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Abstract

Our understanding of the evolution of many microbes has been revolutionised by the molec-

ular clock, a statistical tool to infer evolutionary rates and timescales from analyses of bio-

molecular sequences. In all molecular clock models, evolutionary rates and times are jointly

unidentifiable and ‘calibration’ information must therefore be used. For many organisms,

sequences sampled at different time points can be employed for such calibration. Before

attempting to do so, it is recommended to verify that the data carry sufficient information for

molecular dating, a practice referred to as evaluation of temporal signal. Recently, a fully

Bayesian approach, BETS (Bayesian Evaluation of Temporal Signal), was proposed to

overcome known limitations of other commonly used techniques such as root-to-tip regres-

sion or date randomisation tests. BETS requires the specification of a full Bayesian phyloge-

netic model, posing several considerations for untangling the impact of model choice on the

detection of temporal signal. Here, we aimed to (i) explore the effect of molecular clock

model and tree prior specification on the results of BETS and (ii) provide guidelines for

improving our confidence in molecular clock estimates. Using microbial molecular sequence

data sets and simulation experiments, we assess the impact of the tree prior and its hyper-

parameters on the accuracy of temporal signal detection. In particular, highly informative pri-

ors that are inconsistent with the data can result in the incorrect detection of temporal signal.

In consequence, we recommend: (i) using prior predictive simulations to determine whether

the prior generates a reasonable expectation of parameters of interest, such as the evolu-

tionary rate and age of the root node, (ii) conducting prior sensitivity analyses to assess the

robustness of the posterior to the choice of prior, and (iii) selecting a molecular clock model

that reasonably describes the evolutionary process.
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Author summary

Our knowledge of when historical and modern pathogens emerged and spread is largely

grounded on molecular clock models. The inferences from these models assume that

sequence sampling times must have captured a sufficient amount of evolutionary change,

which is typically determined using tests of temporal signal, such as BETS. Although

BETS is generally effective, here we show that it can incorrectly detect temporal signal if

the chosen evolutionary model makes implausible statements about the evolutionary

timescale, a situation that is difficult to diagnose, particularly with complex Bayesian mod-

els. We demonstrate that this problem is due to a statistical artefact, that we refer to as tree

extension and that it can be minimised by conducting careful prior predictive simulations,

and by eliciting biologically plausible priors in the model. Overall, our study provides

guidelines for improving our statistical confidence in estimates of evolutionary timescales,

with key applications for recently emerging pathogens and data sets involving ancient

molecular data.

Introduction

Molecular sequence data have been essential to unravel the evolutionary history of many

organisms. Furthermore, phylogenetic methods are particularly useful and have a wide range

of applications, from resolving the timing of evolutionary relationships [1], to quantifying dif-

ferential abundance testing and mediation analyses [2, 3].

The molecular clock is a statistical approach to estimate the date of phylogenetic divergence

events based on the hypothesis that molecular evolution, in the form of substitutions, follows

an identifiable statistical process. Under the earliest and simplest molecular clock model,

known as the strict clock, substitutions are assumed to accumulate at a constant rate over time

and across lineages [4] (for an in-depth introduction to molecular clocks see [1]). At the other

end of the spectrum, relaxed molecular clock models allow every lineage in a phylogenetic tree

to display a different evolutionary rate [5] (reviewed in [6]).

All molecular clock models have a fundamental limitation; that evolutionary rates and

times are jointly unidentifiable. That is, there exist an infinite number of combinations of evo-

lutionary rates and times that are compatible with a given amount of evolutionary divergence

[7, 8]. For this reason, external information allowing us to constrain some of the parameters of

the model must be used, a process known as a molecular clock calibration. The finding that

some organisms accumulate substitutions in a measurable timescale prompted the use of

sequence sampling times for calibration, a practice known as ‘tip calibration’ [9, 10]. The latter

is particularly useful for microbial organisms for which fossil information cannot be used, or is

not available, to constrain internal node dates.

A fundamental requirement for using tip calibration is that the sequenced data were sam-

pled from a measurably evolving population, i.e. that the interval of time over which the sam-

ples were taken captures an appreciable amount of evolutionary change in the studied

organism [11]. For rapidly evolving microbes, such as RNA viruses, this might already be

achieved by drawing samples over weeks or months. For more slowly evolving microbes sam-

pling over many years or centuries may be needed. Importantly, whole genome sequencing

has been a boon for molecular clock analyses of slowly evolving microbes because the resulting

data sometimes contain enough information to warrant calibration using sequences collected

over a few months or years [12].
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There exist several statistical tests to determine whether a sampled population has measur-

ably evolving behaviour, also known as tests of temporal signal. The root-to-tip regression

takes a phylogenetic tree for which the branch lengths measure evolutionary distance (i.e. a

phylogram) and fits a linear regression of the distance from the root to the tips as a function of

their sampling time [10]. The regression slope is a crude estimate of the evolutionary rate, the

x-intercept is the time to the most recent common ancestor, and the R2 is a measure of clock-

like evolution. In general, the root-to-tip regression is a powerful tool for visual inspection of

the data, for example to detect outliers or identify lineages with particularly low or high evolu-

tionary rates [13–16]. However, because the data points are not statistically independent,

resulting statistics such as p-values are invalid and cannot be used as formal statistical tests of

temporal signal [17]. A different approach, known as the ‘date randomisation test’, consist of

fitting a molecular clock to the data after permuting the sampling times multiple times to

obtain a ‘null’ distribution of the evolutionary rate [18]. The data are considered to have tem-

poral signal if the evolutionary rate estimated with the correct sampling times falls outside

such ‘null’ distribution [18–20].

Although date randomisation tests can be computationally efficient [21], they make it

difficult to exploit the full extent of Bayesian phylodynamic models. For example, it is not

clear how to incorporate uncertainty in sampling times. A more powerful alternative that is

fully Bayesian is the Bayesian Evaluation of Temporal Signal (BETS) [22]. The premise of

this test is that the data sampled from a measurably evolving population should have higher

statistical fit when the sampling times are included than when they are not, which can be

assessed through model selection. In practice, the data are analysed with their correct sam-

pling times (i.e. heterochronous) and with all samples assigned the same date (i.e. isochro-

nous, with the sampling time set to the same point in time), while keeping the rest of the

phylogenetic model the same, including the molecular clock, tree prior and substitution

model. For clarity, an isochronous tree is one where the sampling times are identical, also

known as an ‘ultrametric’ tree (where the distance from the each of the tips to the root is

identical) [22, 23], and thus a heterochronous tree is one where the sampling times are

different.

