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Abstract—Goal: To accurately detect infections in Dia-
betic Foot Ulcers (DFUs) using photographs taken at the
Point of Care (POC). Achieving high performance is criti-
cal for preventing complications and amputations, as well
as minimizing unnecessary emergency department visits
and referrals. Methods: This paper proposes the Guided
Conditional Diffusion Classifier (ConDiff). This novel deep-
learning framework combines guided image synthesis with
a denoising diffusion model and distance-based classifi-
cation. The process involves (1) generating guided con-
ditional synthetic images by injecting Gaussian noise to
a guide (input) image, followed by denoising the noise-
perturbed image through a reverse diffusion process, con-
ditioned on infection status and (2) classifying infections
based on the minimum Euclidean distance between syn-
thesized images and the original guide image in embed-
ding space. Results: ConDiff demonstrated superior per-
formance with an average accuracy of 81% that outper-
formed state-of-the-art (SOTA) models by at least 3%. It also
achieved the highest sensitivity of 85.4%, which is crucial in
clinical domains while significantly improving specificity to
74.4%, surpassing the best SOTA model. Conclusions: Con-
Diff not only improves the diagnosis of DFU infections but
also pioneers the use of generative discriminative models
for detailed medical image analysis, offering a promising
approach for improving patient outcomes.

Index Terms—Diabetic foot ulcers, diffusion models,
distance-based image classification, generative models,
wound infection.
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Impact Statemeni—ConDiff enhances the performance of
automatic diagnosis of infections in diabetic foot ulcers,
offering a promising tool for early detection and improved
patient care.

l. INTRODUCTION

HRONIC wounds, affecting over 6.5 million people or
C approximately 2% of the U.S. population, represent a
significant health issue with healthcare expenses exceeding
$25 billion each year [1], [2]. Diabetic Foot Ulcers (DFUs), a
prevalent subtype of chronic wounds, pose substantial risks for
diabetic patients. Often located on the soles of the feet, DFUs
are highly susceptible to infection, with 40% to 80% of cases
becoming infected [3].

The problem: Accurate diagnosis of infections in DFUs in-
volves analyzing the bacteriology of the wound and reviewing
patient records, including clinical history, physical health assess-
ments, and blood tests. However, as clinicians do not always
have access to this comprehensive wound information, they
often rely on visual inspection to identify signs of infection in
DFUs. Visual indicators of infection include increased redness
around the ulcer and colored purulent discharge. In addition, at
the point of care (for example, patient homes or trauma sites),
routine wound assessment and infection detection are frequently
performed by caregivers who are not wound experts, especially
in low-resource settings and developing countries. When such
caregivers suspect an infection, they err on the side of caution by
recommending that patients visit a clinic or emergency services
where a wound expert checks to determine if the wound is
infected. For wounds that are actually infected, the referral
process can delay treatment for infected wounds, increasing the
likelihood of complications, including amputations, surgery that
costs between $20,000 and $60,000 per patient [11], [12] and
has associated lifetime rehabilitation costs of $509,272 [13].
Unfortunately, approximately half of the patients die within five
years after a lower extremity amputation [14]. If the wound is
not infected, the referral process wastes patient and provider
time and incurs unnecessary expenses such as transportation
and emergency department costs [15], [16].

This paper proposes an automated deep-learning method for
effective monitoring and early detection of infections in DFUs
from images at the Point of Care (POC).
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Fig. 1. Natural data augmentation of an original image with three
different magnifications.

Prior work: Recently, machine learning methods have
achieved impressive performance in various medical image
analysis and wound assessment tasks, including the works by
Liu et al. [17] to score the healing progress of chronic wounds
from photographs based on evidence-based rubrics, such as the
Photographic Wound Assessment Tool (PWAT). Furthermore,
State-of-the-Art (SOTA) machine learning techniques have been
proposed to detect infections from the visual appearance of
wounds on photographs [6], [7], [9], [10] without the need for
direct wound tests, medical notes, or extensive clinical exami-
nations. Goyal et al. [6] introduced the CNN-Ensemble model,
which extracts bottleneck features from CNN architectures that
are then classified using an SVM classifier. CNN-Ensemble
achieved 72.7% accuracy for binary infection classification of
wound images in the DFU infection dataset.

