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PURPOSE. Current research on artificial intelligence–based fundus photography
biomarkers has demonstrated inconsistent results. Consequently, we aimed to evaluate
and predict the test–retest reliability of retinal parameters extracted from fundus
photography.

METHODS. Two groups of patients were recruited for the study: an intervisit group
(n = 28) to assess retest reliability over a period of 1 to 14 days and an intravisit group
(n = 44) to evaluate retest reliability within a single session. Using AutoMorph, we
generated test and retest vessel segmentation maps; measured segmentation map
agreement via accuracy, sensitivity, F1 score and Jaccard index; and calculated 76 metrics
from each fundus image. The retest reliability of each metric was analyzed in terms of
the Spearman correlation coefficient, intraclass correlation coefficient (ICC), and relative
percentage change. A linear model with the input variables contrast-to-noise-ratio and
fractal dimension, chosen by a P-value–based backward selection process, was developed
to predict the median percentage difference on retest per image based on image-quality
metrics. This model was trained on the intravisit dataset and validated using the intervisit
dataset.

RESULTS. In the intervisit group, retest reliability varied between Spearman
correlation coefficients of 0.34 and 0.99, ICC values of 0.31 to 0.99, and mean absolute
percentage differences of 0.96% to 223.67%. Similarly, in the intravisit group, the retest
reliability ranged from Spearman correlation coefficients of 0.55 and 0.96, ICC values
of 0.40 to 0.97, and mean percentage differences of 0.49% to 371.23%. Segmentation
map accuracy between test and retest never dropped below 97%; the mean F1 scores
were 0.85 for the intravisit dataset and 0.82 for the intervisit dataset. The best retest
was achieved with disc-width regarding the Spearman correlation coefficient in both
datasets. In terms of the Spearman correlation coefficient, the worst retests of the inter-
visit and intravisit groups were tortuosity density and artery tortuosity density, respec-
tively. The intravisit group exhibited better retest reliability than the intervisit group (P <
0.001). Our linear model, with the two independent variables contrast-to-noise ratio and
fractal dimension predicted the median retest reliability per image on its validation
dataset, the intervisit group, with an R2 of 0.53 (P < 0.001).

CONCLUSIONS. Our findings highlight a considerable volatility in the reliability of some
retinal biomarkers. Improving retest could allow disease progression modeling in smaller
datasets or an individualized treatment approach. Image quality is moderately predictive
of retest reliability, and further work is warranted to understand the reasons behind our
observations better and thus ensure consistent retest results.

Keywords: machine learning, image analysis, retest reliability, oculomics

Copyright 2024 The Authors
iovs.arvojournals.org | ISSN: 1552-5783 1

This work is licensed under a Creative Commons Attribution 4.0 International License.

mailto:somfaigm@yahoo.com
https://doi.org/10.1167/iovs.65.13.24
http://creativecommons.org/licenses/by/4.0/


Retest Reliability of Retinal Biomarkers IOVS | November 2024 | Vol. 65 | No. 13 | Article 24 | 2

The automated assessment of retinal fundus images
presents the opportunity to generate cost-effective,

easily accessible, non-invasive, and objective biomarkers.
Some of these biomarkers have demonstrated associations
with various medical conditions, such as the association of
cup-to-disc-ratio with glaucoma,1 and retinovascular param-
eters have been associated with hypertension,2 increased
risk of stroke,3 all-cause mortality,4 obstructive sleep apnea
syndrome,5 and hypercholesterinemia.6

In recent years, multiple open-source automated fundus-
photography image analysis programs, such as the Retina-
based Microvascular Health Assessment System (RMHAS),7

