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Abstract

Cancer development takes 10–50 years and epigenetics plays an important role. Recent 

evidence suggests that ~80% of human cancers are linked to environmental factors impinging 

upon genetics/epigenetics. Since advanced metastasized cancers are resistant to radiation/

chemotherapeutic drugs, cancer prevention by relatively non-toxic “epigenetic modifiers” will 

be logical. Many dietary phytochemicals possess powerful antioxidant and anti-inflammatory 

properties that are hallmarks of cancer prevention. Dietary phytochemicals can regulate gene 

expression of the cellular genome via epigenetic mechanisms. In this review, we will summarize 

preclinical studies that demonstrate epigenetic mechanisms of dietary phytochemicals in skin, 

colorectal, and prostate cancer prevention. Key examples of the importance of epigenetic 

regulation in carcinogenesis include hypermethylation of the NRF2 promoter region in cancer 

cells, resulting in inhibition of NRF2-ARE signaling. Many dietary phytochemicals demethylate 

NRF2 promoter region and restore NRF2 signaling. Phytochemicals can also inhibit inflammatory 

responses via hyper-methylation of inflammation-relevant genes to block gene expression. 

Altogether, dietary phytochemicals are excellent candidates for cancer prevention due to their 

low toxicity, potent antioxidant and anti-inflammatory properties, and powerful epigenetic effects 

in reversing pro-carcinogenic events.

Keywords

Skin cancer; colorectal cancer; prostate cancer; dietary phytochemicals; epigenetic modulation; 
anti-oxidation; anti-inflammation

Introduction

Is cancer a preventable disease? Cancer is a complex chronic disease and cancer 

development comprises multistep processes 1, 2, involving initiation, promotion, progression, 

and metastasis 3, 4. Recent evidence suggests that ~80% of human cancers are linked to 
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environmental factors impinging upon the fidelity of the underlying genetic information 
4–7. Cancer development is a long process that typically takes 10–50 years (depending 

on the tissue/organ), and excessive oxidative stress and inflammation are regarded as vital 

determinants driving cancer development 8–10. Since advanced metastasized cancers are 

resistant to radiation and chemotherapeutic drugs, prevention of early stages of cancer 

by relatively non-toxic, potent antioxidative and anti-inflammatory dietary phytochemicals 

would be logical.

During cancer development, particularly during the “promotion” stage, epigenetics has been 

postulated to play a vital role in driving cellular transformation such as stem cells forming 

benign microscopic tumors 11. Feinberg et al. in the 1980s reported that most if not all 

tumors could be associated with widespread losses and some gains of DNA methylation 

throughout the genome 12, 13. This concept was reviewed recently 6, 14 and implicated the 

role of epigenetics during cancer development.

Epigenetics influences many cellular activities, including cell growth and disease 

development 15. Epigenetic mechanisms mediate gene activation/inhibition in response to 

environmental cues driving three major processes: DNA methylation, histone modification, 

and noncoding RNA expression16, 17. DNA methylation is a chemical modification via DNA 

methyltransferases (DNMTs) that add methyl groups to DNA molecules to modulate gene 

expression. Abnormal DNA methylation, such as hypermethylation and hypomethylation is 

considered a hallmark of cancer development. Hypermethylation of key tumor suppressor 

genes results in the “silencing” of the genes which drive cancer development18, 19. 

Histone modifications play the role of the “switch” and are post-translational modifications 

(acetylation/deacetylation and methylation/ demethylation) of histones by which the linkage 

between DNA molecules and histone proteins changes to either tighten or loosen the 

interaction, further affecting the gene expression20. MicroRNAs (miRNAs) are one of 

the noncoding RNAs involved in epigenetics and can be classified into tumor-promoting 

and tumor-suppressing miRNAs, which are upregulated and downregulated during cancer 

development21, 22. The interwind of cellular signaling pathways and epigenetics can also 

affect genomic alteration in cells23. For instance, the KEAP1-NRF2 signaling pathway is 

associated with the cellular defense system against oxidative stress. Hypermethylation of the 

NRF2 promoter is observed in several types of tumors and causes cancer progression24.