The log marginal likelihood is calculated in each case to compute log Bayes factors, which

quantify the amount of evidence for one model over another, here that with sampling times vs

that without. When considering log Bayes factors, a value of 3 or greater is deemed ‘strong’ evi-

dence, while a value below is deemed as ‘not worth more than a bare mention’ [24]. Further,

any value greater than and including 5 is considered ‘very strong’ evidence. A major advantage

of BETS is that it can consider the full model and it can accommodate important sources of

uncertainty, such as that from radio carbon dating of ancient DNA samples [25] (reviewed in

[26, 27]).

Most parameters of the phylogenetic model have individual prior probability distribu-

tions that can be chosen by the user, for example, the evolutionary rate, or the transition-to-

transversion ratio of the HKY substitution model. The prior for the phylogenetic tree topol-

ogy and branch lengths is usually a branching model, such as a coalescent or birth-death pro-

cess, which implicitly imposes a prior probability distribution on the ages of nodes, and

therefore may inadvertently convey highly informative calibration priors. Moreover, model

selection, as used for BETS, can be sensitive to the choice of prior, even if the posterior is not

[28, 29]. Here we investigate the impact of the tree prior and is associated parameters, and

the molecular clock model in the detection of temporal signal. We also explore alternative

parameterisations of the full Bayesian model that can improve the accuracy of tests of tempo-

ral signal.
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Results

Empirical data analyses

We first explored the effect of model specification on the results of BETS using empirical data

sets for which temporal signal was previously detected using other methods. The following

three data sets were used: Vibrio cholerae [30], the bacterium responsible for cholera; Powassan
virus (POWV) [31], a tick-borne virus; and Treponema pallidum [32], the bacterium that

causes syphilis. The V. cholerae and T. pallidum data sets include ancient samples, and the phy-

logenetic trees from the POWV and T. pallidum indicate complex population structure that is

typical of data sets from multiple outbreaks.

We conducted BETS analyses under a coalescent tree prior with constant population size

and two possible clock models; a strict and an uncorrelated relaxed clock with an underlying

log-normal distribution [5]. Our choice of the constant-size coalescent tree prior is based on

statistical convenience, as it is fully parametric, but it is not necessarily an accurate representa-

tion of the biological process. We set up our analyses in BEAST1.10 [33] and calculated log

marginal likelihoods with and without sampling times for each combination of molecular

clock model and tree prior (for a tutorial of using BETS see: https://beast.community/bets_

tutorial).

To assess the impact of the tree prior we set different prior distributions for the effective

population size, θ, the only parameter in the constant-size coalescent (sometimes the priors on

parameters of the tree prior are known as a hyperpriors [34]). In the exponential-growth coa-

lescent, which we also considered in our simulations (see below), the equivalent parameter is

known as the ‘scaled population size’ (denoted with the Greek letter F) and it is proportional

to the population size at present [35]. Both, θ and F are referred to as a scale parameters for

time because large values imply more dispersion (the molecular clock rate is also a scale

parameter), and they are typically assigned a 1/x prior distribution, which is the Jeffrey’s prior

that is uninformative and invariant to reparameterisation [36]. The 1/x prior has attractive

attributes because it maximises the signal from the data, but it is an improper distribution (it

does not integrate to one over its domain, because
R1

0

1

x dx is undefined), a problem for model

comparison using Bayes factors, because marginal likelihood calculations require that all priors

be proper distributions [37, 38]. Instead, we selected three prior distributions, an exponential,

Γ (Gamma), and log-normal, that have been used in recent literature [32] (this Γ prior on the

scaled population size is the default in the BEAST1.10.5), and as shown in Table 1 (for the epi-

demiological or demographic interpretations of the parameters of the tree prior we refer the

reader to [36, 39]).

Our rationale for using different prior distributions on θ is its impact on parameters that

pertain to the molecular clock. In particular, under the coalescent process, the expected time

of divergence between sampled lineages is inversely proportional to the population size, mean-

ing that large values of θ will result in an older time to the most recent common ancestor than

small values for this parameter. The prior on θ will also have an impact on the evolutionary

Table 1. Prior distributions for the effective population size of the constant-size coalescent (known as θ in the con-

stant-size coalescent and different to the scale parameter of the Γ distribution).

Probability distribution function Parameters

Exponential mean, μ = 1.0

Log-normal mean, μ = 1.0; standard deviation σ = 5.0

Γ (Gamma) shape, κ = 0.001; scale, θ = 1000

https://doi.org/10.1371/journal.pcbi.1012371.t001
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rate for two key reasons. First, by impacting the overall age of the tree, it impacts the length of

time over which the sequence data evolved. Second, the default prior for the evolutionary rate

in BEAST1.10 is a Γ distribution with shape (α) of 0.5 and beta (β, also known as the ‘rate’)

equal to the tree length (sum of all branch lengths) [40, 41]. In this software, this prior is

known as the CTMC-rate reference prior and its mean value is 0.5/tree length [41–43], mean-

ing that it is indirectly impacted by θ (or F).

To illustrate the interactions between parameters in the posterior expression for a full

Bayesian phylogenetic model, consider expression 1, where T is the phylogenetic time-tree, θ
is the effective population size of the coalescent, κ denotes the parameters of the substitution

model (e.g. the transition-to-transversion ratio of the HKY), r is the evolutionary rate under a

strict molecular clock model, and D is the sequence data (for an example using plate notation

see [44]). In this model, the data are treated as heterochronous, such that r is estimated, the

tree prior is a constant-size coalescent, the prior on the evolutionary rate is a CTMC-rate refer-

ence prior, and the substitution model is a HKY.

pðT; y;k; rjDÞ / pðDjT; k; rÞpðTjyÞpðyÞpðkÞpðrÞ ð1Þ

The posterior probability p(T, θ, κ, r|D) is proportional to the phylogenetic likelihood, given

by p(D|T, κ, r), multiplied by the remaining terms, collectively known as the prior. The tree

prior, p(T|θ) is sometimes known as the phylodynamic likelihood [45], and here it is the prob-

ability of the tree given θ. Note that p(r) * Γ(0.5, tree length) (the CTMC-rate reference prior),

implying that p(r) is also dependent on T and therefore θ, via p(T|θ).

