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ABSTRACT Lipoproteins are produced by both Gram-positive and Gram-negative
bacteria. Once secreted, lipoproteins are quickly acylated, anchoring them into the
plasma membrane. Recent work has shown that Gram-positive bacteria are able to
generate considerable diversity in the acylation of their lipoproteins, though the
mechanisms involved are only just beginning to emerge. In Gram-negative organisms,
most lipoproteins are subsequently trafficked to the outer membrane (OM). Lipoprotein
trafficking is an essential pathway in these bacteria. At least one OM lipoprotein
component is required by each of the essential machines that assemble the OM (such
as the Bam and Lpt machines) and build the peptidoglycan cell wall (Lpo-penicillin-binding
protein complexes). The Lol pathway has been the paradigm for OM lipoprotein trafficking:
a complex of LolCDE extracts lipoproteins from the plasma membrane, LolA shuttles them
through the periplasmic space, and LolB anchors them into the OM. The peptide signals
responsible for OM-targeting via LolCDE have long been known for Escherichia coli.
Remarkably, production of novel lipoprotein acyl forms in E. coli has reinforced the
idea that lipid signals also contribute to OM targeting via LolCDE. Moreover, recent
work has shown that lipoprotein trafficking can occur in E. coli without either LolA or
LolB. Therefore, current evidence suggests that at least one additional, LolAB-independent
route for OM lipoprotein trafficking exists. This chapter reviews the posttranslocation
modifications of all lipoproteins, with a focus on the trafficking of lipoproteins to the
OM of Gram-negative bacteria.

Lipoproteins are a family of secreted proteins that are acylated after their
translocation across the plasma membrane (1–3). Acylation spatially confines
lipoproteins by anchoring them into membranes. Lipoproteins are bioinfor-
matically identifiable by the highly conserved lipobox motif in their short
signal peptides (4). Within the lipobox is a cleavage site for signal peptidase II
(SPII; Lsp). Immediately adjacent is an invariant Cys residue which is the
target of acylation reactions. Most lipoproteins are secreted from the cyto-
sol via the SecYEG translocon (5–7), though secretion via the twin-arginine
transport (Tat) system has also been identified (8–11). Following transloca-
tion, the inner membrane (IM) enzyme Lgt attaches a diacyl moiety to the
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lipobox Cys of prolipoproteins via a thioester linkage
(Fig. 1) (12–14). The diacylated product is a substrate for
Lsp, which releases the apolipoprotein from its signal
peptide (Fig. 1) (15–17). The diacylated Cys residue then
becomes the first amino acid of the lipoprotein (Cys+1).
In Gram-negative bacteria, a third acyl group is attached
by the enzyme Lnt to the Cys+1 amino group (which was
made available following Lsp cleavage) (Fig. 1) (18–21).
The acyl chain donors in Lgt and Lnt reactions are plasma
membrane phospholipids (Fig. 1). Gram-negative bacte-
ria produce triacylated lipoproteins; lnt, lsp, and lgt are
therefore conserved and essential in the majority of these
organisms. Low-GC Gram-positive bacteria lack lnt ho-
mologs and generate considerable diversity in lipoprotein
acylation; in addition to the triacyl form, these bacteria
can variously generate diacyl, lyso, peptidyl, and N-acetyl
lipoprotein forms (22, 23) (Fig. 1). How such diversity is
generated largely awaits discovery, although recent prog-
ress has identified the enzyme, Lit, that is responsible for
producing lyso-form lipoproteins in Enterococcus faecalis
and Bacillus cereus (24).

In Gram-positive bacteria, lipoprotein maturation com-
pletes their biogenesis. In Gram-negative organisms, many
lipoproteins await a new journey. These diderm bacteria
traffic many of their lipoproteins from the plasma IM to
the outer membrane (OM) (3, 25). The model organism
Escherichia coli targets almost 90% of the lipoprotein
species it produces to the OM (26). In fact, the very first
lipoprotein identified was Lpp, a highly abundant E. coli
OM lipoprotein (27). Lpp forms a covalent C-terminal
attachment to the cell wall peptidoglycan (PG) and func-

tions as an architectural element in the cell envelope
that ensures accurate spacing between the OM and cell
wall (28–30). Lpp that is mislocalized to the IM also
forms PG cross-links, but these are lethally toxic for E.
coli (31). Hence, in order to avoid such toxicity, traffick-
ing of lipoproteins to the OM must be highly efficient.
Lipoproteins face daunting hurdles to reaching the OM:
the highly hydrophobic acyl moieties must leave a fa-
vorable IM lipid bilayer, cross an adverse aqueous peri-
plasmic environment, and then be inserted into the OM
bilayer. Some lipoproteins are subsequently translocated
from the periplasm and across the OM to become surface
exposed.