Phytochemicals are bioactive ingredients derived from various plants and herbs 25. 

Dietary phytochemicals stem from vegetables, fruits, grains, and culinary herbs; therefore, 

phytochemicals in general have low toxicity when consumed long term 26, 27. They can 

exert antioxidant, anti-inflammatory, and anti-angiogenic properties, as well as function 

against cancer development via regulating receptors, ion channels, ion pumps, cytoskeletons, 

and transcriptional machinery in cells28–30. Additionally, recent research reveals that many 

dietary phytochemicals would possess epigenetic-modifying abilities 31. This review aims to 

summarize preclinical evidence of cancer prevention elicited by dietary phytochemicals via 

epigenetic mechanisms in skin, colorectal, and prostate cancers.
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Natural sources of dietary phytochemicals

Dietary phytochemicals are derived from natural sources, for example, vegetables, fruits, 

and medical herbs. Phytochemicals are divided into primary and secondary metabolites 

produced by plant metabolism and they can perform bioactive activities upon oral ingestion 

and they play a vital role in disease prevention and reduction in risk factors via their 

innate attribution 32. In general, phytochemicals can be classified into five main categories: 

(1) phenolic phytochemicals; (2) terpenoids; (3) glucosinolates; (4) polyacetylene; (5) 

phytosterols and phytostanols33.

Phenolic phytochemicals account for 45% of known phytochemicals and are further 

classified as phenolic acids, flavonoids, stilbenes, and lignans 33. Under flavonoids, there are 

two subgroups, anthocyanins and anthoxanthins. Anthoxanthins include flavonols, flavones, 

flavanones, flavanols, and isoflavones 34 and unlike anthocyanins that are responsible for 

the emission of red, blue, and purple colors in vegetables, anthoxanthins, covering fiver 

major subclasses, are colorless or white to yellow compounds 33, 35. Flavonoids possess 

antioxidant and anti-inflammatory activities that contribute to, inhibition of carcinogenesis, 

involving induction of cell cycle arrest or apoptosis, regulation of the host immune system, 

and changes in cellular signaling pathways 36. Examples of phenolic phytochemicals include 

curcumin, luteolin, resveratrol, pelargonidin, and more.

Terpenoids are bioactive compounds of essential oils that can be extracted from roots, seeds, 

and other parts of plants 37. Biochemically, terpenoids are terpenes modified with various 

functional groups and they are secondary metabolites of aromatic and medicinal plants 
38. Terpenoids have important biological activities, such as antioxidant, anti-inflammatory, 

neuroprotective abilities, and anti-cancer effects, including induction of apoptosis, inhibiting 

proliferation, and inhibiting tumor growth 39. Fucoxanthin, ursolic acid, and corosolic acid 

are examples of terpenoids.

Glucosinolates are sulfur-containing glucosides that are widely found in cruciferous 

vegetables and oilseeds 33. The bioactive compounds, indole, allylic sulfur compounds, and 

isothiocyanates, are encompassed within glucosinolates 40. The most common example is 

sulforaphane, which is a well-known activator of the NRF2-ARE signaling pathway and an 

HDAC modulator 41.

Phytosterols and phytostanols are plant sterols and the human body is unable to synthesize 

them; therefore, the only source is from dietary ingestion, such as vegetable oils, 

cereals, nuts, and seeds 42. The health effects of phytosterols and phytostanols include 

lowering cholesterol levels, cancer prevention, and immunomodulation 33. Polyacetylenes 

are emerging phytochemicals involved in cancer prevention and are found in apiaceous 

vegetables. Polyacetylenes have antioxidant and anti-inflammatory properties. The involving 

cellular mechanisms and molecular pathways of polyacetylene action are identified as the 

NF-κB pathway, antioxidant response elements, regulation of the cell cycle, and apoptosis 
43.