Integrative Vessel Analysis (IVAN),8,9 Quartz,9 Singapore I
Vessel Assessment (SIVA),9 AutoMorph,10 and the Vascu-
lar Assessment and Measurement Platform for Images of
the Retina (VAMPIRE),8,9 have been developed and are
actively used in clinical research.10–14 However, subsequent
research has reported poor agreement on the measured
metrics across segmentation algorithms; a comparative anal-
ysis between VAMPIRE and SIVA reported an intraclass
correlation coefficient (ICC) range of 0.16 to 0.41 for all
extracted retinal parameters,15 which makes their robust-
ness questionable in cases of missing significance when
applied for research.16,17 The low measurement agreement
in the literature raises serious concerns about the retest
reliability of these biomarkers which could be concealing
existing correlations between the biomarkers and ocular
disease. Conversely, an improved retest could uncover a
much stronger correlation between examined biomarkers
and disease progression. AutoMorph is a fully automated,
open-source algorithm that comes with an integrated image-
quality grading algorithm and vessel segmentation algo-
rithm. AutoMorph provides a wide array of extracted retinal
metrics based on the calculated segmentation maps. Auto-
Morph has been tested on external datasets and has achieved
good segmentation consistency with ground truths across
imaging devices, collection methods, and datasets. Auto-
Morph reached a binary vessel segmentation area under the
receiver operating characteristic (AUC) curve of up to 0.98
on test datasets.10

Our study addressed two main research questions: First,
we sought to identify fundus image metrics that exhibit
satisfactory retest quality and can be effectively utilized in
real-world clinical settings. Second, we aimed to determine
which fundus image metrics would benefit most from using
an improved segmentation algorithm, alternative and more
stable calculation methods, or more standardized image-
capturing techniques.

METHODS

Data Acquisition

For this study, we recruited two cohorts of patients. The first
group, the intravisit group (n = 44) had a mean age of 41.3
years (range, 20–70). This cohort had only one session in
which macula-centered fundus images were taken twice in
both eyes. No subject was given mydriatic eye drops. After
entering the darkened room, we waited for 2 minutes for
the eyes of the patient to adjust to the dark, then took two
photographs, one of each eye. After a 5-minute break, a
second set of photographs was taken of each eye. Subjects
removed their chin from the rest but did not leave the dark-
ened room. The group consisted of a cross-section of staff,
patients, and visitors to Stadtspital Zurich Triemli, recruited
over 2 days. We excluded people with ophthalmic surgery in

the past 6 months or anyone with any history of ophthalmic
disease.

The second group, the intervisit group (n = 28) had a
mean age of 54.8 years (range, 45–64). Fundus photogra-
phy of each eye was taken at two different sessions over the
course of 1 to 14 days. Fundus photography was performed
after entering a darkened room and waiting 2 minutes. No
subject was administered mydriatic eye drops. The group
consisted of patients with phakic or pseudophakic eyes; in
the case of pseudophakia, the preoperative spherical equiv-
alent ranged from −3.0 to +3.0 diopters. All patients had a
best-corrected visual acuity of 0.6 or better, measured with
a Snellen chart at a distance of 5 meters. Patients were
excluded if they had amblyopia, cataract, or ophthalmic
surgery in the past 6 months; a history of retinal surgery;
macular pathologies involving the fovea; intraocular pres-
sure greater than 20 mmHg; or progressive optic neuropa-
thy. After a participant provided informed consent, foveal-
centered, non-mydriatic 45° fundus images were taken using
a VISUCAM Pro NM camera (Carl Zeiss Meditec, Jena,
Germany). Inter- and intravisit groups were independent;
there was no subject present in both groups.

Segmentation and Metric Calculation

AutoMorph receives a fundus image as input and exam-
ines the image quality of the fundus photograph. To do
this, the image quality algorithm combines the outputs from
eight distinct quality-grading models, each trained on differ-
ent data. Subsequently, a confidence analysis is performed
across the results of these eight different models. Images
with low confidence in the classification, as well as those
images with a high discrepancy in the image quality grad-
ing of the models, are flagged as ungradable.10 These images
are discarded from subsequent analysis. While poor-quality
images are discarded, for good-quality images a segmenta-
tion map of the vascular tree and the optic nerve head is

FIGURE 1. Diagram illustrating the different zones of a fundus
photograph. AutoMorph reports on the entire image, Zone B (the
annulus 0.5–1 optic disc diameter from the disc margin), and Zone
C (the annulus 0.5–2 optic disc diameter from the disc margin).
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TABLE 1. Overview of Recorded Metrics

Tortuosity (Distance,
Squared Curvature, Density)

Caliber (CRAE,
CRVE, AVR)

Other (Fractal Dimension,
Vessel Perfusion Density,

Average Width)

Disc/Cup (Height,
Width, CDR Horizontal,

CDR Vertical)

Artery Macula, Zones B and C Macula, Zones B and C Macula, Zones B and C No
Vein Macula, Zones B and C Macula, Zones B and C Macula, Zones B and C No
Arteries and veins Macula, Zones B and C No Macula, Zones B and C No
Optic disc No No No Yes

AVR, arteriolar-venular ratio; CDR, cup-to-disc ratio; CRAE, central retinal arteriolar equivalent; CRVE, central retinal artery vein equivalent.