The V. cholerae data set displayed overwhelming support for temporal signal (Table 2 and

Fig 1), regardless of the molecular clock model and prior on θ, with log Bayes factors of over

200. Note that a log Bayes factor of 3 corresponds to a model posterior probability�0.95 (if

the prior probabilities of the models in question are the same) [46], following Kass and Raftery

[24]. Although in this data set the prior on θ did not impact model selection for detecting tem-

poral signal, it did impact the magnitude of the Bayes factors.

For our other two data sets the impact of the prior on model selection was evident. For Poa-
wassan virus the Γ and log-normal priors on θ suggested strong temporal signal, whereas the

exponential prior strongly favoured the exclusion of sampling times, according to the strict

and relaxed molecular clock models. In our analyses of the T. pallidum data set we found sup-

port for temporal signal under the strict molecular clock, according to all priors on θ, although

with very strong evidence only for the exponential prior and ‘positive evidence’ for the Γ and

log-normal priors. Under the relaxed molecular clock model all priors had very strong support

against temporal signal.

Our empirical data analyses overall demonstrate that the choice of prior may have a sub-

stantial impact on Bayesian model selection and support. We also find that the posterior distri-

butions of key parameters, such as the evolutionary rate, were not overly sensitive to the prior

Table 2. Log Bayes factors between isochronous and heterochronous models for each data set, separated by prior on effective population size, θ.

Species; Clock Model Exponential Gamma Log-normal

Vibrio cholerae; Strict Clock 355.18 379.63 382.10

Vibrio cholerae; Relaxed Clock 208.97 439.63 219.60

Powassan virus (POWV); Strict Clock -80.63 32.67 50.29

Powassan virus (POWV); Relaxed Clock -221.94 18.79 27.23

Treponema pallidum; Strict Clock 105.80 2.17 1.85

Treponema pallidum; Relaxed Clock -34.37 -1474.14 -34.04

https://doi.org/10.1371/journal.pcbi.1012371.t002
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for the V. cholerae data set (S1 Fig, electronic supplementary material). Moreover, this data set

has been shown to have clear clocklike behaviour in root-to-tip regressions and date randomi-

sation tests [47]. In contrast, for the data sets of Powassan virus and T. pallidum, where tempo-

ral signal was not supported for all model configurations, we found that the posterior was

more sensitive to the choice of prior (S2 and S3 Figs electronic supplementary material).

Simulation experiments

To understand the impact of the prior on BETS results in more detail, we conducted a set of

simulation experiments where the model used to analyse the data matches the data generating

process. We conducted simulations under four possible conditions: a strict or relaxed molecu-

lar clock model, and where the phylogenetic time-trees were heterochronous or isochronous.

Data from heterochronous trees are sampled from a measurably evolving population and are

expected to display temporal signal, whereas those from isochronous trees by definition repre-

sent a population that is not measurably evolving (the time-trees are ultrametric) and should

not display temporal signal.

For data generated under heterochronous time-trees, we found that ten out of ten simula-

tion replicates were correctly classified as having temporal signal, using a log Bayes factor of at

least 3 (Table 3 and Fig 2). This perfect classification, which can be considered a low type II

error (where a type II error is failing to support temporal signal when it is truly present), was

supported regardless of the prior on θ and the molecular clock model.

For our data generated under isochronous trees (with no temporal signal) we found perfect

classification under the exponential prior on θ under both clock models (Table 3 and Fig 2).

For most analyses under the Γ and log-normal priors on θ we found that BETS incorrectly sup-

ported the presence of temporal signal, implying a high type I error (the incorrect detection of

temporal signal). The exceptions were for analyses of data analysed under a relaxed molecular

clock model, regardless of the molecular clock model used for simulation.

Fig 1. Relative log marginal likelihoods of empirical data sets. The polygons represent the relative log marginal

likelihoods of each microbe data set under a different effective population size (θ) prior, analysed with four different

configurations of sampling times and molecular clocks. The corners correspond to models (a combination of

molecular clock model and the inclusion or exclusion of sampling times). The outermost dashed lines are for the

highest marginal likelihood recorded and the extent to which the polygons are deformed denotes relative model

support (e.g. a perfect square would imply that all models are equally well supported). A corner that falls close to the

centre would correspond to a model that has low support. Het (heterochronous) includes sampling, while Iso
(isochronous) does not include any sampling times. SC is strict clock and UCLD is the uncorrelated log-normal

relaxed clock. Red represents an exponential prior on the effective population size, blue is a Γ prior, and green is a log-

normal prior.

https://doi.org/10.1371/journal.pcbi.1012371.g001
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A perplexing result occurs under the best molecular clock model for the Γ and log-normal

priors on θ. Here we take the log Bayes factor of the best heterochronous model vs the best iso-

chronous model, which produced an increase in the classification error, relative to using the

relaxed clock only. This phenomenon likely occurs because the incorrect inclusion of sampling

times can mislead molecular clock model selection. As a case in point, one of the simulation

replicates under a relaxed molecular clock and an isochronous tree (with no temporal signal)

had the following log marginal likelihoods; -4109.87 for the heterochronous analyses with a

strict clock, -4117.06 for the isochronous analyses with a strict clock, -4124.35 for the hetero-

chronous analyses with a relaxed clock, and -4118.29 for the isochronous analyses with a

relaxed clock. The log Bayes factors under the relaxed clock have very strong evidence against

temporal signal (log Bayes factor = -6.06 for heterochronous vs isochronous), whereas the

opposite is true for the strict clock (log Bayes factor = 7.19). However, the best heterochronous

model has stronger support than the best isochronous model (here the strict or relaxed molec-

ular clock, whose log marginal likelihoods differ by only 1.3 log likelihood units). It is also

worthwhile to note that in general, analyses under the relaxed clock tended to have fewer type

I classification errors (for data sets with no temporal signal) than the strict clock, regardless of

the true molecular clock model used to generate the data.