In a subsequent study, Liu et al. [8] reported an impressive
accuracy of 99% for wound infection classification by adapting
the EfficientNet model [18], along with data augmentation tech-
niques. However, their high accuracy was due in part to data leak-
age issues between training and testing data sets. Specifically,
the original DFU infection dataset from Goyal et al. [6] included
each wound image in three naturally augmented forms with
varying magnifications (see Fig. 1). Liu et al. [8] randomly split
these augmented images between training and testing sets on a
sample-wise basis, which resulted in significant data leakage
since the testing set included images that closely resembled
augmented versions of the training images.

Challenges: Detecting infection in DFU images using deep
learning faces several obstacles. First, the distinction between
infected and uninfected wounds is subtle, with high inter-class
similarity and intra-class variation [6], complicating accurate
classification. Second, wound image datasets often suffer from
inconsistent imaging conditions, such as variations in camera
distance, orientation, and lighting [6].

Our approach: This paper presents the Guided Conditional
Diffusion Classifier (ConDiff), a novel generative discriminative
approach for wound infection classification (see Fig. 2). ConDiff
leverages conditional guide image editing with a generative
diffusion model [19], [20] by perturbing an input image with a

Which one is more
similar to xy?

Triplet Classifier
PN (2
Dy (020, 22)

¥1: Uninfected

Denoising U-Net

€g (xt! L yl)

Yyo: Infected

Fig. 2. Inference in the ConDiff Classier Framework. Input zg is per-
turbed by noise of strength to. The perturbed input z;,r is denoised

through a reverse diffusion process to synthesize image aééy") condi-
tioned on label y;. Infection classification is based on the minimum Lo

distance between z( and ozf)y” in embedding space.

specific amount of Gaussian noise, and generating new images
by using a reverse diffusion process to gradually remove noise
from the noise-perturbed input image. The ConDiff diffusion
process is conditioned on the state of the wound (no infection
(y1) or infection (y2)), creating synthetic images reflective of
these states. One key importance is the ability of ConDiff to
discern and learn similarities between the representations of the
conditionally generated images & and the original wound image
zo through a distance-based classifier Ly in the embedding
space. The condition that yields the synthetic image that is
most similar to the original is selected as the predictive label.
This work utilizes the DFU infection dataset provided by Goyal
et al. [6] (see Table I). However, to eliminate data leakage
between training and test sets, we have refined our dataset
creation and splitting strategy. Using subject-wise splitting, only
the second magnified naturally augmented image (refer to Fig. 1)
is utilized for each subject.
Main contributions:
® We propose the Guided Conditional Diffusion Classifier
(ConDiff), an end-to-end framework that uniquely inte-
grates a guided diffusion and a distance-based classifier
for classifying infected wound images. To the best of our
knowledge, ConDiff is the first generative discriminative
method to analyze fine-grained wound images.
® In evaluations using 5-fold cross-validation on the test
DFU dataset (148 infected, 103 uninfected), ConDiff con-
sistently outperforms SOTA models, achieving up to the
highest sensitivity of 85.4% and demonstrating superior
generalization through low standard deviations across dif-
ferent test folds.
¢ Heatmaps generated by Score-CAM [21] are applied to
visually illustrate that ConDiff focuses on the correct
wound regions when classifying wound infection status.
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TABLE |
SUMMARY OF PRIOR WORK ON WOUND INFECTION CLASSIFICATION USING DEEP LEARNING

Summary of

No. of

Specific ML problem  Related Work Approach Target Classes Dataset Results
WOL;I:I(; Sligfgtigﬁuon Wang et al. CNN-based: 5 classes NYU wound Accfl,lfr,iiy;(?;ﬁ%
2015 [4] ConvNet + SVM Database ) 7

Classification

Classification of

. CNN-based: AlexNet
7 tissue types

Nejati et al.