FIGURE 2. Examples of the automated grading algorithm from the FIVES open-source dataset. The left side shows an image graded as bad
quality and thus discarded from further analysis, most likely due to the shadow in the outer parts of the fundus image. The right side shows
an image that was barely graded as good quality and was included in analysis.34

created from the fundus image. Each vessel is classified as
an artery or vein. In our study, we calculated 76 variables
per fundus image based on the generated segmentation
maps. AutoMorph provides most metrics for different zones
of the retina. These zones are the entire macula observable
of the image, Zone B (the annulus 0.5–1 optic disc diam-
eter from the disc margin) and Zone C (the annulus 0.5–2
optic disc diameter from the disc margin) (Fig. 1). Table 1
gives an overview of the calculated metrics; a complete list
is provided in Supplementary Tables S1 and S2.

For both inter- and intravisit groups, we report on the
segmentation map agreement between test and retest. To
quantify segmentation map agreement, we used the metrics
of accuracy, sensitivity, Jaccard index, and F1 score. In the
reporting of each of these scores, we provide the minimum,
mean, and maximum of the respective dataset.

We measured retest reliability with the Spearman corre-
lation coefficient, two-way agreement, single-rater ICC, and
percentage difference on retest. The overall retest quality
of metrics is reported using cumulative distribution plots.
We provide Bland–Altman plots for the four best and worst
metrics of each group. Using signed Wilcoxon rank-sum
tests, we tested for statistical differences between the metrics
for the entire macula and Zones B and C. A complete rank-
ing of all metrics with regard to Spearman correlation, ICC,
and mean percentage difference between test and retest may
be found in Supplementary Tables S1 and S2.

We assessed the impact of age and gender on retest relia-
bility. To do this, we calculated the median relative differ-
ence between test and retest for each patient across all
extracted metrics. We then performed a linear regression

TABLE 2. Segmentation Map Agreement Measured by Accuracy,
Sensitivity, Jaccard Index, and F1 Score

Intervisit Dataset

Metric Minimum Mean Maximum

Accuracy 97% 98% 98%
Sensitivity 0.81 0.83 0.86
Jaccard index 0.67 0.70 0.76
F1 score 0.79 0.82 0.86

analysis to evaluate the correlation between age and retest
reliability, and we used the Wilcoxon rank-sum test to deter-
mine if gender differences significantly influenced retest
reliability.

Image Quality Assessment

To assess the impact of image quality on retest reliability, we
measured the image quality of every fundus image via the
following:

• Fractal dimension (via box-counting method)18

• Sharpness (via gray Laplacian image transformation)19

• Edge acutance (via open-source python canny edge)20

• Contrast (standard-deviation–based contrast)21

• Colorfulness index22

• Contrast-to-noise ratio23

• Image entropy24

We tested each of these metrics for its predictive value
on the median percentage difference on retest per image.
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FIGURE 3. Cumulative distribution curves of retest quality metrics for the intervisit group. The y-axis represents the proportion of measured
variables with lower retest. The x-axis from left to right shows the mean percentage difference between the test and retest metrics of two-way,
single-unit agreement ICC and Pearson correlation coefficient.