Considering the overall strategy in cancer prevention, consuming vegetables and fruits is a 

convenient and logical way to ingest a wide range of phytochemicals that can provide cancer 
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prevention in the general population. For higher-risk individuals, pharmacological doses of a 

combination of bioactive phytochemicals with low toxicity would be a logical approach 44, 

45.

Skin cancer prevention by dietary phytochemicals

The development of skin cancer is initiated by diverse drivers, such as DNA damage, 

chronic inflammation, suppression of the immune system, photoaging, and/or mutations. 

The process is accompanied by genetic and epigenetic changes, which further trigger 

multiple signaling pathways that drive skin carcinogenesis 46. Non-melanomatous skin 

cancer (NMSC) is one of the most prevalent cancers in the world47. Basal cell carcinoma 

and squamous cell carcinoma are the two most commonly diagnosed types of NMSC 

accounting for 99% of all NMSC cases48. Exposure to ultraviolet (UV) radiation and 

environmental chemicals/pollutants, for example, arsenic and benzo[a]pyrene (B[a]P), are 

the most common known causes of NMSC49. Recently, our research revealed that exposures 

to UV or benzo[a]pyrene (B[a]P) and 12-O-tetradecanoylphorbol-13-acetate (TPA) led to 

DNA methylomic and transcriptomic changes at different stages of skin carcinogenesis50, 51. 

Additionally, increasing research supports alterations in cellular metabolism related to the 

epigenetic machinery is further linked to skin cancer development.

Polyphenols

Several polyphenols have activity against skin cancer. Tea catechins are known to re-activate 

silenced tumor suppressor genes, p16INK4a, and Cip1/p21 via epigenetic regulations 

including decreased global DNA methylation and increased histone acetylation (H3-Lys 

9 and 14; H4-Lys 15,12 and 16) levels in A431 epidermoid carcinoma cells 52.

The topical application of apigenin has long been recognized as a potential chemoprevention 

strategy against skin carcinogenesis induced by TPA or UV irradiation in susceptible mouse 

strains 53, 54. Later studies with apigenin have revealed a demethylation effect coupled with 

attenuated DNMT and HDAC activity at 15 CpG sites in the NRF2 promoter in JB6 P+ cells 
55.

Pelargonidin has been shown to possess excellent potential in blocking TPA-induced cell 

transformation by reducing protein levels of genes encoding DNMTs and HDACs 56 and 

further decreasing DNA methylation in the NRF2 promoter region of JB6 P+ cells 56.

Isothiocyanates

Several isothiocyanates have demonstrated potential in restoring the epigenetic landscape 

that contributes to skin carcinogenesis 57, 58. Sulforaphane (SFN), a well-studied anti-cancer 

phytochemical, has been shown to reactivate NRF2 through the downregulation of DNMTs 

and HDACs in TPA-exposed JB6 P+ epidermal cells 41. Both sulforaphane and tea 

polyphenols were found to suppress the expression of Bmi-1 and Ezh2, the highly expressed 

polycomb group proteins (PcG) and regulators of chromatin remodeling in skin cancer 59–62.
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We reported the chemopreventive epigenetic effects of moringa isothiocyanate (MIC-1) 

in TPA-challenged JB6 P+ cells. We identified differentially methylated regions and 

differentially expressed genes, including the cancer-related genes Tmpt, Tubb3, and Muc2, 

the GTPases Gchfr and Igtp, and the cell cycle-related gene Cdc7 63. The Muc2 gene is 

reported to be induced by inflammatory factors (IL-1β, TNFα) via the NF-κB pathway64. 

The correlative analysis between transcriptome gene expression and the DNA methylome 

showed that MIC-1 treatment led to hypermethylation and downregulation of the Muc2 

gene63.

