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ABSTRACT
Data-driven material research for property prediction and material design using machine 
learning methods requires a large quantity, wide variety, and high-quality materials data. For 
battery materials, which are commonly polycrystalline, ceramics, and composites, multiscale 
data on substances, materials, and batteries are required. In this work, we develop a data 
network composed of three interlinked databases, from which we can obtain comprehensive 
data on substances such as crystal structures and electronic structures, data on materials such 
as chemical composition, structure, and properties, and data on batteries such as battery 
composition, operation conditions, and capacity. The data are extracted from research papers 
on solid electrolytes and cathode materials, selected by screening more than 330 thousand 
papers using natural language processing tools. Data extraction and curation are carried out by 
editors specialized in material science and trained in data standardization.

IMPACT STATEMENT
We develop a comprehensive data network to accelerate battery material research, integrating 
multiscale data from three databases and 330,000+ papers using natural language processing 
and expert curation.
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1. Introduction

Batteries are a key part of the energy transition and are 
essential for accelerating the replacement of fossil fuels 
with renewable energy. To develop batteries with larger 
capacities, higher performance, and greater safety, 
innovation in the materials used for electrodes and 
electrolytes is required. Data-driven materials research 
is expected to be a new approach that can accelerate the 
development of new battery materials through materi
als design and process optimization. Several studies 
utilizing these methods are referenced in [1–11].

Data-driven studies cannot be conducted without 
data. What type of data is required for exploring 

battery materials? The properties of battery materi
als, such as ionic conductivity and activation energy, 
depend on their chemical composition, phase com
position, and nano- and microstructures. Similarly, 
their performance in batteries, including charge and 
discharge capacities, is influenced by the battery’s 
composition and operating conditions, such as vol
tage and current. Therefore, to predict the properties 
and performance of battery materials, data on atomic 
properties, crystal structures, material structures, and 
battery performance under various operating condi
tions are essential. Let’s consider the availability of 
these data. Atomic properties are readily accessible. 

CONTACT Yibin Xu XU.Yibin@nims.go.jp Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 
Ibaraki 305-0047, Japan

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 
2024, VOL. 25, NO. 1, 2403328 
https://doi.org/10.1080/14686996.2024.2403328

© 2024 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting 
of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0001-8600-8748
http://orcid.org/0000-0003-2647-3407
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14686996.2024.2403328&domain=pdf&date_stamp=2024-09-18


Crystal structure data can be sourced from major 
databases such as ICSD [12] and AtomWork Adv. 
(AWA) [13]. Additionally, electronic structures, 
phonon structures, and physical properties can be 
computed through first-principle calculations using 
crystal structure data. Some widely-used databases 
created in this manner include Materials Project 
[14], AFLOW [15], and NOMAD [16]. However, 
materials used in batteries are rarely single crystals; 
they are typically polycrystals, ceramics, or compo
sites. There are few databases focusing on these com
plex materials, which presents a significant challenge 
for data-driven studies on practical battery materials. 
Due to the complexity of these materials, it is diffi
cult to obtain reliable property data computationally, 
making experimentation the primary method for 
data generation. Recently, significant advancements 
have been made in high-throughput experimental 
techniques aimed at accelerating materials data gen
eration. However, many technical challenges remain, 
and the variety of materials that can be synthesized 
and the properties that can be measured are limited. 
Literature, such as research papers, remains a crucial 
source of experimental data, as it has been the most 
common method for materials researchers and engi
neers to record and present their findings for nearly 
200 years. Recently, natural language processing 
(NLP) techniques have been applied to extract mate
rials data from literature. For instance, Huang [17] 
has published a database of battery material proper
ties collected using NLP. However, this database only 
includes composition and properties such as conduc
tivity and battery capacity, but does not contain 
information on phase composition and structure. 
Therefore, it is insufficient for materials design 
purposes.

The aim of this work is to develop a data network 
from which users can obtain comprehensive data 
necessary for data-driven studies of inorganic battery 
materials. This includes data on chemical composi
tion, crystal structures, material structures and prop
erties, and battery performance.

2. Data network composition

The battery data network consists of three databases, 
each dedicated to a specific area and interlinked 
through an identification system for batteries, materi
als, and substances:

(1) AtomWork-Battery (AWB) [18]: A newly 
developed database in this work, which 
includes data on the composition, structure, 
and properties of battery materials, as well as 
the performance of batteries made from these 
materials.