THE Lol PATHWAY
The major trafficking route that brings lipoproteins from
the IM to the OM was discovered entirely by the lab of
Hajime Tokuda, who named this pathway Lol (localiza-
tion of lipoproteins) (Fig. 2) (1, 32). The Lol pathway has
components in each compartment of the cell envelope:
LolCDE, an ATP-binding cassette (ABC) transporter in
the IM; LolA, a soluble chaperone protein in the peri-
plasm; and LolB, itself a lipoprotein, at the OM. In model
organisms with a full LolABCDE pathway, mature lipo-
proteins are extracted from the IM by LolCDE, trans-
ferred to LolA, and shuttled to the OM, where LolB
receives and then anchors them into the bilayer. Each of
the Lol proteins was found to be essential for viability of
wild-type E. coli (33–35). However, recent work has un-
expectedly discovered conditions under which both lolA

Figure 1 Posttranslocation lipoprotein maturation. Secreted
lipoproteins are first diacylated at an invariant Cys residue
by Lgt using resident phospholipids as acyl donors. The
signal sequence is then cleaved by the peptidase Lsp to yield
diacyl-form lipoproteins. In almost all Gram-negative bac-
teria, Lnt attaches another acyl chain to the amino group of
Cys+1 to yield triacyl-form lipoproteins. Low-GC Gram-
negative bacteria can also produce peptidyl forms (likely due
to an Lsp-type enzyme that yields Cys+3), as well as N-acetyl
and lyso forms that are derived from diacyl lipoproteins.
Triacyl- and lyso-lipoproteins can efficiently interact with
LolCDE for trafficking to the OM in Gram-negative organ-
isms. Diacyl-form lipoproteins can be trafficked to the OM
via LolDF.
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and lolB can be deleted in E. coli, revealing that at least
one other unknown trafficking route can deliver lipopro-
teins to the OM (discussed below) (36). Additionally, phy-
logenetic analysis suggests that several Gram-negative
genera do not encode a lolB homolog. The emergence of
LolAB-independent trafficking has prompted a reassess-
ment of our understanding of how lipoproteins reach the
OM.

GETTING TO THE OM

Amino Acid Targeting Signals
Given that all lipoproteins mature in the IM, the Gram-
negative cell must first decide which of these will be
targeted for trafficking to the OM and which will remain
in the IM. Gene fusion experiments proved that target-
ing signals were encoded within lipoproteins themselves;
heterologous proteins could be targeted to the OM by
fusing them to N-terminal sequences of OM lipoproteins
(37). Studies of E. coli soon revealed an elegantly simple
OM targeting signal. In these bacteria, the identity of the
second amino acid (adjacent to the lipidated Cys+1) de-
termines localization. The presence of Asp+2 retains li-
poproteins in the IM (37–39). Most other residues result
in OM localization (39). This targeting mechanism be-
came known as the “+2 rule.” There is compelling bio-
chemical evidence that IM retention is caused by strong
electrostatic interactions between Asp+2 and the head-
groups of anionic IM phospholipids (40). These interac-
tions likely prevent Asp+2 lipoproteins from interacting
with the LolCDE transporter (41). Hence, the Asp+2 tar-
geting mechanism has been coined “Lol avoidance.” Al-
ternate +2 residues can also cause IM retention of E. coli