(infection and
no infection)

Sensitivity: 31%

Private data

(data statistics Accuracy 95.6%

including infection 2018 [5] + PCA + SVM is unknown) (Only reported accuracy)
Goyal et al. CNN-based: Acgllir\;/l'C }’,/:3752‘;%
2020 [6] Ensemble CNN | 9070

DFU infection

Part B DFU
2020 dataset

Sensitivity: 70.9%
Accuracy: 74.2%

2 classes

classification Al'%‘ggg“%ft al. DFUC_gg;i?g;_Net (infection and PPV: 74.1%
no infection) (We also used Sensitivity: 75.1%
. CNN-based: this dataset) Data leakage
Liu et al. . L
2022 [8] augmentations when splitting &
+ EfficientNet performing augmentations
CNN-based: EfficientNet BO
. . Yap et al. VGG, ResNet, performance:
DFU Wo‘.md 1§chem1a 2021 [9] InceptionV3, DenseNet, 4 c?asses. F1, PPV, SEN
and infection . (both infection DFUC2021
. K EfficientNet . R =55% , 57%, 62%
classification and ischemia, dataset

Galdran et al.
2021 [10]

ViT-based: ViT,
DeiT, BiT

BiT performance:
F1, PPV, SEN
=61%, 66% , 61%

infection, ischemia,
none)

Il. METHODOLOGY

We now focus on the ConDiff framework, its components,
theoretical bases, and practical application.

A. Denoising Diffusion Model

Denoising Diffusion Probabilistic Model (DDPM) [22] is
a generative model that leverages diffusion processes to gen-
erate synthetic data. DDPM has two main stages: 1) a for-
ward process and 2) a reverse process. The forward process
q(x1.7|70) incrementally adds Gaussian noise to an initial im-
age xo in T steps, ultimately transforming it into a Gaussian
distribution p(z). In the reverse process pg(zo.7), the model
learns to remove this noise iteratively to reconstruct or gen-
erate data samples, accomplished using a neural network ey
trained to predict the noise added to the noisy image x; at each
step ¢.

1) Conditional Image Generation With Diffusion Models:
The conditioning variable y is considered as an additional
input to the denoising network represented as eg(zy,t,y). To
synthesize high-quality images, the Classifier-Free Guidance
(CFG) [23] introduced the Guidance Scale w to control how
much the generated data is influenced by a condition y as
illustrated in (1). A higher w means more influence from y.
See the Supplementary Materials for derivation.

ey

2) Learning Objective: In this work, the conditional de-
noising model €y (x4, ¢, y) is modeled with a U-Net architecture
and is optimized by minimizing the mean square error (MSE)
between the actual and predicted noise (2).

ge(xtvtay) = (1 - W)ﬁg(l't,t) + w€9(l‘t, t7y)

Loa(0) = Ery ooy [l — oz tp)lE] @

Perturb with
Gaussian Noises

~

Yii
Uninfected

Xe,r = Xo + 0(to)z y2:

Infected

Fig. 3. Synthesizing conditional DFU images using ConDiff. A guide
image xz¢ is perturbed with Gaussian noises that are then removed pro-
gressively using a CFG-DDIM sampling technique, conditioned on the
infection status. This process gradually projects z( to guided synthetic

images of conditions: :iéyl) and x[()yZ).

B. Guided Conditional Diffusion Classifier (ConDiff)

To complete our ConDiff model, two additional components
are now introduced: 1) guided image synthesis and 2) triplet loss
for learning similarity.

1) Guided Image Synthesis: We aim to generate condi-
tional images that are guided by the original images. Specifically,
we seek to synthesize wound images that closely resemble the
input image, while also being distinct enough to differentiate be-
tween infection and non-infection conditions. We employ a strat-
egy from image synthesis with Stochastic Differential Equations
(SDEs) [20], introducing a certain amount of Gaussian noise to
the guide image through a forward diffusion process (3). Next,
we synthesize conditional images using classifier-free guidance
(Section II-A1). The noise strength ¢y € (0, 1] indicates the level
of noise added to the original image xo ~ ¢(x):

xor = To + o(to)z, where z ~ N(0,I) 3)
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Here, o (1) is a scalar function determining the noise magnitude,
and 7T is the total number of forward diffusion steps. Subse-
quently, to accelerate the sampling process, the Denoising Dif-
fusion Implicit Model (DDIM) [24] is combined with the CFG.
The CFG-DDIM sampling process is illustrated in Fig. 3 and
its algorithm is described in the supplementary materials.The
CFG-DDIM sampling process and its algorithm are described
in the supplemental materials.

2) Learning Similarity With Triplet Loss: Our next goal is
to identify which synthesized image most closely resembles the
guide image xo. This is achieved using the triplet loss function
(4) [25], which minimizes the distance between an anchor image
2(®) and a positive image x(P) (same identity), while maximizing
the distance between the anchor and a negative image (") (dif-
ferent identity). The embedding network f, () maps the images
to a d-dimensional Euclidean space for similarity comparison.