(2) AtomWork Adv. (AWA) [13]: A substance 
database developed by NIMS, containing data 
on the crystal structure, phase diagram, and 
properties of single-phase materials.

(3) CompES-X [19]: Another database developed 
by NIMS, which contains data on the electronic 
structure calculated from the crystal structure 
data of AWA.

3. Substance database AtomWork adv

AWA is a database that contains data on the crystal 
structure, phase diagrams, and properties of single- 
phase inorganic materials, meticulously extracted by 
experts from scientific literature published since 1900 
[20]. The phase diagrams feature binary and ternary 
systems. The property data cover 500 types of proper
ties. Crystal structure data include structure type, 
space group, Pearson symbol, lattice parameters, 
atomic coordinates, interatomic distances, and X-ray 
diffraction patterns. AWA is updated annually. The 
current numbers of entries are as follows: 47350 phase 
diagrams, 379,736 crystal structures, and 504,325 
property values for 125,606 materials, extracted from 
172,392 papers.

AWA is unique among databases due to a specific 
feature: despite the fact that the data come from dif
ferent papers, in AWA, they are interlinked (see 
Figure 1). Typically, data published in different papers 
are obtained on different materials. However, some 
materials share similar chemical compositions and 
crystal structures, suggesting they likely have similar 
properties and performance. AWA employs a concept 
called ‘substance’ to group such materials. A substance 
corresponds to a distinct phase in a diagram and is 
defined by five descriptors: chemical system, chemical 
formula, structure type, space group, and Pearson 
symbol. The chemical system and chemical formula 
delineate the substance’s chemical composition, while 
the other three descriptors define its crystal structure. 
To illustrate the difference between a material and 
a substance, consider the following example: a group 
of materials is reported [21] as Li1/2−xSr2xLa1/2−xTiO3 
(0<x < 0.5). They share the same chemical system (Li- 
Sr-La-Ti-O), structure type (CaTiO3), space group 
(Pm-3 m, 221), and Pearson symbol (cP5), but differ 
in lattice parameter ‘a’ based on the value of ‘x’. At the 
material level, they are considered five distinct materi
als. However, using the substance descriptors, their 
crystal structures are identical, and AWA uses one 
representative chemical formula – Li0.25Sr0.25La0.42 
TiO3—as the phase formula to describe their chemical 
composition, making them identical at the substance 
level. Similarly, the materials reported in another 
paper as Li0.36La0.53Sr0.03TiO3 are also identified as 
belonging to the same substance. In AWA, every 
material is identified by a material ID and every 
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substance by a substance ID, called AWA Material ID 
and AWA Substance ID, respectively. The concept of 
‘substance’ allows AWA not only to interlink data 
from different papers, but also to provide an interface 
for external databases to connect to the data 
within AWA.

4. Electronic structure database CompES-X

CompES-X contains data on electronic structures gen
erated by first-principle calculations using the crystal 
structures in AWA and the calculation software VASP 
[22]. We developed a framework named Template 
Oriented Atomic Simulation Toolkit (TOAST) to 
automatically execute the processes of input data gen
eration, execution of calculations, data analysis, and 
data conversion. The main data in CompES-X include 
band structure, density of states, and charge density. 
Calculations are performed on both non-relaxed and 
relaxed structures. The current CompES-X contains 
28,079 data entries of non-relaxed structures and 
27,607 of relaxed structures. AWA and CompES-X 
are linked to each other through AWA Material IDs, 
as each crystal structure corresponds to one material.

5. Battery materials database 
AtomWork-battery

AtomWork-Battery (AWB) is a database that compiles 
data on the synthesis, structure, properties, and per
formance of battery materials sourced from relevant 
research papers. Our current focus is on two key 
categories of materials: solid electrolytes and cathode 

active materials. We utilize natural language proces
sing (NLP) to identify and retrieve papers pertaining 
to these material types from a vast array of publica
tions. This technology enables us to extract chemical 
compositions and property values, and to generate 
comprehensive overviews. Following this initial selec
tion, papers are meticulously chosen for data extrac
tion, which is carried out by our team of well-trained 
editors.