lipoproteins, including Trp, Phe, Pro, Gly, and Tyr (42,
43), though none of these alternate retention signals are
found in native E. coli lipoproteins. Given their chemis-
try, it is clear that the alternate retention signals do not
cause IM retention via the same electrostatic mechanism
as Asp+2. Most likely, alternate signals cause aberrant
or inefficient interactions between lipoproteins and the
LolCDE complex (44). Pseudomonas aeruginosa employs
more complex retention signals that also involve the +3
and +4 residues (45–47). How these signals function is
unclear; Asp+2 does function in this organism as a potent
retention signal, though it is found infrequently among
pseudomonal lipoproteins (45–47). More distantly related
organisms employ altogether different targeting signals. For
example, Borrelia burgdorferi relies on an acidic N-terminal
linker region to retain lipoproteins in the IM (48, 49). It is
remarkable that highly disparate lipoprotein targeting stra-
tegies appear to have evolved. Presumably, each strategy
reflects the different cell envelope compositions and struc-
tures of diverse organisms. It is possible that the common
goal of all these strategies is “Lol avoidance”—preventing
lipoproteins that should be retained in the IM from in-
teracting with the Lol ABC transporter—although this
hypothesis awaits clear confirmation in many organisms.

Lipoprotein Acylation
The acylation state of lipoproteins is important for traf-
ficking to the OM. For example, in Yersinia pestis, lack
of modification by Lnt is proposed to act as a retention
signal that prevents lipoprotein release from the IM (50).
This proposal is based on the finding that the LolCDE
complex in E. coli has very low affinity for diacyl-form
lipoproteins. In wild-type E. coli, Lnt is an essential

Figure 2 Trafficking routes for OM lipoproteins. The OM
lipoprotein trafficking routes of E. coli are shown. Once
mature, OM-targeted lipoproteins engage with the LolCDE
transporter in the IM. LolE interacts with lipoproteins and
LolC recruits the periplasmic chaperone protein LolA. At the
expense of ATP hydrolysis by LolD, the LolCDE complex
extracts lipoproteins from the IM bilayer and transfers them
to LolA. Lipoproteins are shuttled through the periplasm in a
LolA-bound complex. At the OM, the lipoprotein LolB re-
ceives LolA-bound client lipoproteins and anchors them into
the OM bilayer. Since ΔlolABmutants are viable, an alternate
trafficking route must exist that can traffic essential OM li-
poproteins to support cell viability. LolCDE remains essential
in such ΔlolAB mutants, suggesting that lipoproteins origi-
nate from this complex and are then trafficked to the OM via
an unknown mechanism.
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protein, but lnt can be deleted if LolCDE is highly over-
expressed (51). Recent work suggests that LntN-acylation
of Cys+1 is perhaps the key determinant for lipoprotein
interaction with LolCDE. Armbruster and Meredith were
able to complement the lethal loss of Lnt in E. coli by
expressing a transacylase, Lit, from the low-GC Gram-
positive organisms Enterococcus faecalis and Bacillus ce-
reus (24). Lit removes one of the two thioester-linked acyl
chains generated by the Lgt modification and attaches it
to the Cys+1 amino group (Fig. 1) (24). The complemen-
tation of Lnt with Lit was successful without requiring
LolCDE overproduction, and OM lipoprotein trafficking
remained efficient enough to support viability (24). The
requirement of LolCDE for lipoprotein N-acylation—the
final maturation step—seems to serve as a secretion check-
point mechanism that avoids premature trafficking of ear-
lier maturation intermediates. Yet some Gram-negative
species do not produce a LolCDE complex; rather than
having a heterodimer of the IM LolC and LolE proteins,
these organisms produce a homodimer of LolF proteins
(52). LolF appears to be a hybrid of LolC and LolE pro-
teins, containing key motifs from both (52). Bacteria that
produce an IM complex of LolDF are suggested to not
require Lnt for viability (52). Indeed, this was directly
demonstrated for Francisella tularensis, Neisseria menin-
gitidis, Acinetobacter baylyi, and Acinetobacter baumannii,
from which lnt has successfully been deleted (52, 53).
However, it should be noted that each of these organisms
natively produces triacyl-form lipoproteins, at least when
grown under laboratory conditions (52, 53). An intrigu-
ing possibility is that in some bacteria N-acylation may be
a regulatable process that is linked to pathogenesis (52).
In any case, it appears that LolDF complexes recognize
triacylated lipoproteins but do not require N-acylation for
lipoprotein trafficking.