Lot = E| (1ola®) = fo(a I3

Ufele®) - faaB+a) |

With a margin « set to 1, this function enforces the desired
separation between similar and dissimilar pairs. Our classifier
Dy then identifies the closest synthesized image to the guide
image x(y by comparing their Lo distance in embedding space

(5).

D¢(xo,£(()y1)’j(()yz)) _ argrr;iin {LQ(f¢(xO)7 fcb(jg)yl)))}
(%)

lll. EXPERIMENTS AND RESULTS
A. Diabetic Foot Ulcer (DFU) Dataset

The DFU Infection Dataset curated by Goyal et al. [6],
comprises DFU images collected at the Lancashire Teaching
Hospital with the permission of the U.K. National Health Service
(NHS). These DFU images were labeled by two DFU specialists
(consultant physicians) based on visual inspection, independent
of medical notes or clinical tests. The dataset consists of 2,946
augmented patches with infection and 2,946 augmented patches
without infection. Natural augmentation was performed with
varying magnification as illustrated in Fig. 1. All patches have
dimensions of 224 x 224 x 3 pixels.

Data Preprocessing: The training, validation and test sets
were created using 70%, 15% and 15% of the dataset respec-
tively. To prevent data leakage, subject-wise splitting was uti-
lized, where all images for each case could only belong to one
class. As a further measure to prevent data leakage, as shown in
Fig. 1, only augmented patches with a X2 magnification level
were considered. The model achieving the highest accuracy on
the validation set (optimal parameter values) was selected for
final evaluation on the test (unseen) dataset. Table II shows the
dataset statistics after pre-processing.

TABLE Il
REFINED DFU DATASET STATISTICS

Processed Data Category # of Patches

i Infection 687
Train Data (70%)

No Infection 480

Infecti 147

Validation Data (15%) nfection

No Infection 102

Infection 148
Test Data (15%)

No Infection 103

B. Experimental Setup

1) Implementation Details: The ConDiff classifier was
trained in two distinct stages on an NVIDIA A100 GPU.

Training Stage 1 - Fine-Tuning the Diffusion Model: The
diffusion model €4 (¢, t,y) was fine-tuned using the objective
function defined in (2). After training, the ConDiff generator
synthesized conditional DFU images with hyperparameters:
guidance scale w = 0.75, noise strength ¢y = 0.8, and number
of sampling steps 1" = 30. These synthetic images formed the
dataset Dy, used in the second training stage.

Training Stage 2 - Training the Embedding Network fg: The
embedding model [y, based on the EfficientNet-BO architecture,
was trained using both real dataset D, and synthetic dataset
D,. For each iteration, a batch of triplets (z(*), 2(P) (")) was
sampled from D,., with (z(?), x(")) being sampled from D, with
probability pge,, = 0.2. The model parameters ¢ were optimized
to minimize the triplet loss. Please see the Supplementary Ma-
terials for more details on the 2-step training process.

2) SOTA Baseline Models: Recent deep learning image
classification architectures including CNN and ViT-based mod-
els were considered as baselines. Due to the small size of our
dataset, the base or tiny version of each model was selected for
evaluation.

CNN-based models: ResNet [26] and Inception-V3 [27] were
selected as baseline models because Goyal et al. [6] employed
them as backbones in the ensemble CNN model for DFU
infection classification. DenseNet [28] was selected as Yap
et al. [9] found that it achieved the best macro-F1 score in 4-class
DFU image classification. EfficientNet [18] was selected as it
was the most effective CNN-based model in analyzing wound
infections [9], [10].

ViT-based models: ViT [29] and DeiT [30] were explored for
DFU ischemia & infection classification by Galdran et al. [10],
achieving a macro-F1 score comparable to the best CNN-based
model (EfficientNet). SwinV2 [31] and EfficientFormer [32]
were selected as baselines for DFU infection classification
because even have not previously been explored for infection
classification, they are recent architectures that outperformed
previous ViT-based & CNN-based models on ImageNet classi-
fication.
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QUANTITATIVE COMPARISON OF CONDIFF AND SOTA BASELINE MODELS ON DFU INFECTION TEST IMAGES

TABLE Il

F1-score

Sensitivity

Specificity

PPV

0.799 (0.015)
0.782 (0.029)
0.780 (0.021)
0.793 (0.038)

