reflection (540–560 nm), ChlF: Far red reflection (730 nm)
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the transformation of RGB to ChlF (Table 4) phase-only-
correlation with coupled enhanced cross correlation 
(POC + ECC) outperformed the other tested algorithms 
in terms of robustness (0% TF rate), speed (2.11 ± 0.05 s 
per single transformation) and high accuracy (ORConvex 
= 96.7 ± 1.7%) for the A. thaliana dataset. Since the algo-
rithm that achieves the highest OR/ORConvex value varies 
across all the image files and also has the highest NCC 
value, we included the NCC-adaptive approach. This 
approach could further increase the OR/ORConvex value 
(ORConvex = 96.8 ± 1.6%), but at the expense of speed 
(40.13 ± 1.57  s). The registration of RGB-to-ChlF via the 
NCC-adaptive approach relies on ORB.tuned + ECC in 
59.3% of full set cases, ORB + ECC in 20% and on the 
POC + ECC method in 17.1% of the full-set cases. In case 
of HSI-to-ChlF (Table  5), feature-based ORB coupled 
with ECC seems most suitable in terms of robustness (0% 
TF rate), speed (0.15 ± 0.02  s) and accuracy (ORConvex = 
94.3 ± 2.8%). The NCC-adaptive approach could not out-
perform ORB + ECC in terms of test metric, as it used in 
86.6% of the cases ORB + ECC (based on highest NCC), 

and thus both methods reached equal accuracy. On full 
set, NCC-adaptive approach used in 77.1% ORB + ECC, 
15.7% ORB Para.tuned + ECC and 7.1% POC + ECC for 
the tested registration HSI-to-ChlF.

To our knowledge, this study is the first to investigate in 
detail the effect of frame selection on image registration 
performance in multi-modal registration in plant science 
(Tables 6 and 7). Usually either composite gray images or 
preprocessed edge images are used for fluorescence to 
RGB transformation [11, 15, 16], but the effect of vary-
ing single images has not been investigated thus far, and 
is becoming increasingly interesting with the increasing 
relevance and use of hyperspectral cameras. As expected, 
selecting frames of different systems with similar wave-
lengths of reflected imaging scenery led to the highest 
NCC values (Table  6; RGB: red channel (~ 700  nm) vs. 
ChlF: Red reflection (~ 660  nm); Table  7; HSI: Far red 
reflection (740–760 nm) vs. Far red reflection (~ 730 nm) 
and at the same time to a remarkable registration per-
formance. Using the Green channel from RGB (Table 6) 
instead of the composite gray image slightly increased 

Fig. 7 Full-registered and segmented image dataset of RGB, HSI, and ChlF data from detached leaf assay of Rosa × hybrida. Leaf discs were inoculated 
with either A) H2O or B) Diplocarpon rosae spore suspension (in this case with a concentration of 200,000 conidia/mL) for 3 days (DPI 0 - DPI 2), and the 
suspension was removed at DPI 2 (days post inoculation). The frist row displays the RGB data where the control/inoculum droplet is still visible at 2 DPI. 
The second row illustrates the NDVI from the HSI data. Row three also shows the NDVI however derived from the ChlF sensor, which was calculated based 
on reflection of wavelength 660 nm and 730 nm. Rows 4 to 7 show different parameters (maximun quantum yield of photosynthesis: Fv/Fm; ground 
fluorescence: F0; maximum fluorescence: Fm; non-photochemical quenching: NPQ) from chlorophyll fluorescence imaging. Image registration was per-
formed via NCC-adaptive approach in which transformation matrices were derived by transforming the green channel of the RGB camera and the mean 
intensity from540-560 nm of the HSI camera to the far-red reflectance (730 nm) of the ChlF image sensor as the target image. Each image stack (DAT 0, 2, 
4, 6, 8) was registered individually. Scale bar = 10 mm
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the performance of image registration on the test set. In 
addition, image registration performance using Green 
channel of the HSI (Table 7) is superior with respect to 
the OR/ORConvex value to the Red/Far red or NIR reflec-
tion frame of HSI when the Far red reflection of ChlF is 
used as target image.