Terpenoids

We found that the synthetic triterpenoid CDDO (2-cyano 2,3-dioxoolean-1,9-dien-28-oic 

acid) blocked TPA-induced skin cell transformation dose-dependently at methylome and 

transcriptome levels in JB6 P+ cells. Five-day treatment (CDDO dose of 50 nM) revealed 

that LYL1 basic helix-loop-helix family members- Lyl1, Lad1, and Dennd2d genes-were 

the most significantly differentially expressed genes after CDDO treatment. The TPA-

induced methylation status of Tmem253, Bco2, and Madd also was reversed by CDDO. 

Furthermore, CDDO significantly restored the NRF2-ARE pathway of Nqo1 that was 

inhibited by TPA by decreasing methylation of its CpG promoter65. We also determined that 

fucoxanthin (FX) reversed the TPA-induced transformation of JB6 P+ cells by decreasing 

methylation of the NRF2 promoter region and significantly reducing DNMT activity but not 

affecting HDAC activity 66.

An integrative study of the CpG methylome and RNA transcriptome after treatment 

with ursolic acid (UA) showed increased activity of antioxidant, anti-inflammatory, and 

anticancer pathways in UVB-induced nonmelanoma skin carcinogenesis. Yang et al. 

observed that central antioxidant genes, such as NRF2 and NQO1 were upregulated 

by UA treatment in the early phase of UVB-induced carcinogenesis, and significant 

hypomethylation of CpG sites of these genes was also revealed by the methylation analysis 
67.

An epigenetic study with corosolic acid (CA) revealed novel molecular targets for the 

prevention of early stages of skin cancer. The results of methylation sequencing showed 

that biomarkers such as Smad-3, Tasp1, Uri1, Nsg2, Madd, Dusp22, and Rassf were 

hypermethylated by TPA challenge and were hypomethylated by CA treatment 68.

Lotus leaf ethanolic extract

Lotus leaf ethanolic extract is known to reduce the neoplastic transformation of JB6 

P+ cells, potentially by activating the NRF2 pathway and regulating epigenetic DNA 

methylation and histone acetylation 69. Several canonical signaling pathways were unveiled 

by Ingenuity Pathway Analysis (IPA) analysis indicating that the application of these 

phytochemicals was able to inhibit inflammatory response pathways (NF-κB signaling, IL-1 

signaling) and activate NRF2-mediated antioxidative response in the skin cancer model63, 68. 

The studies of using phytochemicals to prevent skin cancer carcinogenesis are listed in Table 

1.
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Colorectal cancer prevention by dietary phytochemicals

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world and 

has a high incidence and mortality rate70. In the United States, according to the American 

Cancer Society (ACS), nearly double the number of young adults under 55 are being 

diagnosed with CRC today compared to a decade ago, and more are dying from the disease 

each year, hence there is an urgent need to identify causing factors and preventive strategy. 

BRAF mutations, microsatellite instability, KRAS mutations, and PIK3CA mutations all are 

implicated in CRC development. Dysregulation of the gene products such as growth factors, 

growth factor receptors, protein kinase, inflammatory cytokines, inflammatory enzymes, 

proapoptotic proteins, anti-apoptotic proteins, tumor suppressors, transcription factors, and 

their relevant signaling pathways are reported to be involved in carcinogenesis71–73.

One widely used rodent model is azoxymethane (AOM) and dextran sulfate sodium (DSS) 

driven colitis- associated CRC. AOM functions as a carcinogen inducing aberrant crypt foci, 

and DSS is an inflammatory agent damaging the colonic epithelium74, 75. Therefore, the 

AOM/DSS-driven mouse model is often used to induce inflammation and tumor initiation 

in CRC. Intractable epigenetic alteration has been linked to CRC development. In particular, 

aberrant methylation of the regulators is observed in an AOM/DSS-induced CRC or a DSS-

induced inflammation mouse model76. Lipopolysaccharide (LPS) is a unique component 

of the outer cell membrane of the gram-negative bacteria and it induces inflammation via 

activating the Toll-like receptor 4 (TLR4)-mediated signaling pathways in intestinal epithelia 

cells77. Moreover, CRC patients are observed having higher LPS concentration in blood and 

CRC tissues than the healthy people. Consequently, LPS-challenged cellular model are often 

used in vitro78, 79.