Our simulation results demonstrate that detecting temporal signal when it is not present

(type I error), is more common under some prior configurations (here the Γ and log-normal

priors on θ) than the opposite (type II error, failing to detect temporal signal when it is pres-

ent). Upon inspecting the resulting phylogenetic trees and the posterior of key parameters we

found a probable cause. The incorrect inclusion of sampling times produces a dramatic overes-

timation of the height of the tree (of the root node), especially under the strict molecular clock

model, a phenomenon that we refer to as ‘tree extension’ (Fig 3). Under this situation, the sam-

pling times represent such a small proportion of the root height (the time from the most

recently sampled node and the root-node), that the heterochronous tree is indistinguishable

from one that is ultrametric and thus the log marginal likelihoods of a model with sampling

times can be comparable, or higher than that for a model without sampling times. In fact, in

Fig 3 the sampling times span 0.5 units of time, representing only 0.05% of the total height of a

root height of 1,000 units of time. The phenomenon of tree extension also occurs under the

relaxed molecular clock, but to a much lesser extent, and thus under this model it is easier to

Table 3. Correctly classified simulation replicates under heterochronous and isochronous trees. A total of twenty

simulations were generated in each configuration. Ten under heterochronous trees that are expected to display tempo-

ral signal, and ten under isochronous trees that they are not expected to support temporal signal. A number of ten rep-

resents perfect classification according to the Bayesian evaluation of temporal signal, BETS, and a log Bayes factor of at

least 3 (strong evidence for temporal signal) for heterochronous trees. For isochronous trees, the threshold is a log

Bayes factor of at most -3 (strong evidence against temporal signal). The rows correspond to three possible priors on

the effective population size of the constant-size coalescent, θ. The ‘Best clock model’ is a situation where we consider

the best heterochronous and isochronous model, take their log Bayes factor, and determine temporal signal if the abso-

lute value in favour of the correct model is at least 3. The value to the left of / is the number of correctly classified het-

erochronous simulations, and the value right of / is the number of correctly classified isochronous simulations.

True clock model; clock model in analysis Exponential Γ Log-normal

Strict clock; Strict clock 10 / 10 10 / 0 10 / 0

Strict clock; Relaxed clock 10 / 10 10 / 10 10 / 10

Strict clock; Best clock model 10 / 10 10 / 0 10 / 0

Relaxed clock; Strict clock 10 / 10 10 / 0 10 / 0

Relaxed clock; Relaxed clock 10 / 10 10 / 9 10 / 9

Relaxed clock; Best clock model 10 / 10 10 / 0 10 / 1

https://doi.org/10.1371/journal.pcbi.1012371.t003
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correctly classify isochronous data sets, because incorrect sampling times are effectively penal-

ised. For data sets that do have temporal signal, the root height is estimated correctly, and thus

tree extension does not occur Fig 4.

In isochronous analyses it is common practice to fix the clock rate to 1.0 in isochronous

analyses (it is the default in BEAST1.10 and BEAST2.5 [48]), which means that the branch

lengths of the time-tree will be expressed in units of subs/site. This poses a problem because

the θ parameter of the constant-size coalescent is typically proportional to units of time [36,

49] (as are most other parameters of the tree prior, for example the growth rate of the exponen-

tial-growth coalescent is inversely proportional to time). When time-calibrations are used θ
corresponds to the population size multiplied by the generation time (Ne× generation time).

Thus, the prior on θ for the heterochronous and isochronous analyses has different meaning

(the branch lengths are not in the same units). A simple solution is to ensure that this parame-

ter is scaled to match the units of the branch lengths, or to fix the molecular clock rate in the

isochronous analyses to a biologically meaningful value. In our simulations we fixed the

molecular clock rate to its true value, but we also found that using a number within the

Fig 2. Relative log marginal likelihoods of simulations. The polygons represent the relative log marginal likelihood under

three possible priors on the effective population size (θ) parameter of the constant-size coalescent tree prior. The top row is for

heterochronous simulations, where temporal signal is present. The bottom row is for isochronous simulations that do not have

temporal signal. Within each panel the corners correspond to a combination of model and sampling times, either a strict (SC)

or relaxed molecular clock with an underlying log-normal distribution (UCLD), and with (heterochronous) or without

(isochronous) sampling times. The correct model used to generate the data is the SC heterochronous (SC/het) for the top row

and the SC isochronous (Iso/SC) for the bottom row. Each polygon is for one simulation replicate (a total of ten) and the

colours denote whether we employed a hard bound on the root height of the form Uniform(0.0, 5.0), as shown in the legend.

https://doi.org/10.1371/journal.pcbi.1012371.g002
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expected order of magnitude of the organism in question is sufficient (e.g. 10−4 to 10−3 subs/

site/year for a ssRNA virus).

Our results indicate that using priors that favour plausible node heights is important to

ensure the accuracy of temporal signal detection. However, the interplay between the parame-

ters of the tree prior and the resulting tree topologies and node heights is not necessarily trivial,

particularly when the tree prior involves multiple parameters. Thus, defining suitable priors

for the parameters of the tree prior requires careful attention. A pragmatic solution is to

include additional prior information in the form of hard bounds on the root height or the

molecular clock rate. To this end, we investigated the effect of including a uniform prior

between 0.0 and 5.0 units of time for the root height, meaning that trees that are older than 5.0

units have a prior probability of 0.0. Crucially, the trees under which we generated our simu-

lated data had root heights of around 2.0 units of time, and thus the hard bound of 5.0 allows

for trees that are over twice as old as the truth.