Interestingly, the highest accuracy in terms of OR and 
ORConvex could be reached in both registrations with the 
use of Green reflection frame (RGB&HSI) to fluorescence 
image (ChlF; long integrated Fm of PAM imager). This 
effect might be associated with a varying signal(plant)-to-
noise(background) ratio (SNR), which is with a decreas-
ing SNR for RGB: G > R > B, HSI: FR > G > R, and ChlF: 
ChlF > > FR > > R. A detailed inspection of single files 
of the full set where total failure of image registration 
occurred (TF rate of 10% and 13.6% for RGB-to-ChlF and 
HSI-to-ChlF, respectively) is needed to increase robust-
ness when estimating the transformation matrix from 
these frames.

To evaluate the generalizability of the registration 
pipeline, we applied the best-performing approaches to 
the detached leaf assay of Rosa × hybrida. Owing to the 
simple shape of round leaf disc, this system allows eas-
ier quantification of the registration accuracy. Indeed, 
estimating the transformation matrix from the green 
channel of the RGB (Table 8) or Green reflection of the 
HSI (Table 9), respectively, to Far red reflection of ChlF 
resulted in a high overlap ratio OR/ORConvex indicating 
close-to-pixel-perfect registration performance. The low 
performance of both registrations (RGB-to-ChlF and 
HSI-to-ChlF) when the fluorescence image was used as 
the target image can be attributed in part to the inocu-
lation-dependent spatial heterogeneity of fluorescence 
frame (Fig. 6).

Nevertheless, to our knowledge, this study is the first 
to report this drastic reduction in fluorescence after the 
inoculation of Rosa spp., with the first symptoms already 
observed after DPI 4 (days post inoculation). However, 
given that the spores were harvested from field-grown 
roses, it remains unclear whether the observed symptoms 
are caused exclusively by D. rosae. Conclusive identifica-
tion of the spores in the suspension would necessitate 
genetic analysis or microscopic examination. In addition, 

these preliminary data need to be validated in more detail 
in a separate study, particularly with respect to their use 
as automated phenotyping tool to quantify the magni-
tude of tolerance/resistance mechanisms of Rosa geno-
types against black spot disease.

To date, only a limited number of image registration 
approaches (reviewed in the preprint of Stumpe et al. 
2024 [18]) applied to plant science have been reported. 
Most of them are restricted to fusing a single object of 
interest the data of unimodal or multi-modal sensor 
systems. This study focused instead on extending high-
throughput phenotyping to take advantage of multi-
modal imaging by simultaneously acquiring multiple 
objects at once. Pixel-accurate registration of multiple 
objects within an image with a single global transforma-
tion matrix is exceptionally problematic, as the matrix 
must be estimated correctly across all subregions of the 
whole image. However, we qualitatively observed that 
the registration performance decreases with increas-
ing extension toward the edges of the image (Figs. 3 and 
4). We attribute this to imperfect camera calibration, so 
that non-linear effects persist in the images with cor-
rection for lens distortion. Nevertheless, splitting the 
whole image into smaller regions — by the isolation of 
the objects on basis of their centroids — should further 
increase the registration performance, since non-linear 
relations of the whole image are now restricted to the 
region of interest. In this way, we could report a further 
increase in image registration performance of both reg-
istration (RGB-to-ChlF and HSI-to-ChlF) and datasets 
(Table 10: A. thaliana, Table 11: Rosa × hybrida). In the 
case of A. thaliana, this approach becomes more chal-
lenging when the cultivation of A. thaliana in Multi-well 
plates is extended to 3–4 weeks, as the individual plants 
begin to overlap, causing isolation to become problem-
atic. In summary, for both registrations (RGB-to-ChlF 
and HSI-to-ChlF) we can report an overall ORConvex 
of 97.3% for A. thaliana and 98.6% for Rosa × hybrida 
detached leaf assay with the best performing approach on 
test data. Thus, an additional fine registration increased 
the mean ORConvex value for A. thaliana by 1.0% and for 
Rosa × hybrida by a total of 0.3%. A further increase in 
image registration could be expected by reducing the 