5.1. Paper screening by nature language 
processing

Every year, it is estimated that tens of thousands of 
papers on battery materials are published. However, 
a human editor can process only several hundred of 
them. Therefore, selecting the most relevant and sig
nificant papers for data extraction is crucial for compil
ing a comprehensive dataset efficiently. To identify 
relevant papers on solid electrolyte and cathode materi
als, we initially collected several hundred papers for 
each material type from field experts. Using 
RapidMiner Studio [23], we then developed 
a dictionary of feature words frequently found in 
these papers but less common elsewhere, assigning 
weights to each word based on its importance. For 
a new paper, we processed the text in a similar way, 
and calculated a relevance score by comparing its voca
bulary to our dictionary. We set two threshold values, 
v1 and v2, with v1 > v2. Papers scoring above v1 are 
considered relevant, while those scoring below v2 are 
deemed not relevant. Papers scoring between these 
thresholds undergo further analysis, starting with their 

Figure 1. Data structure of AtomWork-adv: interlinking phase diagram, property, and crystal structure data through the concept of 
substance.
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titles and abstracts. We defined two sets of keywords – 
positive and negative. A paper must contain one or 
more positive keywords and no negative keywords in 
its title or abstract to be deemed relevant. For solid 
electrolyte papers, positive keywords include ‘solid elec
trolyte’, ‘ionic conductivity’, and ‘activation energy’; 
negative keywords include ‘liquid’, ‘polymer’, and ‘pro
ton conductor’. For cathode materials, positive key
words include ‘cathode’ and ‘positive electrode’, while 
negative keywords include ‘anode’ and ‘negative elec
trode’. The source papers [24] used for our NLP tasks 
are obtained through subscriptions to eight publishers: 
ACS, AIP, APS, Elsevier, IOP, RCS, Springer, and 
Wiley. From these publishers we obtain 317 million 
papers from 354 journals, available in formats such as 
XML, PDF, and images. Since most of these journals do 
not focus on battery materials, we narrowed our screen
ing to 19 selected journals, which have published 

335,118 papers during 2000–2022. By fine-tuning the 
threshold values and refining the keyword lists, we 
achieved a search precision of 80% for solid electrolyte 
papers and 75% for cathode material papers. The num
ber of papers identified on solid electrolyte and cathode 
materials is displayed in Table 1. Figure 2 illustrates the 
annual publication output from the top five countries.

We have developed NLP tools to automatically 
extract chemical compositions and property values 
from the papers we retrieved. The number of che
mical systems and formulas for solid electrolyte 
and cathode materials is listed in Table 1, and 
their frequency of appearance is visualized in 
Figure 3. It is evident that many papers focus on 
a limited range of chemical compositions, which 
can lead to data concentration on several well- 
studied materials if papers are not selected judi
ciously. Conversely, by carefully selecting papers, 
we can cover a wide variety of materials while 
significantly reducing the number of papers 
needed. By comparing the chemical compositions 
extracted by the NLP tools with those in the data
base, we can easily identify which materials are 
new, and sort the papers by the novelty of the 
material. Based on these analysis results, we manu
ally select approximately 200 significant papers 
from each category every year for data extraction 
according to the following criteria:

Table 1. Overview of papers analyzed, chemical systems, and 
chemical formulas identified for solid electrolyte and cathode 
materials using natural language processing tools.

Number 
of 

papers

Number of 
chemical systems 

extracted (Li 
contained)

Number of 
chemical formulas 

extracted (Li 
contained)

Solid electrolyte 1,532 786 (301) 1,335 (608)
Cathode active 

material
5,095 1,110 (521) 2,422 (1,381)

Figure 2. Annual publication output on (a) solid electrolyte and (b) cathode material from the top five countries.
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(1) New chemical compositions are preferred. If 
the chemical compositions are the same, new 
chemical formulas are preferred.

(2) Property data on ionic conductivity, diffusiv
ity, or capacity must be available, and impor
tant experimental parameters should be 
provided. For example, for capacity data, mea
surement parameters such as temperature, 
voltage, current, and cycle number are 
necessary.

(3) Papers containing inconsistent information, 
unfixable errors, or those deemed unreliable 
by the editors for any reason, are eliminated 
during data collection.

5.2. Data extraction and data curation

The major challenges in extracting data from litera
ture stem from the diverse content and the various 
methods used for data processing and representation. 
Following extraction, data must undergo a process 
known as data curation, which includes conversion, 
processing, correction, and generation of data. This 
stage demands a high level of expertise in material 
science and data processing skills. In this work, data 
curation is meticulously carried out by well-trained 
editors.