0.796 (0.032)
0.759 (0.034)
0.769 (0.052)
0.766 (0.072)

0.720 (0.041)
0.737 (0.044)
0.712 (0.054)
0.766 (0.066)

0.803 (0.019)
0.806 (0.031)
0.794 (0.021)
0.827 (0.036)

0.798 (0.035)
0.800 (0.025)
0.811 (0.021)
0.818 (0.015)

0.803 (0.087)
0.789 (0.052)
0.827 (0.040)
0.841 (0.032)

0.710 (0.090)
0.739 (0.056)
0.698 (0.040)
0.692 (0.080)

0.803 (0.034)
0.814 (0.025)
0.797 (0.020)
0.799 (0.036)

Model Accuracy
Convolutional ResNet-18 0.765 (0.015)
Neural DenseNet—lZl 0.750 (0.033)
Networks Inception-V3 0.745 (0.015)
EfficientNet-BO 0.766 (0.035)
ViT-Small 0.765 (0.024)
Vision DeiT-Tiny 0.769 (0.022)
Transformers ~ SwinV2-Tiny 0.774 (0.022)
EfficientFormer-L1  0.780 (0.023)
Diffusion ConbDiff (ours) 0.810 (0.020)

0.841 (0.017)

0.854 (0.017)

0.747 (0.027)

0.828 (0.018)

The results are the mean (standard deviation) of the 5-fold cross-validation. Bold values indicate the highest scores and underlined values represent the

second-highest.

0.900 -
0.850 -
0.81 + 0.02 0.85 + 0.02
0825 4 0.875
0.78 + 0.02
v600 | 0.77 £ 0.02 0.850
] 0.825 -
o 0775
o
& 0.750 0.800 1

0.725 0.775 A

0.700 A 0.750 1

0.675 A 0.725 4

0.650 - 0.700 -

EfficientFormer  Swinv2 ConDiff

ConDiff

(a) Accuracy

Fig. 4.

0.84 = 0.03

EfficientFormer

(b) Sensitivity

0.80 A
0.75 £ 0.03 0.69 + 0.08

0.83 + 0.04

0.75 - 0.70 + 0.04

0.70

Score

0.65

0.60 -

0.55 -

Swinv2

ConDiff  EfficientFormer  Swinv2

(c) Specificity

Bar chart comparing (a) accuracy, (b) sensitivity and (c) specificity of ConDiff (shown in red) and the top-2 Vision-Transformer-based

models (EfficientFormer in blue, and SwinV2 in green). The scores are averaged over a 5-fold cross-validation, with error bars indicating the

standard deviation.

C. Performance Comparison With SOTA Baselines

Table III shows that ConDiff achieves the highest accuracy
of up to 81%, outperforming SOTA baselines by at least 3%
in a 5-fold cross-validation on the test set. Moreover, its sen-
sitivity of 85.4% is the highest among all baseline models,
slightly surpassing the EfficientFormer model by 1% (85.4%
vs. 84.1%). High sensitivity is crucial for detecting infected
wounds early, significantly reducing severe consequences such
as amputations and other complications arising from delayed
treatment.

In addition to its impressive sensitivity, ConDiff also achieves
an excellent specificity of 74.7%, which is substantially higher
than EfficientFormer’s 69.2%. Higher specificity implies that
ConDiff can reduce incorrect referrals, thus reducing the work-
load of wound experts in clinics and reducing patient anxiety
and frustration.

The combination of high sensitivity and specificity makes
ConDiff an ideal model for the early detection of infected
wounds at the POC. While its sensitivity score is only marginally
better than EfficientFormer’s, the significant improvement in
specificity ensures not only better patient outcomes but also
reduces the susceptibility to alarm fatigue from false pos-
itives and allows for more efficient utilization of clinical
resources.

1.0 1.0
0.9 7 0.9
o8 o8
® ® f Al
5 5 { AWNE Vi
o o Iy LY
J LN
g o7 / g 07 ['{" =~ — EffNet train
IV Y ---- EffNet val
0.6 17 ~—— ConDiff train 0.6 1 —— EffFormer train
~== ConDiff val ---- EffFormer val
0.5 - T T 0.5 T T
0 20 40 0 10 20
Epoch Epoch

Fig. 5. The learning accuracy trajectories of the ConDiff classi-
fier and best-performing CNN-based (EfficientNet-B0) and ViT-based
(EfficientFormer-L1) models, on the train and validation sets.