FIGURE 4. Mean (left) and median (right) percentage difference by zone for the intervisit group. Note the different y-scales of the box plots.
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For the intravisit dataset, we fit a generalized linear model
consisting of the Box–Cox-transformed, statistically signif-
icant, most predictive, and non-collinear image quality
metrics to predict the median percent differences on retest.
The model used all statistically significant image quality vari-
ables and then performed a P-value–based backward selec-
tion until we arrived at a variance inflation factor (VIF) lower
than 5.We validated this linear model on the intervisit group.
All statistical analyses were performed in R (R Foundation
for Statistical Computing, Vienna, Austria), and imaging anal-
yses were performed in Python. The level of significance was
set at 5%. This study adhered to the tenets of the Declara-
tion of Helsinki, and all procedures involving human partic-
ipants were conducted in accordance with ethical standards
and approved by the ethics committee.

RESULTS

Image Quality Grading

The intervisit group had a total of 112 fundus images taken.
After removing poor-quality images identified via the auto-
mated grading algorithm, a total of 70 fundus images were

left available in a test—retest setting for final analysis. Like-
wise, the intravisit group had a total of 176 fundus images
taken, and, following image quality analysis, we were left
with a total of 148 fundus images for final analysis. Figure 2
shows two edge cases that were graded good and poor qual-
ity by the grading algorithm.

Segmentation Map Agreement for the Intervisit
Group

Table 2 shows the segmentation map agreement between
test and retest for the intervisit group.

Retest Reliability Quantification for the Intervisit
Group

The intervisit group had a mean percent difference range of
0.96% to 223.67%, an ICC range of 0.31 to 0.99, and a Spear-
man correlation coefficient range of 0.34 to 0.99 (Fig. 3). For
the intervisit group, the mean percent differences on retest
ranged from 0.96% to 68.51% in the entire macula, from
3.43% to 212.80% in Zone B, and from 3.07% to 223.67%
in Zone C. The median retest ranged from 0.97% to 6.95%

FIGURE 5. Bland–Altman plots for the four metrics with the highest retest reliability as assessed by Spearman correlation: disc width, cup
width, disc height, and cup height. The thick blue line indicates the means (bias) of the measurements. The thick gray lines indicate the
upper and lower limits of agreement (LoA). The thin lines indicate the 95% CIs for the means (bias) and LoA.
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FIGURE 6. Bland–Altman plots for the four metrics with the lowest retest reliability as assessed by Spearman correlation: artery fractal
dimension, vein tortuosity density in Zone C, average vessel width, and tortuosity density. The thick blue line indicates the means (bias) of
the measurements. The thick gray lines indicate the upper and lower LoA. The thin lines indicate the 95% CIs for the means (bias) and LoA.

TABLE 3. Lower LoA, Mean LoA, and Upper LoA for each Bland–
Altman Plot With a Precision of Two Significant Figures

LoA

Metric Lower Mean Upper

Best intervisit metrics
Disc width −4.9 −0.12 4.7
Cup width −4.4 0.03 4.4
Disc height −6.9 −0.9 5.1
Cup height −5.0 −0.15 4.8

Worst intervisit metrics
Artery fractal dimension −3600 250 3900
Vein tortuosity density zone C −0.10 0.021 0.14
Average vessel width −3500 240 3800
Tortuosity density −0.050 0.00 0.050

for the entire macula, from 1.01% to 9.54% for Zone B, and
from 0.91% to 9.07% for Zone C (Fig. 4). The four variables
with the best retest in the intervisit group with regard to
the Spearman retest were disc width, cup width, disc height,
and cup height. The four worst were artery fractal dimen-
sion, vein tortuosity density of zone C, average vessel width,
and tortuosity density (Figs. 5, 6; Table 3).

TABLE 4. Segmentation Map Agreement Measured by Accuracy,
Sensitivity, Jaccard Index, and F1 Score

Intravisit Dataset

Metric Minimum Mean Maximum

Accuracy 97% 98% 98%
Sensitivity 0.84 0.85 0.88
Jaccard index 0.72 0.74 0.78
F1 score 0.84 0.85 0.88

Segmentation Map Agreement for the Intravisit
Group

Table 4 shows the segmentation map agreement between
test and retest for the intravisit group.

Retest Reliability Quantification for the Intravisit
Group

The intravisit group had a mean percent difference range
of 0.49% to 371.23%, an ICC range of 0.40 to 0.97, and a
Spearman correlation coefficient of 0.55 to 0.96 (Fig. 7).
The four variables with the best retest in the intravisit group
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FIGURE 7. Cumulative distribution curves of retest quality metrics for the intravisit group. The y-axis represents the proportion of measured
variables with lower retest. The x-axis from left to right shows the mean percentage difference between test and retest metrics of two-way,
single-unit agreement ICC and Pearson correlation coefficient.