Table 10 Effect of fine registration by the second stage with single-plant images
A. thaliana Sample NCC [-] ΔMP [px] OR [%] ΔMPConvex [px] ORConvex [%]
RGB-to-ChlF
Single stage* 15 × 12 = 180 0.86 ± 0.02 1.78 ± 1.14 93.1 ± 4.4 1.69 ± 1.14 97.4 ± 2.5
Second stage 15 × 12 = 180 0.91 ± 0.02 1.41 ± 0.86 94.4 ± 3.7 1.32 ± 0.89 98.0 ± 2.3
HSI-to-ChlF
Single stage* 15 × 12 = 180 0.90 ± 0.01 3.70 ± 1.78 89.4 ± 6.6 3.64 ± 1.80 95.2 ± 4.0
Second stage 15 × 12 = 180 0.93 ± 0.02 3.38 ± 1.90 91.8 ± 6.9 3.39 ± 1.93 96.6 ± 4.2
Note: Image metrics were investigated with NCC-adaptive approach and ChlF as reference registration target. Mean ± SD. *As in Tables 5 and 6, but the averaging was 
applied to the images of single objects instead of the images at plate level with 12 individual objects
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reprojection error for instance by deconvolution of HSI 
data (Zabic et al. 2024, unpublished [31]) or by applying 
non-rigid transformation in fine registration stage.

Conclusions
In the present study, we have demonstrated successful 
multi-modal image registration of RGB/HSI/ChlF data 
with accuracy partially up to single-pixel, where one pixel 
in our case represents an area of 0.01 mm². This enables 
the following: (i) high-throughput, high-dimensional 
phenotyping of A. thaliana with respect to various abi-
otic stressors if coupled with the modified version of 
PhenoWell®, (ii) systematic investigation of the intensity 
relationship between RGB/HSI/ChlF by correlation anal-
ysis; and (iii) studies on the performance of ML models 
with increased cross-sensitivity to various abiotic stress-
ors through the fusion of the data and on the other hand 
research on the optical features ofD. rosae inoculation 

and their use for automated phenotyping. The latter 
could thus provide phenotypic data for genome-wide-
association studies to identify further resistance genes 
against black spot disease. Data-fused multi-sensor imag-
ing has the potential to find new proxies of the plant 
stress state, enhanced the cross-specificity of multiple 
plant stress and combined plant stress detection and pro-
vide new insights into the physiological causes of specific 
plant‒pathogen interactions.

Methods
Design of the cell culture insert for a. Thaliana
On the basis of the recently published study of Li et al., 
2023 [5], a modified version of the PhenoWell® approach 
was designed and tested. The modified inserts (Fig.  8) 
for Multi-Well cell culture plate were 3D-printed on a 
commission with multi-jet fusion process from polypro-
pylene (HP 3D HR PP, BASF, Germany) to provide high 

Table 11 Effect of fine registration by the second stage with single-plant images
Rosa × hybrida Sample NCC [-] ΔMP [px] OR [%] ΔMPConvex [px] ORConvex [%]
RGB-to-ChlF
Single stage* 15 × 12 = 180 0.83 ± 0.01 1.33 ± 0.85 98.6 ± 0.6 1.38 ± 0.83 98.7 ± 0.6
Second stage 15 × 12 = 180 0.91 ± 0.02 1.11 ± 0.79 98.8 ± 0.5 1.22 ± 0.76 98.9 ± 0.5
HSI-to-ChlF
Single stage* 15 × 12 = 180 0.91 ± 0.01 2.62 ± 1.40 98.0 ± 1.0 2.68 ± 1.45 98.0 ± 1.0
Second stage 15 × 12 = 180 0.97 ± 0.01 2.53 ± 1.50 98.3 ± 1.3 2.54 ± 1.54 98.3 ± 1.3
Note: Image metrics were investigated with NCC-adaptive approach and ChlF as reference registration target. Mean ± SD. *As in Tables 7 and 8, but the averaging was 
applied to the images of single objects instead of the images at plate level with 12 individual objects

Fig. 8 Schematic illustration of the modified inserts based on PhenoWell® developed by Li et al. 2023 [5] for Multi-Well cell culture plates. The inserts were 
3D-printed on commission with multi-jet fusion process from polypropylene (HP 3D HR PP, BASF, Germany)
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chemical resistance, low water absorption and autoclav-
ability. The insert plate consisted of 12-wells, and each 
well provided a volume of 4.77 cm³ for the growth of A. 
thaliana. The wells were filled with a premixed substrate 
consisting of peat and perlite at a ratio of 9:1 (v/v). The 
substrate was then compressed with a 3D-printed coun-
terpart of the inserts, which protruded 3 mm into a well, 
to obtain a homogeneous filling of each well. In total 35 
plates were prepared for this experiment.