Polyphenols

Guo et al. demonstrated that curcumin (CUR) reduced methylation of the promoter region 

of the tumor suppressor gene - DLEC1 in human colon cancer HT29 cells through 

its demethylating effects. In addition, curcumin decreased protein expression of DNA 

methyltransferases and histone deacetylases80. Guo et al. subsequently confirmed the effect 

of curcumin on the epigenome on the inflammatory response in the AOM-DSS mouse model 

of colorectal cancer. Through a series of experiments including SureSelect methyl-seq and 

RNA-seq, they found that curcumin restored AOM-DSS-induced hypomethylation of Tnf. 

The hypomethylated state of inflammation-relevant genes such as Duoxa2, Gja1, Icam1, 

Igfbp4, Itgb2, Lgals9, and Pf4 were also reversed by curcumin, inhibiting the abnormally 

high expression of these genes induced by AOM/DSS81.

In a study of the flavonoid dietary phytochemical luteolin (LUT), the epigenetic regulation 

of the NRF2-ARE pathway by LUT in HCT116 cells was studied. LUT was able to reduce 

the methylation of the NRF2 promoter region, leading to significant changes in the mRNA 

and protein expression levels of genes in NRF2 and its related genes (Ho-1 and Nqo1). 

Additionally, LUT treatment reduced protein level and enzymatic activities of DNMTs and 

HDACs which were associated with regulation of NRF2. All these results pointed to the 

potential anticancer activity of LUT82.
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Resveratrol, found in peanuts, red grapes, blue barriers, and rasberries, has been shown to 

prevent inflammation-driven colorectal cancer by altering the expression of miRNA-101b 

and miRNA-455 and down-regulating inflammatory stress markers such as p5383, 84. 

Altamemi et al. reported that resveratrol treatment reduced protein levels of IL-6 and TNF-α 
and raised the expression of two anti-inflammatory miRNAs, miRNA-101b and miRNA- 

455 in a DSS-induced colitis mouse model 84.

Isothiocyanates

In human colon cancer HCT116 and SW8409 cell lines, sulforaphane (SFN) or its analogs 

affect HAT/HDAC activity and decrease the expression of HDAC3, P300/CBP-associated 

factors, as well as KAT2A/GCN5 and DNMT1, while enhancing acetylation and degradation 

of repair proteins such as CtIP85. Additionally, SFN treatment in Caco-2 cells demethylated 

the NRF2 promoter region and thus activated the NRF2 signaling pathway. It was observed 

that DNMT expression was reduced by SFN treatment86.

In Liu and Dey’s study, a 0.12% phenethyl Isothiocyanate (PEITC)-enriched diet fed to mice 

lowered inflammation of the colonic mucosa and submucosa during AOM/DSS-induced 

colitis. Further in vitro experiments suggested the underlying mechanism was related to 

the inhibition of NFκB1 protein by PEITC treatment. Epigenetically, the mRNA expression 

of NFκB1 displayed an inverse correlation with tri-methylation of lysine 27 on histone 3 

near the NFκB1 promoter region in a time-dependent manner. PEITC increased the level 

of H3K27me3 with a rise in the expression on the NFκB1 gene. PEITC mitigated colon 

carcinogenesis via modulating NFκB1 signaling87.

Betalain

The betaine pigment indicaxanthin (IND) from cactus fruit exhibited anti-inflammatory 

and cytotoxic activity in a variety of colorectal cancer cell lines. Ragusa et al. concluded 

that IND affected autophagic activity by promoting the demethylation of CpG islands 

in promoters of ATG7 and ATG3 in Caco-2 cells. In addition, the up-regulation of the 

expression of LC3-II and Beclin1 by IND can further promote the formation and fusion of 

autophagosomes in Caco-2 cells88.