Setting hard bounds on the root height resulted in perfect classification accuracy for both

the heterochronous and isochronous simulations (Table 4 and Fig 2, respectively). The

improvement in classification for data sets with no temporal signal is likely because the hard

Fig 3. Phylogenetic tree extension for a simulation replicate with no temporal signal. Highest clade credibility trees

from a data set simulated with no sampling times (isochronous) and under a strict molecular clock model (SC). The

prior on effective population size (θ) is a Γ(κ = 0.001, θ = 1000), which resulted in high classification errors using

BETS. The y-axis is the time from the present. Tip nodes have solid grey circles. Including sampling times that span 0.5

units of time and about 1/4 of the true root height induces dramatic overestimation of the root height, compared to the

true model (SC, isochronous). This effect occurs under both molecular clock models, the SC and the relaxed molecular

clock with an underlying log-normal distribution (UCLD), but it is markedly less pronounced in the UCLD. Note that

the y-axis is in logarithmic scale (log10).

https://doi.org/10.1371/journal.pcbi.1012371.g003
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bounds prevent the tree extension phenomenon. This allows the inclusion of sampling times

to impose a penalty on the log marginal likelihood (see polygons in Fig 2). Our empirical data

set of V. cholerae, which had evidence of temporal signal under all prior conditions, consistent

with previous analyses [30], also displayed strong evidence for temporal signal with a hard

bound on of 500 years before present on the root height (all log Bayes factors were at least 200

in favour of temporal signal; S4 Fig, electronic supplementary material).
The exponential-growth coalescent is more flexible than the constant-size coalescent, where

population size change is allowed to change deterministically (for its description in a phylody-

namic context see [50, 51]). This model has two key parameters, the ‘scaled population size’

Fig 4. Phylogenetic trees from a simulation replicate with temporal signal. Highest clade credibility trees from a

data set simulated with sampling times (heterochronous) and under a strict molecular clock model (SC). The

isochronous trees are inferred by fixing the molecular clock rate to the true value, such that the timescale is in the

comparable units to the heterochronous analyses. Unlike the estimates for isochronous trees (e.g. Fig 3), the height of

the trees under all scenarios are comparable. Axes and labels are the same as those of Fig 3.

https://doi.org/10.1371/journal.pcbi.1012371.g004

Table 4. Correctly classified simulation replicates under heterochronous and isochronous trees using hard bounds

on the root height. Rows and columns are identical to those of Table 3, but here the analyses include an explicit prior

on the root height, via a uniform distribution between 0 and 5.0.

True clock model; clock model in analysis Exponential Γ Log-normal

Strict clock; Strict clock 10 / 10 10 / 10 10 / 10

Strict clock; Relaxed clock 10 / 10 10 / 10 10 / 10

Strict clock; Best clock model 10 / 10 10 / 10 10 / 10

Relaxed clock; Strict clock 10 / 10 10 / 10 10 / 10

Relaxed clock; Relaxed clock 10 / 10 10 / 10 10 / 10

Relaxed clock; Best clock model 10 / 10 10 / 10 10 / 10

https://doi.org/10.1371/journal.pcbi.1012371.t004
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(F) and the exponential growth rate. Due to its coalescent nature the time to the most recent

common ancestor scales positively with F. We investigated the performance of BETS under

this tree prior, using the same three prior distributions on F as we did for θ in the constant-

size coalescent and for the growth rate we used Laplace(μ = 0.0, b = 1.0). The relative log mar-

ginal likelihoods between models were very similar to those using the constant-size coalescent.

Heterochronous data sets were overwhelmingly classified as having temporal signal, whereas

isochronous data sets required hard bounds to correctly detect a lack of temporal signal (S5

Fig, electronic supplementary material).
To investigate the phenomenon of tree extension in more realistic conditions, we con-

ducted ten simulations of data that resembled our V. cholerae empirical data (similar numbers

of variable sites and distribution of sampling times), and evaluated them using BETS under an

exponential prior on θ. We only considered isochronous trees under a strict clock, because this

is the situation where we obtained the largest number of false positives (type I errors). In the

absence of hard bounds on the root height five out of ten data sets resulted in false positives

(‘strong’ support for temporal signal), with those that were misclassified displaying tree exten-

sion. The use of hard bounds (five fold older than the true root height) reduced the number of

false positives to one.

Prior predictive simulations and parameter correlations

Our finding that the tree prior can affect model selection prompted an investigation of param-

eter interactions and of the expectations under the prior. We simulated phylogenetic trees

from a prior distribution to inspect the correlation of parameters and the marginal prior for

those that have obvious associations (e.g. the evolutionary rate has a CTMC-rate reference

prior that depends on tree length). These simulations are commonly known as prior predictive

simulations (e.g. [52]), and referred to as ‘sampling from the prior’ in the phylogenetics litera-

ture [53]. Initially, we set a uniform prior on θ from 0 to 103 and recorded the evolutionary

rate, the tree length and root height. This prior is not generally recommended [54], and we

present it here to illustrate correlations between parameters and the marginal prior, instead of

using it for analysing our data.

An obvious finding is a natural positive correlation between tree length and root height,

although the trend is not strictly linear (Fig 5). We also observed a positive correlation between

θ, tree length and root height, which is also expected because large population sizes impose

long coalescent times [55]. The nature of this trend is heteroskedastic, with the variance in

these tree statistics increasing with θ. Our simulations demonstrate an inverse relationship

between the evolutionary rate, θ and the tree statistics, but with a range that can span several

orders of magnitude and with values ranging from 10−9 to 10−4 subs/site/time, meaning that

the CTMC-rate reference prior tends to be diffuse. It is also noteworthy that the uniform prior

on θ does not result in uniform marginal prior distributions for any of the parameters investi-

gated here. These results illustrate the importance of visualising the prior and the fact that it is

difficult to predict how different parameters will interact.

We conducted prior predictive simulations for the six prior configurations for θ under a

heterochronous data set. In Fig 6 we show the resulting distribution on the root height. The

exponential (θ* Exponential(μ = 1.0), Γ (Γ(κ = 0.001, θ = 1000)) and log-normal (log-normal

(μ = 1.0, σ = 5.0)) prior distributions respectively produced mean root heights of 2.90 (95%

quantile range, qr: 1.62 to 14.34), 1.61 (95% qr: 1.50 to 4.87) and 772.11 (95% qr: 1.66 to

5.06 × 105) units of time. Clearly, the log-normal is the most vague prior here, but it produces

implausible values of several orders of magnitude higher than our expectation of root heights

of around one and ten units of time (as simulated using θ = 1.0).
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For comparison, we also simulated trees under the same priors on θ, with hard bounds on

the root height in the form of a uniform distribution with minimum and maximum values of

0.0 and 5.0, as described above. In this case, the exponential prior on θ yielded trees with root

heights of mean 2.47 (95% qr: 1.62 to 5.16), whereas those for the log-normal and Γ were 1.61

(95% qr: 1.50 to 5.11), and 1.96 (95% qr: 1.54 to 4.42), respectively. As a result, in the log-nor-

mal prior on θ the use of hard bounds on the root height resulted in much shorter root heights,

with a smaller impact on the exponential and Γ priors.