Seedling growth and culture conditions of A. thaliana
The seeds of Arabidopsis thaliana Col-0 stored at 4  °C 
were sown in excess in each well and germinated by 
adding 3  ml of deionized water to the 25 inserts of the 
12-well cell culture plates (Falcon®, 12 Well Clear Flat 
bottom TC-Treated; neoLab Migge GmbH, Heidelberg, 
Germany) filled with substrate. The lids of the cell culture 
plates were removed 7 days after sowing (DAS 7). The 
plants were cultivated at 21  °C under 100 µmol m− 2s− 1 
white LED bars (GreenPower LED research module 
white, Philips, Netherlands) with a photoperiod of 12  h 
light. At 7 DAS, excessive seedlings were thinned and 
at 10 DAS the different stress treatments were applied 
(defines days after treatment, 0 DAT). The current weight 
of each plate was determined every 2 days and used to 
calculate and pipette an individual water supply depend-
ing on the specific treatment (treatments were not the 
focus of the study but included the following: control 
(WHC = 80%), water stress (WHC = 100%), drought stress 
(WHC = 50%), salt stress (50 mM NaCl), and copper 
stress (200 µM CuSO4)). After treatment at 0 DAT, the 
seedlings were cultivated for 3 weeks (DAS 31/ DAT 21) 
at a relative humidity of 40%.

Detached leaf assay of Rosa × hybrida and inoculation of 
D. rosae
For the detached leaf assay, freshly unfolded rose leaves 
were detached, quickly surface disinfected with 50% (v/v) 
ethanol and rinsed with deionized water. Leaf discs of the 
Rosa × hybrida cultivar ’Pariser Charme‘ donor plants 
were excised via a 16  mm diameter cork drill. The cul-
ture medium consisted of 0.5% plant agar (w/v) (Duchefa, 
Harlem, The Netherlands) with 0.003% benzimidazole 
and 0.5% (w/v) active charcoal. After autoclaving 6 ml of 
culture media was poured into the wells of the multi-well 
culture plate. The fungal pathogen D. rosae was harvested 
by microspore suspension culture from field-grown rose 
donor plants of same cultivar and then propagated on 
susceptible leaves for use in this study [28]. The inocu-
lation of the leaf discs was accomplished either with 
deionized H2O or with defined spore concentrations 
(50,000/100,000 or 200,000 conidia/mL suspension). A 
10  µl droplet of solution was applied to each leaf disc. 
This droplet remained on the leaf for 2 days and was then 

removed with a paper towel (DPI 2). To prevent specular 
lighting while imaging the leaf discs a modified version 
of the plate insert (with the same dimensions, 3D printed 
with PLA) acting as a mask was used.

Multi-modal image acquisition
Multi-modal imaging was performed at the time points 
DAT 0, 3, 7, 14, and 21 for A. thaliana and DPI 2, 4, 6, 8, 
and 10 for Rosa × hybrida and included RGB, HSI and 
ChlF imaging. All culture plates were dark adapted for 
at least 25 minutes to acquire chlorophyll fluorescence 
kinetic measurements with a ChlF imager (PlantExplorer 
XS, PhenoVation B.V., Netherlands). All images were 
acquired with a resolution of 2240 × 2240 px. The device 
specific protocol includes the acquisition of dark-adapted 
fluorescence parameters such as F0 and FM; light-adapted 
fluorescence parameter such as F0’,Fs’, and FM’; as well as 
reflection-based parameter such as R660nm and R730nm. 
Light adaptation was ensured by actinic light (blue LEDs 
with maximum emission at 450  nm) at a light intensity 
equal to the light intensity during cultivation of 100 µmol 
m− 2s− 1 for 180  s (which was proved to be sufficient to 
achieve the steady-state plateau in a previous study). The 
working distance between the sample and the camera 
kept constant at 270 mm.

Directly after chlorophyll fluorescence measure-
ment, HSI and RGB images were captured with an 
internal scanning push broom imaging system (Black-
Box V2, HAIP Solutions GmbH, Germany), equipped 
with a 12 mm variable focus lens (Azure). The HSI data 
cube was acquired with 1080 × 1080 px spatial resolu-
tion (number of total pixels) and spectral sampling of 
2  nm with 250 spectral channels within the range of 
500–1000  nm. The RGB images were acquired with the 
same device with a spatial resolution of 2688 × 1512 px 
and equipped with a 16 mm variable focus lens. Factory 
settings of the device cropped RGB data to 1410 × 1410 
px to match the field of view of HSI sensor. The working 
distance between sample and camera was kept constant 
at 470 mm.