FIGURE 8. Bland–Altman plots of the four best metrics by Spearman correlation: disc width, vein vessel density, CRVE–Knudtson of Zone C,
and CRVE–Hubbard of Zone C. The thick blue line indicates the means (bias) of the measurements. The thick gray lines indicate the upper
and lower LoA. The thin lines indicate the 95% CIs for the means (bias) and LoA.
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FIGURE 9. Bland–Altman plots of the four worst metrics in terms of retest reliability by Spearman correlation: artery distance tortuosity,
vein tortuosity density, vein tortuosity density of Zone B, and artery tortuosity density. The plots feature the following: The thick blue line
indicates the means (bias) of the measurements. The thick gray lines indicate the upper and lower LoA. The thin lines indicate the 95% CIs
for the means (bias) and LoA.

TABLE 5. Lower LoA, Mean LoA, and Upper LoA for each Bland–
Altman Plot With a Precision of Two Significant Figures

LoA

Metric Lower Mean Upper

Best intravisit metrics
Disc width −8.9 −0.23 8.4
Vein vessel density −0.0029 −0.00010 0.0027
CRVE–Knudtson Zone C −0.030 0.00 0.031
CRVE–Hubbard Zone C −5.6 0.23 6.1

Worst intravisit metrics
Vein squared curvature tortuosity −33 2.7 38
Vein tortuosity density −0.067 −0.010 0.056
Vein tortuosity density Zone B −0.20 0.00 0.20
Artery tortuosity density −0.085 0.00 0.085

with regard to the Spearman coefficient were disc width,
vein vessel density, central retinal artery vein equivalent
(CRVE)–Knudtson, and Hubbard in Zone C. The four
variables with the worst retest reliability in terms of the

Spearman correlation coefficient in the intravisit group were
vein squared curvature tortuosity, vein tortuosity density,
vein tortuosity density of Zone B, and artery tortuosity
density (Figs. 8, 9; Table 5).

For the intravisit group, the mean percent difference on
retest ranged from 0.49% to 94.71% in the entire macula,
from 1.67% to 371.29% in Zone B, and from 1.35% to
212.42% in Zone C. The median retest ranged from 0.37%
to 9.54%) for the entire macula, from 0.82% to 22.02% in
Zone B, and from 0.81% to 15.23% in Zone C (Fig. 10).

Using a one-sided rank-sum test, we showed that, for the
intervisit group, retest reliability in Zone C was better than
that of Zone B (P = 0.007), and retest of Zone B was better
than that of the entire macula (P = 0.035). These results did
not translate to the intravisit group, in which retest quality
between zones was not statistically significant when assum-
ing a significance level of 0.05.

A paired, two-sided Wilcoxon rank-sum test showed that
the intravisit group had a better overall retest in terms of
Spearman correlation coefficient than the intervisit group (P
= 0.001). Using the same test, we could not find a statistically
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FIGURE 10. Mean (left) and median (right) percentage differences by zone for the intravisit group. Note the different y-scales of the box
plots.

FIGURE 11. Age of patients versus the median percent on retest per subject examined. (Left) The intervisit group subjects with an R2 of 0.03
and P = 0.339. (Right) The intravisit group subjects with an R2 of 0.023 and P = 0.215.
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FIGURE 12. Influence of image quality on median retest reliability for the intravisit group. The x-axis indicates the percentage difference
of the image quality variables measured for two intravisit images. The y-axis represents the median percentage difference of all measured
metrics per image on retest.

TABLE 6. Correlation and Significance of Image Quality on Median
Retest Reliability: Intravisit Group

Image Quality Metric R2 P

Fractal dimension 0.40 <0.001
Contrast 0.03 0.13
Edge acutance 0.01 0.38
Sharpness 0.07 0.03
Colorfulness 0.09 0.01
Contrast-to-noise ratio 0.08 0.02
Image entropy 0.09 0.01

significant influence between gender and median retest reli-
ability per subject (P = 0.45 for the intervisit group; P = 0.40
for the intravisit group). Likewise, using linear regression
analysis, we could not find a statistically significant influ-
ence of age on median retest reliability per subject, with R2

= 0.03 and P = 0.339 for the intervisit group and R2 = 0.023
and P = 0.215 for the intravisit group (Fig. 11).