Water extract of Ilex rotunda (WIR)

A standardized water extract of Ilex rotunda (WIR) was analyzed to evaluate the potential 

role of a microRNA (miRNA)-dependent mechanism for the prevention of colon cancer. 

WIR, with its rich content of triterpenoids, restored the up-regulated levels of miR-31–5p 

that were triggered by AOM/DSS administration in C57BL/6 mice and inhibited ectopic 

expression of LATS2 and YAP genes that were regulated by miR-31–5p89.

Through epigenetic modulation, phytochemicals regulate the NRF2-ARE signaling pathway 

to exert antioxidant effects and mediate the NFκB signaling pathway against inflammation. 

Table 2 lists the phytochemicals that have been shown to have potential for preventing 

colorectal cancer.
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Prostate cancer prevention by dietary phytochemicals

Prostate cancer (PCa) is a leading cause of male death associated with cancer in the United 

States90. The development from prostatic intraepithelial neoplasia to androgen-independent 

invasive carcinoma is a long-term process, which may take years to decades91. During tumor 

progression, genetic and epigenetic alterations are involved92. Two murine models have been 

developed to study PCa. (1) Transgenic adenocarcinoma of mouse prostate (TRAMP) mouse 

model is commonly used. TRAMP mice, incorporating SV40 early-region tumor antigens, 

mimic human prostate carcinogenesis and exhibit tumor transformation via interactions with 

tumor suppressor gene products93, 94. The NRF2-ARE signaling pathway is reported to 

be gradually downregulated during tumorigenesis in TRAMP mice95. (2) Phosphatase and 

tensin homolog located on chromosome 10 (PTEN) mouse model is another commonly 

used PCa model. PTEN is a tumor suppressor gene and one of the most frequently 

mutated/deleted genes in PCa96. PTEN deletion has been strongly linked to inflammation. 

In prostate-specific PTEN null mice, the expression of CXCL8/IL-8, a pro-inflammatory 

chemokine promoting tumorigenesis is increased 97. More importantly, PTEN deletion 

impacts the epigenome and transcriptome of prostate cells. This hypothesis was examined in 

a prostate-specific PTEN-KO mouse prostatic adenocarcinoma model through DNA methyl-

Seq and RNA-Seq analyses. Loss of PTEN drove global changes in DNA CpG methylation 

and transcriptomic gene expression and was strongly associated with activation of several 

inflammatory and immune molecular pathways during PCa development98. These findings 

yield biomarkers of the critical molecular pathways that can be targeted by phytochemicals 

via epigenetic regulation for the prevention and treatment of PCa in human trials.

Polyphenols

Li et al. investigated the epigenetic effects of the synthetic curcumin analog FN1 in TRAMP 

C1 cells. FN1 was synthesized by coupling pyridyl aldehyde with tetrahydrothiopyran-4-

one.99. FN1 treatment in TRAMP C1 cells demethylated the NRF2 promoter region, 

restored NRF2 expression, and increased the level of downstream genes, such as NQO-1, 

HO-1, and UGT1A1. FN1 also significantly reduced levels of DNMT1, DNMT3a, 

DNMT3b, and HDAC 493. The investigation of the effects of other synthetic curcumin 

derivatives, E10 and F10 was conducted. E10 and F10 were synthesized by coupling 

the substituted benzaldehyde with tetrahydropyran-4-ones and tetrahydrothiopyran-4-one, 

respectively99. The results showed that both compounds were more potent in increasing 

NRF2 expression than curcumin and SFN. F10 mitigated the summation of H3k27me3 

and induced hypomethylation on the NRF2 promoter. F10 also downregulated DNMTs 

(DNMT1, DNMT3a, DNMT3b) and HDACs (HDAC1, HDAC4, and HDAC7). F10 can 

restore the NRF2 signaling pathway via demethylation, reduction of DNMTs and HDACs, 

and suppression of H3k27me3 accumulation 100.