5.2.1. Data structure
Various data are published in research papers. Aligned 
with our data collection objectives to design and develop 
new materials for solid electrolytes and cathodes, we 
organize this data into a structured format within the 
AWB database, as depicted in Figure 4. The most critical 
objects in the database are ‘Material’ and ‘Battery’. The 
‘Material’ object encompasses chemical composition, 
phase composition, synthesis process, and properties, 
while the ‘Battery’ object includes composition details 
and charge/discharge capacities. Editors assign the 
‘Substance’ object based on the phase composition of 
the materials, and this object is linked to corresponding 
substances in AWA. The ‘Figure’ object contains digi
tized curves of material properties and battery capacities.

5.2.2. Link between substance, material, and 
battery
Material data in AWB include chemical composition, 
phase composition, structure, properties, and experimen
tal conditions. Each material is assigned a unique 
Material ID. For each phase of a material, the chemical 
composition and crystal structure are determined either 
from the text description or by analyzing the X-ray dif
fraction (XRD) data published in the paper. Editors then 
identify the substance to which the phase belongs, using 
a process similar to that in AWA. If the substance is also 
registered in AWA, its AWA substance ID is provided. 

Figure 3. Top 50 most frequently occurring chemical systems and formulas for solid electrolyte and cathode materials, highlighted 
by font size based on frequency.
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The linkage to AWA allows us to obtain more detailed 
information of the substance than what is published in 
the original papers.

Battery data include compositions of the cathode, 
anode, and electrolyte, along with charge/discharge capa
city and operational conditions. The Material ID of 
a target solid electrolyte or cathode material is recorded 
under the material of the corresponding battery compo
nent. This organization facilitates the easy identification 
of specific materials used in a battery and the tracking of 
batteries that incorporate a particular material.

5.2.3. Property data processing and correction
Property data in AWB includes ionic conductivity, acti
vation energy, diffusion coefficients, and charge/dis
charge capacity. This data is crucial for materials design, 
where high precision is essential. However, variations in 
data processing methods can lead to deviations in prop
erty values. For instance, ionic conductivity (σ) and acti
vation energy (Ea) are two pivotal properties for battery 
materials. Ionic conductivity is a function of temperature 
(T), typically described by the Arrhenius equation. Most 
papers present plots of σ against T and calculate Ea by 
fitting these data to an Arrhenius expression. However, 
there are two expressions are commonly used for fitting: 

Where A and B are constants, and kB represents the 
Boltzmann constant. The activation energies Ea' and 
Ea'', calculated by Equations (1) and (2) respectively, differ 
and this difference is temperature-dependent. To stan
dardize the data, we digitize all plots from the papers and 
refit σ and T using Equation (1) to obtain Ea. 
Additionally, to facilitate comparisons of ionic 

conductivity at consistent temperatures, we calculate σ 
values at 10-degree increments for all materials. Both the 
original experimental values and the calculated σ values 
are stored in separate tables in the database.

For capacity data, we extract charge/discharge capacity 
and related parameters from the text, tables, and graphs 
in the papers. Each capacity record in AWB includes the 
value of capacity, operational conditions such as voltage, 
current, and cycle number, and a link to the correspond
ing battery. The standard unit of capacity in AWB is 
mAhg−1. When the unit presented in a paper is mAh or 
mAh cm−2, and the mass or mass loading is specified, we 
convert it to the standard unit. Additionally, if the vol
tage-capacity curve is available, we also calculate the 
charge/discharge energy and energy efficiency.

During data digitalization and processing, we find 
that approximately 10% of papers contain errors in 
their data. Common mistakes include discrepancies 
between the data in plots and text, errors in units, and 
sample-related mistakes. In our data processing, we con
sistently check the coherence of data across texts, tables, 
and graphs. If inconsistencies are found, we investigate 
the reasons and make the necessary corrections.

6. Data available for battery materials

The current version of the AWB lists data entries as 
shown in Table 2. Of the 2,712 solid electrolyte 

Figure 4. Database structure of AtomWork-battery.

Table 2. Number of data entries of current version of 
AtomWork-battery.