Image Quality and Retest Reliability

In the intravisit group, all metrics except contrast and edge
acutance showed a statistically significant correlation to the

median retest per image of the intervisit group; however,
no singular metric guaranteed good median retest reliability
per image. The fractal dimension had the highest correla-
tion to the median percent difference in retest (R2 = 0.40)
(Fig. 12, Table 6).

As described in the Methods section, we constructed a
linear model of the image quality metrics that were statisti-
cally significantly correlated to the median percentage differ-
ence in retest. The input variables are, therefore, fractal
dimension, sharpness, colorfulness, contrast-to-noise ratio,
and image entropy. Following a P-value–based backward
selection process until our variance inflation factor fell
below 5, we ended up with the remaining independent vari-
ables of fractal dimension and contrast-to-noise ratio. On the
validation set, the model performed with an R2 = 0.53 (95%
confidence interval [CI], 0.34–0.74), and a Pearson correla-
tion test showed strong statistical significance (P < 0.0001).
The linear model had a VIF < 1.1 (Fig. 13). In the intervisit
group, the metrics of edge acutance, colorfulness, contrast-
to-noise ratio, and image entropy did not show a statisti-
cally significant correlation to the median retest per image
of the intervisit group. Contrast had the highest correlation
to median percent difference in retest (R2 = 0.37), followed
by fractal dimension (R2 = 0.27) (Fig. 14, Table 7).
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FIGURE 13. Constructed linear model on the intervisit validation set.

DISCUSSION

We found that some biomarkers have exceptionally good
test–retest reliability, consistent even among different
cohorts and inclusion/exclusion criteria in healthy subjects.
However, vessel characteristics under intense research,
such as tortuosity and fractal dimension,2,17,25,26,29–31 have
emerged as highly volatile biomarkers in both intervisit and
intravisit datasets. AutoMorph, components of its pipeline,
and retinal vessel segmentation algorithms have been used
extensively in recent research to predict the risk of major
cardiovascular events with an AUC of 0.78 (95% CI, 0.78–
0.78),27,33 to characterize fundus photography changes for
patients with schizophrenia,17 and, to predict the onset of
Parkinson’s disease with an AUC of 0.67 (95% CI, 0.65–
0.69).27

The comprehensive evaluation of retinal parameters
extracted from fundus photography stands as a crucial
contribution to the realm of artificial intelligence–based
biomarkers. The findings underscore the substantial vari-
ability in reliability across these parameters, indicating their
inconsistent performance. Notably, developing a predic-

tive model based on image quality metrics suggests a
potential avenue for anticipating retest reliability, which
could profoundly impact the reliability and applicability
of artificial intelligence–driven analyses in ophthalmology.
Moreover, considering the limited research on the relia-
bility of vessel-segmentation algorithms, our study empha-
sizes the necessity of establishing more stable and consis-
tent biomarkers. Enhanced reliability in these biomark-
ers could significantly impact clinical predictive analyt-
ics, potentially revolutionizing early disease detection and
monitoring strategies for various conditions, ranging from
cardiovascular risks to neurodegenerative diseases, thereby
enhancing proactive healthcare interventions and opening
the possibility of discovering associations strong enough to
enable personalized treatment decision-making.

Examining pathways that lead to better image quality is
a possible road to improvement. However, in this study, we
found only a moderate correlation between the reliability
of biomarkers and image quality, raising the question of
whether future exploration of more retestable biomarkers is
warranted. Finally, improving segmentation retest reliability
will likely translate into improved retest-stable biomarkers;
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FIGURE 14. Influence of image quality on median retest reliability for the intervisit group.