Discussion

Our study demonstrates that the choice of prior distribution is a key factor for Bayesian model

selection and that it can mislead tests of temporal signal. In general, data sets with no temporal

signal are easily misclassified when the prior favours an implausibly old root height and low

evolutionary rates, resulting in type I errors. The incorrect detection of temporal signal may

lead to a systematic overestimation of the evolutionary timescale and an underestimation of

molecular clock rates.

We find that tree extension is the most probable reason for type I errors in BETS, because it

reduces the sampling window relative to the root height, and therefore trees with sampling

times have phylogenetic likelihoods that are very similar to those of ultrametric trees (S6 Fig,

electronic supplementary material). Because the phylogenetic likelihood has substantial weight

on the marginal likelihood, this phenomenon can mislead model selection. Verifying that the

Fig 5. Marginal prior distributions and pairs plots. The grey histograms correspond to the parameter labelled at the

bottom of each column; effective population size (pop. size, θ), tree length, root height, and the evolutionary rate (evol.

rate). The prior for θ here is a Uniform distribution between 0 and 103, while that for the evolutionary rate is a CTMC-

rate reference prior. Note that the tree length and root height have units of time, the evolutionary rate is in subs/site/

time, and θ is proportional to units of time.

https://doi.org/10.1371/journal.pcbi.1012371.g005
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prior does not favour trees that are implausibly old can mitigate this problem. In our simula-

tion study, the exponential prior on θ reduced the degree of tree extension, but this particular

prior might not be reasonable for some data sets, such as those where we expect very old diver-

gences between sequences or large population sizes.

Our observation of tree extension pertains to isochronous data sets analysed with sampling

times, but a similar situation occurs in date-randomisation tests [18]. Here, the sequence sam-

pling times are permuted a number of times, the evolutionary rate is re-estimated, and the

data are considered to have temporal signal if the estimates from the permutations do not

overlap with that from the correct sampling times. This test exists in a Bayesian and maxi-

mum-likelihood setting, where point estimates are used instead of posterior distribution [21].

Fig 6. Prior predictive simulations and marginal priors of root heights, given the prior on the effective population

size, θ. Each panel corresponds to a different prior on θ, as described on Table 1 (Exponential(μ = 1.0), Log-normal(μ
= 1.0, σ = 5.0), and Γ(κ = 0.001, θ = 1000)). We show five simulated trees from our analysis using sampling times

(heterochronous analyses) and overlaid them (similar to densitree plots [56]). The violin plots show the prior densities

of the root height and the hollow circles denote 100 randomly drawn samples from the prior. The y-axis is the time

from the present, but note that the scales are different. Tip nodes are shown with solid grey circles. The densities and

trees on the left, in orange, do not include an explicit prior on the root height (Th), while those to the right, in purple,

have a hard bound on the root height in the form of a uniform prior between 0.0 and 5.0 units of time.

https://doi.org/10.1371/journal.pcbi.1012371.g006
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Notably, when the data do have temporal signal, the estimates from the permutations are sub-

stantially lower, implying older times to the most recent common ancestor [17]. Therefore the

inclusion of incorrect sampling times, whether the data set is truly isochronous or not, may

result in tree extension as a means of compensating for the likelihood penalty imposed by

incorrect sampling times.

While the phenomenon of tree extension occurs for the strict and relaxed molecular clock

models, it is less pronounced in relaxed molecular clock models (e.g. see Fig 3). We hypothe-

sise that the relaxed molecular clock is more robust to tree extension in data sets that are truly

isochronous because this model can absorb the incorrect inclusion of sampling times by treat-

ing them as rate variation among lineages. However, careful molecular clock model selection

is advisable for tests of temporal signal and molecular dating in general.

The presence, rather than the absence, of temporal signal is much easier to detect, meaning

low type II errors in BETS. In this case, specifying an incorrect isochronous model does not

result in an obvious distortion of the time tree that could mislead BETS, at least under the con-

ditions that we used here. It is conceivable, however, that certain priors on the phylogenetic

tree or evolutionary rate could result in type II errors.

A key consideration is that the parameters of the tree prior for isochronous and heterochro-

nous analyses should be in the same units (and of similar magnitude), which facilitates com-

parison of the models in question. For example, fixing the evolutionary rate to 1.0 in an

isochronous analysis means that branch lengths of the time tree are in units of expected genetic

distance (usually subs/site) and thus the coalescent parameters have a different meaning to

those estimated under heterochronous analyses (where the evolutionary rate is a free parame-

ter). A more tractable approach is to conduct isochronous analyses by fixing the evolutionary

rate to a value within the expected order of magnitude, as we have done here, or rescaling the

parameters of the tree prior, such as θ, accordingly (in units that are the proportional to time,

see [35]). Biological knowledge, such as the negative correlation between genome size and

rates of microbes [47, 57] or simply a previous estimate for a closely related organism, can be

helpful for specifying pausible values for the molecular clock rate.

Our analyses only considered fully parametric coalescent models for the tree prior. This is a

convenient choice for the purpose of our experiments, but molecular clock dating can be per-

formed using other tree priors, which are amenable to using BETS, under the condition that

the prior is proper. For example, current implementations of the Bayesian skyline plot do not

constitute a proper prior, unlike the Bayesian skyride that is fully proper (for an in-depth dis-

cussion see [58]). Although birth-death tree priors could conceivably be used in the context of

BETS (they are usually fully parametric and have proper prior distributions), these models

explicitly use sampling time information as data [59]. Clearly, more work is needed to deter-

mine whether comparing the log marginal likelihoods of the isochronous and heterochronous

versions of birth-death models is valid.