Isothiocyanates

In the study by Zhang et al., Sulforaphane (SFN) treatment demethylated the first five CpGs 

of the NRF2 promoter in TRAMP C1 cells and activated mRNA and protein levels of NRF2 

and NQO-1. SFN treatment attenuated DNMT1, DNMT3a, and HDACs 1, 4, 5, and 7 at the 
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protein level while enhancing acetyl-histone 3 levels which bound to the NRF2 promoter101. 

SFN exerted its preventive effects via epigenetically modulating the NRF2 promoter region 

and re-activating the NRF2-ARE signaling pathway in TRAMP C1 cells.

The study using TRAMP mice by Wu et al. observed that the phenethyl Isothiocyanate 

(PEITC) diet reversed or attenuated the induction of cell cycle/Cdc42 signaling, 

inflammation, and cancer-related signaling in the prostate tissues of TRAMP mice. Pathway 

analysis revealed differences in signaling between wild-type and TRAMP mice, including 

pancreatic adenocarcinoma signaling activation in TRAMP mice. Analyzing DNA methyl 

sequencing data led to the observation of PEITC-activated reduction of global methylation 

alteration in PCa development. Integration of DNA methylation and RNA expression 

profiles of TRAMP and TRAMP+PEITC identified PEITC reversed the inverse correlation 

between RNA expression and DNA methylation in 28 genes. Among these genes, Arhgap40, 

Ebf4, kcnq4, and Papln were validated by qPCR 91.

In addition to decreasing global methylation, PEITC can prevent PCa cell invasion via 

upregulation of miRNA-194. Zhang et al. stated that PEITC treatment in LNCaP cells 

upregulated the expression of miRNA-194, which targeted bone morphogenetic protein 1 

(BMP1) and further inhibited the expression of central oncogenic matrix metalloproteinases, 

MMP2 and MMP9. The axis of miRNA-194/ BMP1/ MMP2/9 unveiled the regulation of 

PCa cell metastasis by PEITC102.

Terpenoids

Combinatorial treatment with natural compounds including ursolic acid (UA), curcumin 

(CUR), and resveratrol (RES) was studied in HMVP2 cells and male FVB/N mice 

subcutaneously injected with HMVP2 cells. The results showed that the treatment with 

UA+CUR and UA+RES could inhibit prostate tumorigenesis and account for critical 

regulation of cancer metabolism 103. In a recent study, Wang et al. observed that UA exerted 

its protection against tumor development initiated by PTEN deletion at different stages 

of PCa. UA treatment decreased PTEN KO-triggered differentially methylated regions 

(DMRs) and reversed PTEN KO-induced overexpression of PCa-relevant oncogenes, Has3, 

Cfh, and Msx1. Correlation analysis of differentially expressed genes (DEGs) and DMRs 

revealed that the mRNA expression of the tumor suppressor gene (BDH2) and oncogenes 

(Ephas, Isg15, Nos2) were correlated with the CpG methylation status of the promoter 

region in the UA-treated group at the early phase. The pathway analysis indicated that UA 

treatment reversed PTEN KO-activated inflammatory pathways, such as NF-κB signaling, 

IL-6 signaling, and IL-8 signaling104. Cellular and animal studies on the prevention of PCa 

indicate that phytochemicals provide the restoration of the NRF2-ARE signaling pathway 

through demethylation of the NRF2 promoter region and diminishment of DNMTs and 

HDACs expression.