DEPARTING THE IM VIA LolCDE
In the E. coli LolCDE complex, lipoprotein clients seem
to interact primarily with LolE (54). This conclusion is
based on site-specific photocross-linking at LolE, which
can capture abundant clients in vivo (54). Meanwhile,
LolC does not seem to interact with clients, despite hav-
ing a hydrophobic cavity similar to that of LolE (54). The
key role for LolC appears to be in recruiting LolA to the
IM complex (54–57). LolC and LolE each contain one
large periplasmic domain that is homologous between
the proteins. LolA can be captured only at the LolC loop
(54). Indeed, the specific LolA interaction with the LolC
periplasmic domain was recently confirmed in a cocrystal

structure and by biochemical methods (57). So LolC and
LolE contribute to different functions in the early traf-
ficking step: LolE recruits incoming lipoprotein clients,
and LolC recruits the chaperone. In LolDF complexes,
each of the LolF monomers in the homodimeric com-
plexes must perform both of these functions. Arguably,
segregating these functions between LolC and LolE may
increase trafficking efficiency by generating a unidirec-
tional flow of clients through the complex.

LolD is the ATPase that powers the LolCDE transporter
(34, 58, 59). Recruitment of LolA does not require ATP
binding or hydrolysis. Likely, the energy released by ATP
hydrolysis is needed for the unfavorable step of extract-
ing the acyl chains from the IM bilayer. However, current
in vitro evidence suggests that the initial step of ATP
binding alters the LolCDE-client complex in a way that
makes the lipoprotein removable with detergent (58).
This finding implies that lipoproteins are extracted upon
ATP binding by LolD. In this case, the hydrolysis step
should be important for the subsequent release reac-
tion that transfers lipoproteins to LolA, for resetting the
LolCDE complex, or for both activities.

TRAFFICKING TO THE OM VIA LolAB
LolA adopts an incomplete β-barrel structure with an
enclosed hydrophobic cavity (60). LolA is recruited to
LolC via a recently identified hook-and-pad interaction
(57). The hook is a solvent exposed β-hairpin loop ex-
tending from the LolC periplasmic domain (57). The pad
consists of three residues in the LolC periplasmic domain
to which LolA binds (57). Interactions with both regions
of LolC are involved in recruiting LolA (57). The peri-
plasmic domains of LolC and LolA share sequence ho-
mology, and lipoprotein transfer is suggested to occur by
the hydrophobic cavities lining up in a mouth-to-mouth
orientation (56). The function of LolA must be to shield
the acyl chains of its client from the aqueous periplasm.
Yet E. coli LolA structures suggest that its hydrophobic
cavity might not accommodate all three acyl chains of
client lipoproteins (60). An alternate proposal for lipo-
protein binding suggests that some acyl chains might
bind hydrophobic patches on the surface of LolA (61).

At the OM, LolB receives lipoproteins from LolA and
completes the trafficking route in E. coli by anchoring the
lipoprotein into the OM bilayer (62). LolB is structurally
similar to LolA (60). Surprisingly, LolB acylation is not
required for its anchoring activity. A freely soluble, peri-
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plasmic LolB (termed mLolB; generated by replacing the
native lipobox-containing signal sequence) remains able
to receive lipoproteins from LolA and anchor them to
membranes (63). However, mLolB perceives the peri-
plasmic phospholipid headgroups of the IM and OM as
equivalent, and it inserts lipoproteins into both the IM
and the OM (63). Misinserted lipoproteins reenter the
LolCDE transporter and try once more to reach the OM.
Such a trafficking pathway is clearly inefficient; however,
mLolB can complement inactivation of the native lolB
gene if Lpp is either deleted or prevented from forming
lethal PG cross-links from the IM (63). By anchoring
LolB into the OM as a lipoprotein, the Lol pathway en-
sures accurate and unidirectional trafficking. A loop of
LolB is important for the anchoring reaction, though the
mechanism of anchoring remains unknown (64). Curi-
ously, many Gram-negative organisms natively lack any
lolB homolog (3). How such bacteria complete the traf-
ficking pathway is an outstanding question. However,
evidence from the artificial mLolB system suggests that
an OM-localized lipoprotein membrane transferase might
not be a strict requirement for trafficking.