TABLE 7. Correlation and Significance of Image Quality on Median
Retest Reliability: Intervisit Group

Image Quality Metric R2 P

Fractal dimension 0.27 0.002
Contrast 0.37 <0.001
Edge acutance 0.07 0.13
Sharpness 0.15 0.02
Colorfulness 0.02 0.40
Contrast-to-noise ratio 0.03 0.73
Image entropy 0.04 0.25

however, AutoMorph already represents a relatively high-
quality segmentation tool with an AUC of up to 0.98, and
there is limited room for future improvement.

Second, we collected 76 metrics from each fundus image;
however, much of the observed variability stemmed from
separating these metrics into the zones of the entire macula,
Zone B, and Zone C. Although research has already been
conducted for variables of the whole macula, variables for
Zones B and C are less well understood. Furthermore, there
are different calculation methods for the same metric. For
example, there are myriad papers on calculating vessel tortu-
osity,18–22 and there exists more than one definitive way to
calculate fractal dimension.23 Therefore, our results may not
translate well to other calculation methods.

Third, imaging circumstances could have also played a
role in our results. We found that retest reliability in the
intravisit group was superior to that of the intervisit group
(P = 0.001), and we found a statistically significant differ-
ence in the retest quality of zones in the intervisit group
(P = 0.007 between Zone B and the macula; P = 0.035
between Zone C and the macula), which disappeared in
the intravisit group. From this, we suggest that the current
standards in fundus photography may still be improved.
Further research should focus on which confounding vari-
ables are the most influential and how the confounders may
be controlled. Our intravisit analysis group may provide a
rough estimate of the optimal retest reliability attainable for
each metric; however, new calculation methods of individual
metrics may require a re-evaluation of repeatability.

Finally, it is possible that image quality influenced
retest reliability. A statistically significant correlation existed
between the examined image quality metrics and the median
percent difference on retest per image. A linear contrast-to-
noise ratio and fractal dimension difference model could
achieve an R2 = 0.53 on its validation dataset; however,
image quality could not predict the existence of outliers
on select images on retest. These results demonstrate that
merely improving the image quality will have only a moder-
ate influence on overall retest. However, further research
is necessary to see how the retest reliability of individual
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metrics may be calculated and what combination of image
characteristics and metrics is more susceptible to outliers.

One limitation of our study is the use of a single imag-
ing device, the ZEISS VISUCAM Pro NM camera, for all
retinal image acquisitions. Although AutoMorph has been
tested and validated on images from this device, it is impor-
tant to acknowledge that results may vary when using
different imaging equipment. Differences in hardware, such
as sensor resolution and optics, as well as variations in
image acquisition protocols, could potentially influence the
metrics derived by AutoMorph. Although AutoMorph has
been designed to be robust across various datasets, the
exclusive use of one device in this study might limit the
generalizability of our findings to images captured by other
systems. We would expect retest reliability to perform even
worse when including the added variability of different
devices. Understanding the robustness of vessel segmen-
tation techniques in relation to different fundus camera
devices would help further establish the consistency and
reliability of the software across different imaging environ-
ments.

We would also like to point out that AutoMorph has
two separate training datasets for vessel and optic nerve
head segmentation tasks. The better retest reliability of optic
nerve head metrics could be due to more extensive or consis-
tent ground-truth generation in optic nerve head segmenta-
tion training datasets. Additionally, we suspect some calcula-
tion methods from the vessel segmentation maps were more
prone to numeric instability, leading to poorer retest relia-
bility. Further research is needed to quantify the individual
metric sensitivity toward segmentation map change.

In conclusion, this study provides an overview of the
stability of the metrics that may be derived from color
fundus photography and highlights the need for research
to improve their stability. It provides an explanation for
inconsistent findings in the association of retinal biomark-
ers with systemic diseases such as schizophrenia or demen-
tia.17,28,32 Given the volatile nature of some biomarkers,
improving ocular metrics already known to be associated
with a systemic disease, such as the link between vessel
tortuosity or vessel width and risk of stroke,3 seems neces-
sary to provide an ocular biomarker–based personalized
risk assessment. More generally, the low retest reliability
of some examined biomarkers could conceal a potentially
much stronger correlation between the currently examined
biomarkers and their corresponding diseases. Improving
retest reliability could allow disease progression to be exam-
ined in much smaller datasets or even allow for an individ-
ualized treatment approach.
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