Image registration & camera calibration & data analysis
To test different image registration methods, we first 
developed a python library [32] to consistently read and 
process the multi-modal image data. This library, which 
is based mainly on Numpy and OpenCV, enables the 
reading of multi-sensor data, processing methods such 
as white balancing of RGB and HSI data, as well as cal-
culations of ChlF kinetic parameter, such as NPQ, ETR, 
and ΦPSII etc. To undistort the images, 25 checkerboard 
images (14 × 9 pattern with 5 mm squares) were acquired 
for each sensor systems. The intrinsic camera calibration 
parameters were calculated via the OpenCV implemen-
tation of Zhang’s method (2000) [33], with the calibration 
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restricted to a single focal plane and single observer 
(camera) for each sensor system.

Various algorithms and images/wavelengths of the sen-
sor systems were used for image registration. Despite 
static cropping of the ChlF data from 2240 × 2240 px to 
1080 × 1080 px around the image center, no additional 
preprocessing was performed unless mentioned in the 
SI. 1. All the tested image registration approaches were 
restricted to affine transforms (SI. 2).

To visualize the syerngies of regsitered multi-domain 
data, several chlorophyll fluorescence parameter and 
vegetation indices were calculated based on formulas 
described in literature, exact equation can be found in SI. 
3.

Manual annotation of the projected plant area for the test 
set
To evaluate the image registration performance for each 
sensor system, 15 images from different timepoints 
(Table 3) were randomly selected and the projected plant 
area was manually labeled with the graphical user inter-
face Roboflow© [34]. Here, the annotation was conducted 
on the gray composite for RGB, on the frame of far red 
at 730  nm for HSI, and on the Far red reflection frame 
(~ 730  nm) for ChlF. This resulted in 15 image trios for 
each plant species, consisting of 12 plant replicates per 
image.

Evaluation metrics of image registration performance
The registration of images from single sensor systems 
could theoretically achieve pixel-perfect registration 
(neglecting camera calibration errors) or, in other words, 
100% overlap of the objects of interest in the images. 
However, in multi-domain image registration varying 
quality of the output data, e.g., low spatial resolution of 
HSI data, poses a challenge when evaluating image reg-
istration performance. Therefore, we developed the fol-
lowing similarity metrics to quantify image registration 
performance while minimizing the error of projected 
plant area annotation in the different domain sensor 
systems. Here, the overlap ratio of binary images A and 
C or B and C of the image trios (A, B, C) of the test set, 
describes the intersection of the output data of two imag-
ing sensors, divided by the lowest value of the projected 
plant area Eq. 2, since the intersection can never be larger 
than the smallest subset. ORConvex was introduced to 
account for the varying quality of labeling and the associ-
ated errors by calculating the overlap ratio in the convex 
representation of binary objects in the images via Eq. 3. 
In addition, the deviation of the center point (MP) of 
the blob centroids (Eq.  4) and midpoint of convex rep-
resentation of binary objects (MPconvex) were recorded 
via Eq.  5. In addition to the evaluation of the metrics 
derived from the test set, we reported the total failure 

rate (non-reasonable transformation) via manual inspec-
tion of the three images after estimated transformation 
via Eq. 6.

 

NCC =

∑
(IA − IA)− (IB − IB)√∑
(IA − IA)

2∑
(IB − IB)

2  (1)

 
OR =

A ∩ C

min(A,C)
× 100 (2)

 
ORConvex =

AConvex ∩ CConvex

min(AConvex, CConvex)
× 100  (3)

 
∆MP =

1

N

∑
N
N=0|

−−−−−−→
Centroid(A,N) −

−−−−−−→
Centroid(C,N)|  (4)

 

∆MPConvex =
1

N

N∑

N=0

|−−−−−−→Centroid(AConvex,N)

− −−−−−−→
Centroid(CConvex,N)|

 (5)

 N = Number of binary objects

 
TF rate =

TF

NFullset
× 100 (6)

TF = Total failure of image registration; 
NFullset = Number of registered images.
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