TESTING THE ESSENTIALITY OF LolA AND LolB
Soon after they were discovered, LolA and LolB were
identified as essential proteins for E. coli. Neither lolA nor
lolB could be deleted, and depleting levels of either pro-
tein caused a decrease in cell viability (35, 62). LolCDE
were discovered later and likewise determined to be es-
sential (34). The finding that the Lol pathway is essential
may have been initially puzzling—at the time, the only
known essential OM lipoprotein was LolB itself. LolB
depletion studies with E. coli revealed that lipoproteins
mislocalize to the IM and also accumulate in the peri-
plasm, complexed with LolA (33). The lethality of mis-
localized Lpp was already known, but this did not explain
Lol pathway essentiality since lolA, lolB, and lolCDE re-
mained essential even when lpp was deleted (33, 35, 65).
Hence, the reasonable conclusion was made that Lol
proteins were essential because mislocalization of some
lipoproteins may be toxic or may severely perturb the
cell envelope (33). Essential OM lipoprotein clients were
discovered in subsequent years and seemed to rationalize
Lol protein essentiality. BamD and LptE are essential
components of the OM assembly machinery that fold
β-barrel OM proteins (the Bam machine) and transport
lipopolysaccharide (the Lpt system), respectively (66–
69). Accessory BamBCE OM lipoproteins and cell wall
synthesis-regulating LpoAB OM lipoproteins are also col-

lectively essential in E. coli to build a robust cell envelope,
and combination mutants are lethal (70–74). It seemed
that the Lol proteins were essential because they needed to
deliver critical Bam, Lpt, and Lpo lipoproteins to the OM.

ALTERNATE TRAFFICKING ROUTE(S) FOR OM
LIPOPROTEINS
Recently, the underlying reasons for LolA and LolB es-
sentiality were directly tested (36). While conditions per-
mitting deletion of both lolA and lolB were identified,
lolCDE could not be deleted (36). Thus, the LolCDE
complex is fundamentally required for all routes of li-
poprotein trafficking. These findings revealed that LolAB
are not truly essential for trafficking (36). Rather, their
essential function in wild-type cells is to provide an ef-
ficient trafficking route that mitigates toxicities caused
by OM lipoproteins mislocalizing to the IM. When the
LolAB route was depleted, two OM-targeted lipoproteins
were found kill the cell, most likely by accumulating in
the IM: Lpp, which (as discussed above) forms toxic PG
cross-links from the IM, and OsmB, which may form
pores across the IM that dissipate the proton motive force,
killing the cell (36). There must be at least one other
alternate trafficking route that can perform the essential
task of bringing lipoproteins from LolCDE, through the
periplasm, and into the OM in ΔlolAB mutants. Indeed,
the Bam lipoproteins were directly shown to reach the OM
even when LolAB were absent (36). Remarkably, Helico-
bacter pylori, which lacks a lolB homolog, also appears to
tolerate inactivation of lolA (75). Therefore, it is tempting
to speculate that the same alternate trafficking route that
functions in E. coli ΔlolAB cells is required to support
essential OM lipoprotein trafficking in H. pylori ΔlolA
mutants. If this is true, the alternate trafficking route may
even be ancestral to the LolAB route. LolAB may have
emerged to provide increased trafficking efficiency and
capacity, a requirement for evolving OM lipoproteins
(such as Lpp and OsmB) whose activity at the OM is
beneficial but whose accumulation in the IM is potently
toxic. Indeed, Lpp and OsmB are narrowly conserved to a
subset of Gram-negative bacteria that possess both lolA
and lolB.

SUMMARY
Efforts in recent years have yielded considerable insights
into the maturation of lipoproteins and, in Gram-negative
bacteria, their trafficking towards the OM. New questions
have emerged: how is acylation diversity achieved in Gram-
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positive bacteria, and why is the triacyl form the appar-
ent default among Gram-negative organisms? How are
lipoproteins trafficked when the known LolAB route is
inactivated? How does lipoprotein trafficking occur in
organisms lacking lolB? Moreover, what are the molecular
mechanisms that underlie the highly efficient trafficking
via LolAB? As answers to these questions are found, we
will be rewarded with an increasingly sophisticated and
comprehensive understanding of lipoprotein biogenesis
and trafficking. Given that the OM is a major barrier
against antibiotics and that OM lipoproteins are essential
for OM assembly, insights into trafficking may prove in-
valuable to the goal of developing new drugs to treat in-
creasingly antibiotic-resistant Gram-negative infections.
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