Benzoquinone

Su et al. examined the anticancer properties of Z-Ligustilide (Lig) and supercritical CO2 

extract of Radix Angelica Sinensis (RAS) in TRAMP C1 cells. RAS is a dried root of 
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Angelica sinensis and has been served as medicinal plant and supplementary food for 

centuries. Lig is one of bioactive compounds from a lipophilic extract of RAS105. The 

finding suggested that NRF2 expression was restored via epigenetic changes. This led to 

increased mRNA and protein levels of NRF2 and its target genes such as HO-1, NQO1, 

and UGT1A1. The treatment of Lig and RAS extract demethylated the first five CpGs and 

significantly reduced the relative amount of methylated DNA in the NRF2 promoter region. 

Additionally, Lig and RAS extract treatment inhibited DNA methyltransferase activity 

in TRAMP C1 cells105. Table 3 summarizes the phytochemicals that affect epigenetic 

pathways and are used to inhibit PCa growth and contribute to cancer prevention.

Summary

Skin, colorectal, and prostate cancers are increasing in new cancer cases in the US. 

Cancer development is a long process. It encompasses an imbalance of oxidative stress 

and excessive inflammation that cause the dysfunction of multiple signaling pathways 

leading to cancer initiation and progression. Many phytochemicals in our everyday diet 

possess powerful antioxidant and anti-inflammatory properties that are hallmarks of cancer 

prevention. Recent evidence suggests that epigenetic modulation of these critical signaling 

pathways by phytochemicals is related to their antioxidant and anti-inflammatory effects. 

For example, modulation of the NRF2-ARE signaling pathway and the NF-κB signaling 

pathway has been shown to contribute to the overall efficacy of cancer prevention by 

phytochemicals.

Despite a wide range of promising dietary phytochemicals that have been reported to 

have preventive activity in preclinical research, the translation of dietary phytochemicals to 

clinical use has been limited. Only a few of these agents are applied to the clinical studies. 

There is an urgent need to expedite the testing of these agents in clinical trials involving 

appropriate high-risk individuals with the proper dosing, formulation, biomarker endpoints 

(surrogate and tissue targeted), and integration of pharmacokinetic (PK)-pharmacodynamic 

(PD) inputs. Taken together, this article summarizes the latest preclinical research and 

hypotheses on cancer prevention by dietary phytochemicals via epigenetic modulation in 

cancers of the skin, colorectum, and prostate. In the general population, cancer prevention 

with a healthy lifestyle composed of exercise and consuming vegetables, fruits, herbs, 

and spices is a convenient and logical way to ingest a wide range of phytochemicals 

that can protect against cancer development. For higher-risk individuals, pharmacological 

doses of a combination of bioactive phytochemicals and/or phytochemical combinations 

with pharmacological agents of low toxicity would be logical to test for preventing cancer 

development 44, 45.
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Abbreviations

AOM Azoxymethane

B[a]P Benzo[a]pyrene

BMP1 Bone morphogenetic protein 1

CA Corosolic acid

CDDO 2-cyano 2,3-dioxoolean-1,9-dien-28-oic acid

CpG 5’-C-phosphate-G-3’

CRC Colorectal cancer

CUR Curcumin

DEG Differentially expressed gene

DMR Differentially methylated region

DNMT DNA methyltransferases

DSS Dextran sulfate sodium

FX Fucoxanthin

HAT Histone acetyltransferase

HDAC Histone deacetylases

IND Indicaxanthin

Lig Z-Ligustilide

LUT Luteolin

MIC-1 Moringa isothiocyanate

miRNA MicroRNA

MMP Matrix metalloproteinases

NMSC Non-melanoma skin cancer

PCa Prostate cancer

PcG Polycomb group proteins

PD Pharmacodynamics

PEITC Phenethyl Isothiocyanate

PK Pharmacokinetics

PTEN Phosphatase and tensin homolog located on chromosome 10
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RAS Radix Angelica Sinensis

SFN Sulforaphane

TPA 12-O-tetradecanoylphorbol-13-acetate

TRAMP Transgenic adenocarcinoma of mouse prostate

UA Ursolic acid

UV Ultraviolet

WIR Water extract of I. rotunda
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