Our results point to a few recommendations to improve tests of temporal signal. First,

researchers should carefully elicit the priors, which appears important for Bayesian model

selection (see [60] for a related problem in tree topology tests). Prior predictive simulations

have been recommended for assessing interactions between multiple calibration priors [61].

We find that they are also essential to understand potential interactions between the different

parameters in the model and ultimately whether the prior expectation is reasonable with

respect to our knowledge about the data. The log-normal and exponential priors on θ pro-

duced trees with root heights that differed by over four orders of magnitude. In our simulation

study, using hard bounds on the root height alleviated the problem of tree extension when the

prior on θ favoured very old trees. In empirical data, however, one may not want to make such

strong statements, and prior predictive simulations can help determine whether the tree prior
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and associated parameters produce trees with sensible root heights (e.g. the exponential prior

on θ had low type I and type II errors in our simulations). As a case in point, for a data set col-

lected from a recently emerging pathogen the exponential prior on θ will likely generate more

reasonable trees than the log-normal. Conversely, the log-normal prior, as parameterised here,

might generate more reasonable trees for a data set involving ancient DNA samples.

Our second recommendation is to conduct prior sensitivity analyses on a set of candidate

priors to determine the extent to which the prior can influence the posterior [62, 63], and

model selection using Bayes factors [64]. Visualising the posterior and prior distributions for a

range of priors can be illuminating (see S1 Fig through S3 Fig, electronic supplementary mate-
rial). A prior that makes unreasonable statements and is overly influential on the posterior

may need to be revised and a comparable approach has been proposed for phylogeographic

models [42, 43]. The exponential prior on θ in the Powassan virus did not support temporal

signal, but note that it is much more influential on the posterior than the Γ and log-normal pri-

ors for this particular data set. In contrast, the V. cholerae data seemed robust to the three pri-

ors that we used. Some empirical data sets yielded unclear evidence for temporal signal

according to BETS, such as the T. pallidium data set that we reanalysed. In such cases, the deci-

sion of whether the data have sufficient temporal signal may require multiple lines of evidence,

such as date-randomisation tests [18, 19], comparisons of the prior and posterior [65], and

root-to-tip regressions. [13, 14]. When temporal signal is inconclusive, the inclusion of addi-

tional information, such as internal node calibrations and informative molecular clock rate

priors may be essential for molecular dating—as was the case in that study [31]. Our use of

hard bounds on the root height is effectively an internal node constraint, but a similar calibra-

tion priors in the form of a parametric distributions on any other internal node or nodes could

be used [61, 66].

Finally, we find that the choice of the molecular clock model has a tangible impact on tests

of temporal signal. The strict molecular clock model is more prone to type I error than the

relaxed molecular clock model. The most likely reason for this finding is that this approach

mitigates tree extension when the data have no temporal signal. Thus we recommend that the

molecular clock be selected carefully.

The sum of our results and recommendations has implications for the reliability of esti-

mates of evolutionary rates and timescales, for determining whether a population is measur-

ably evolving, and even for assessing the phylodynamic threshold of emerging microbes [67].

Concretely, genome data from recently emerging microbes may have very few substitutions, in

which case prior sensitivity analyses and prior predictive simulations would easily reveal

whether the data are sufficiently informative. Overall, tests of temporal signal have a key place

in genomic analyses of pathogens and our results will be useful as guidelines to improve their

application and interpretation.

Materials and methods

Empirical data

We selected three different data sets to evaluate temporal signal, V. cholerae [30], Powassan
virus [32], and T. pallidum [31]. We chose these data sets because they included ancient sam-

ples (T. pallidum and V. cholerae) and very divergent sequences (Powassan virus), such that

they have the complexity of many real-world analyses. Our data and example code for our

analyses is available at https://github.com/sebastianduchene/BETS_code_data.

The sequence alignments varied in their sampling timeframe, number of informative sites,

and number of sequences. The most sparse data set was T. pallidum, where sampling dates

spanned 481 years (1534 to 2016), with 28 sequences each containing 1,500 SNP sites. Among
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these samples, there were only two in the 1500’s and two in the 1700’s, with the rest of the sam-

ples concentrated in the 1900’s to 2000’s. There were 319 sequences with 11,193 sites (the com-

plete genome) for Powassan virus, spanning 24 years of sampling times (1995 to 2019). Most of

the samples were collected after 2010, with only three isolated in 1995. For V. cholera we had

122 sequences with 1,757 SNP sites across 73 years of sampling (1937 to 2010). There are 1,392

unique site patterns in V. cholera, 3,457 in Powassan virus, and 840 in T. pallidum.

For V. cholerae and T. pallidum our data consisted of SNP sites. To account for such ascer-

tainment bias, we specified the number of constant nucleotides in the whole genome in our

subsequent analyses. We sampled the posterior distribution using Markov chain Monte Carlo

as implemented in BEAST1.10. The chain length was 108 steps, sampling every 103 to draw a

total of 104 samples. The prior for the evolutionary rate of the strict clock was a CTMC-rate

reference prior (i.e. a Γ(α = 0.5, β = tree length), and mean=α/β) [41]. For the log-normal dis-

tribution of the relaxed clock we also used the CTMC-rate reference prior for the mean rate

(known as the ucld.mean in the program) and an exponential prior with mean 0.33 for the

standard deviation (the ucld.stdev in the program). For the tree prior we used a constant-size

coalescent with population size, θ with three possible priors, as described in Table 1. In all

cases we used the HKY+Γ4 substitution model, with the default priors in BEAST1.10.

To calculate log marginal likelihoods we used generalised stepping-stone [68, 69]. This

method requires a working distribution for all parameters, including the tree prior, for which

we used the matching coalescent model. We set 100 path steps between the unnormalised pos-

terior and the working distribution, following equally spaced intervals from a β(0.3, 1.0) distri-

bution. For each step we ran a chain length of 2×106 steps. We considered these settings to be

appropriate after repeating the log marginal likelihood calculations 10 times for two of data

sets and ensuring that the values did not vary by more than 1.0 log likelihood units.