Solid 
electrolyte

Cathode 
material Total

Paper 538 350 888
Material 2,721 1,122 3,843
Chemical system 461 214 670
Substance 583 252 812
Battery cell 222 1,344 1,566
Material property 23,184 495 23,679
Charge/discharge capacity 1,798 15,667 17,465
Curve 6,504 9,694 16,198
Data point of curve 246,705 770,915 1,017,620
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materials recorded, there are 461 different chemical 
systems, with the number of elements ranging from 2 
to 9. The elements present in these materials, along 
with the proportion of materials containing each ele
ment, are illustrated in Figure 5. The distribution of 
ionic conductivities at room temperature is displayed 
in Figure 6. We categorize the materials into two 
classes based on their ionic conductivity: a high ionic 
conductivity class (>10−2 Sm−1) and a low ionic con
ductivity class (≤10−2 Sm−1). The distribution of 

materials across these two conductivity classes relative 
to the number of elements is depicted in Figure 7. 
Materials with more than five elements tend to have 
a higher likelihood of exhibiting high ionic conductiv
ity. By integrating data from AWA, we can access 
detailed crystal structure data of these materials. For 
instance, the crystal structure types of these materials 
are presented in Figure 8. Although crystal structures 
like garnet, Nasicon, and perovskite are often high
lighted as potential high ionic conductive materials, 

Figure 5. Occurrence of elements in solid electrolyte materials.

Figure 6. Distribution of ionic conductivity at room temperature in AtomWork-Battery.
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our statistics do not demonstrate a significant advan
tage for them; conversely, many amorphous materials 
also exhibit high ionic conductivity. This suggests that 
crystal structure type may not be a definitive factor in 
the search for new ionic conductive materials.

Nevertheless, some more detailed structural para
meters are found to be strongly relevant to ionic con
ductivity. For example, ionic conductors with 
a garnet-type crystal structure have two Li sites, 24d 
and 96 h. With the ionic conductivity data in AWB 

Figure 7. Distribution of number of elements for (a) low ionic conductivity class and (b) high ionic conductivity class materials.

Figure 8. Crystal structure types of (a) low ionic conductivity class and (b) high ionic conductivity class materials.

Figure 10. Distribution of number of elements of cathode 
materials.

Figure 9. Correlation between Li occupancy at the 96 h and 
24d sites and ionic conductivity, showing that higher Li occu
pancy at the 96 h site is associated with increased ionic 
conductivity.
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and site occupancy data in AWA, we can see that 
higher Li occupancy at the 96 h site and lower occu
pancy at the 24d site correlates with enhanced ionic 
conductivity, as illustrated in Figure 9. This observa
tion is consistent with the computational result [25] 
on Li7La3Zr2O12, which indicate that the 96 h site has 
lower activation energy, and the experimental result 
[26] on Li7−xHxLa3Zr2O12, which show that 96 h Li has 
higher mobility. This example underscores the multi- 
scale data network’s capability to uncover structure- 

property relationships that cannot be detected with 
data from a single database. Additional results will be 
published in separated papers.

For the total of 1,122 cathode materials recorded, there 
are 214 chemical systems with the number of elements 
ranging from 1 to 8, as illustrated in Figure 10. The 
quinary system represents the largest proportion. 
The elements present in cathode materials, along with 
the proportion of materials containing each element, are 
illustrated in Figure 11. The structure types and discharge 
capacities are displayed in Figures 12 and 13, respectively. 

Figure 11. Occurrence of elements in cathode material.

Figure 12. Crystal structure types of cathode material.
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We do not observe a simple correlation between the 
number of elements or structure type and discharge 
capacity. This lack of correlation is considered attributed 
to the complexity of factors influencing discharge capa
city. Prediction of battery capacity likely requires complex 
models that consider a broader range of factors including 
material attributes, battery configurations, and opera
tional conditions.

7. Conclusion

We have developed an inorganic material data net
work composed of three interconnected, high- 
quality databases. These include AtomWork- 
Battery, which contains data on battery materials; 
AtomWork-Adv, which focuses on single-phase 
materials; and CompES-X, which houses data on 
calculated electronic structures. By integrating these 
databases, we can compile a comprehensive dataset 
that encompasses data on substances, materials, and 
batteries. The data within these databases are con
tinuously updated to include the latest research pub
lished in related scientific journals. This data 
network is designed to be a reliable resource for 
data-driven studies on inorganic materials for bat
teries and other applications.
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