Simulation experiments

For our simulations we considered well-understood conditions to isolate the impact of the tree

prior on tests of temporal signal. We simulated phylogenetic trees under a constant-size coa-

lescent model with a fixed population size of 1.0 and a resulting average root height of 2.0

units of time. The trees could be isochronous (i.e. ultrametric) or heterochronous. For the lat-

ter we assigned tip heights of of 0.0, 0.10, 0.35, or 0.50, with equal probability. Our simulations

simplify the complexity of empirical data (e.g. simple substitution model, no population struc-

ture), but they represent a realistic situation where data were collected across four discrete

sampling periods, which resembles sequencing blitzes [70], or archaeological sampling of

strata [71]. Because the coalescent model used to analyse the data is conditioned on sampling

times we expect it to be robust to such sampling bias [39, 72, 73]. We used a JC substitution

model [74] (all exchangeability parameters are equal) to generate sequence alignments of 1,000

nucleotides and an evolutionary rate of 0.05 subs/site/time, which resulted in around 250

unique site patterns. For our simulations under a relaxed molecular clock model we sampled

branch rates from a log-normal distribution with mean 0.05 and standard deviation of 0.25.

The procedure for obtaining the simulated alignments consisted of specifying the model above

in BEAST1.10 with an empty sequence alignment to sample phylogenetic trees. We then used

NELSI [75] and Phangorn [76] to simulate evolutionary rates (a single value for the strict clock

and the branch rates for the relaxed molecular clock model) and sequence alignments,

respectively.

We analysed the simulated data under heterochronous and isochronous models. For the

heterochronous analyses we used the correct sampling times (where the correct model was the

heterochronous) or assigned the tip heights above randomly (0.0, 0.10, 0.35, or 0.50) where the
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isochronous was the true model. For the evolutionary rate (clock.rate in the strict and ucld.

mean for the relaxed molecular clock model) we set the default CTMC-rate reference prior

and the six possible configurations of the prior on θ (Table 1, plus those with hard bounds on

the root height). For the isochronous analyses we did not specify sampling times and we fixed

the evolutionary rate to its true value of 0.05 to ensure that the branch lengths, θ and other

parameters are in the correct units. We calculated log marginal likelihoods with the same pro-

cedure as for the empirical data.

We also generated a set of simulations under conditions aimed at mimicking the empirical

V. cholerae data set. We focused our attention on isochronous simulations, which resulted in

the highest type I errors in all other conditions. We simulated phylogenetic trees with 50 taxa

under a coalescent process with a constant population size, θ, of 100.0. The root height of these

trees ranged between 60.0 and 248.0 units of time. To specify an artificial set of sampling times

we sampled from an exponential distribution with mean of 1/10th of the root height. This

approach resulted in sampling times that spanned about 1/3rd of the height of the tree, with

most samples collected close to the present. We set the clock rate and genome length to pro-

duce a similar number of site patterns as in the empirical data [30]. We conducted our analyses

using the same methods as the rest of the simulations above, except that in this case we only

used the exponential prior on θ with a mean of 100.0 for θ (the value under which we gener-

ated the data), and with and without hard bounds on the root height.

Supporting information

S1 Fig. Densities of key statistics of the Vibrio cholerae empirical data. The clock rate, root

height, tree length, and coefficient of rate variation are shown under three priors on θ, expo-

nential (red), gamma (blue), and log-normal (green).

(PDF)

S2 Fig. Densities of key statistics of Powassan virus empirical data. The clock rate, root

height, tree length, and coefficient of rate variation are shown under three priors on θ, expo-

nential (red), gamma (blue), and log-normal (green).

(PDF)

S3 Fig. Densities of key statistics of Treponema palladium empirical data. The clock rate,

root height, tree length, and coefficient of rate variation are shown under three priors on θ,

exponential (red), gamma (blue), and log-normal (green).

(PDF)

S4 Fig. Relative log marginal likelihoods of empirical data sets with bounds on root height.

The polygons represent the relative log marginal likelihoods of each microbe data set under a

different effective population size (θ) prior, analysed with four different configurations. Het
(heterochronous) includes sampling, while Iso (isochronous) does not include any sampling

times. SC is strict clock and UCLD is the uncorrelated log-normal relaxed clock. Red repre-

sents an exponential prior on the effective population size, blue is a Γ prior, and green is a log-

normal prior.

(PDF)

S5 Fig. Relative log marginal likelihoods of simulations analysed under an exponential-

growth coalescent tree prior. The top row is for heterochronous simulations, where temporal

signal is present, and the bottom row is for isochronous simulations that do not have temporal

signal. Within each panel the corners correspond to a combination of model and sampling

times, either a strict (SC) or relaxed molecular clock with an underlying log-normal
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distribution (UCLD), and with (heterochronous) or without (isochronous) sampling times.

The polygons represent the relative log marginal likelihood under three possible priors on the

scaled population size (F) parameter of the exponential-growth coalescent tree prior. The cor-

rect model used to generate the data is the SC heterochronous (SC/het) for the top row and the

SC isochronous (Iso/SC) for the bottom row. Each polygon is for one simulation replicate (a

total of ten) and the colours denote whether we employed a hard bound on the root height of

the form Uniform(0.0, 5.0), as shown in the legend.

(PDF)

S6 Fig. The impact of tree extension in the phylogenetic likelihood. Phylogenetic likelihood

(i.e. the probability of the sequence data, given the full model and the prior) vs the root height

of phylogenetic trees. Each panel represents a data set that was truly isochronous and the prior

on the effective population size of the constant-size coalescent, θ. Here we show the posterior

distributions for a single data set, analysed under three different priors on θ and with sampling

times that were isochronous (no sampling times), or heterochronous, and with and without

hard bounds on the root height. Each point corresponds to a sample from the posterior, with

shapes and colours described in the legend. Note that the isochronous (orange circles) and het-

erochronous without bounds have similar phylogenetic likelihoods, despite having trees with

root heights that differ by multiple orders of magnitude. In practice, the heterochronous analy-

ses without bounds produce trees with root heights that are so old that they are effectively iso-

chronous (see Fig 6). In contrast, using hard bounds on the root height, even when the bounds

are twice the true age of the root height results in a substantial penalty on the phylogenetic like-

lihood, and the correct classification in BETS. Note that here the exponential prior on θ results

in much younger root height values than for the two other priors on this parameter.

(PDF)
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