Beyond improved evaluation scores, ConDiff exhibits lower
standard deviations and less variation in performance across dif-
ferent folds compared to other models, indicating robust general-
ization to unseen wound images (see the bar chart comparison in
Fig. 4). This robustness is particularly crucial in a clinical setting,
where wounds of various appearances are commonly encoun-
tered. For instance, the standard deviation of the sensitivity score
for ConDiff is 1.7%, compared to 3.2% for EfficientFormer, and
the standard deviation of the specificity score for ConDiff is
2.7%, compared to 8.0% for EfficientFormer.



BUSARANUVONG et al.: GUIDED CONDITIONAL DIFFUSION CLASSIFIER (CONDIFF) FOR ENHANCED PREDICTION OF INFECTION 25

Generated

infected 202

Generated

Guide x,

Label: No infection 00

uninfected X

(a) Correctly classified uninfected wound.
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=~(y1) =(v2)
0 0

Guide x,

Label: No infection  uninfected %, infected X,

(c) Misclassified uninfected wound as infected.
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Label: Infection

Generated Generated
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uninfected 25" infected 252

(b) Correctly classified infected wound.

Generated
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(d) Misclassified infected wound as uninfected.

Visualization of ConDiff predictions with corresponding Score-CAM images computed from the ConDiff’'s embedding model f4. Each

sub-figure shows an example with the guide image (z(), conditional synthesized images representing uninfected m(()yl) and infected zé”) states,
and their respective Score-CAM overlays indicate regions with similar features to z.

Another notable observation from Table III is that ViT-based
models achieved slightly better performance compared to CNN-
based models. This improvement can be attributed to the atten-
tion mechanisms used by ViT-based models, which effectively
capture global dependencies between all input data elements. In
contrast, CNN-based models apply uniform filters across the en-
tire image, focusing primarily on local content. This local focus
makes CNNs less suited for capturing high inter-class similarity
and intra-class variation, which are essential for accurate wound
detection and classification.

However, ViT-based models tend to overfit on our relatively
small training dataset, as illustrated in Fig. 5 (Right). In contrast,
the EfficientNet-B0O model is less susceptible to overfitting than
the EfficientFormer-L1 model. This led us to select EfficientNet-
BO as the embedding network f,; in the ConDiff classifier.
Consequently, as shown in Fig. 5 (Left), ConDiff effectively
mitigates overfitting. This is attributed to the use of the triplet
loss function, which enables it to learn to distinguish between
similar and dissimilar images based on Euclidean distances in
the embedding space.

1) Explaining Image Similarity in Embedding Space With
Score-CAM: Fig. 6 presents Score-CAM [21] visualizations
that elucidate similarities the embedding model perceives be-
tween conditional synthesized images and their corresponding
guide images xzy. The detailed description of the Score-CAM
algorithm is illustrated in the Supplementary Materials. Ar-
eas highlighted in red on the Score-CAM heatmaps shown in
Fig. 6 denote regions that the ConDiff classifier identified as
having a high degree of similarity to xy. For instance, Fig. 6(a)
illustrates that the classifier recognizes similar features in a
synthesized uninfected image and the guide image, as indicated
by the presence of a red spot in the heatmap. Conversely, the
heatmap corresponding to the generated image conditioned on
DFU infection does not reveal substantial similarity, except for
a marginal overlap in the background at the top-right corner.
Similarly, Fig. 6(b) depicts an accurate detection of infection,
where the embedding model f, concentrates on the necrotic

(b) Infected DFUs misclassified by ConDiff Classifier

Fig. 7. Examples of incorrectly classified DFU images for infection by
our ConDiff Classifier.

tissue evident in both zg and j:(()”). However, the classifier is

not infallible. Examples of misclassifications are demonstrated
in Fig. 6(c) and (d), where the embedding model incorrectly
assesses a synthesized image conditioned on a different class as
being more similar to the guide image, an error attributable to
the high inter-class similarity in embedding space.

2) Exploring Mis-Classifications: Fig. 7(a) and (b) show
misclassified cases. The uninfected DFUs in Fig. 7(a) resemble
infected wounds exhibiting characteristics such as a large red-
dish area or darkening of the wound, possibly caused by poor
lighting conditions. The misclassified examples in Fig. 7(b) are
due to the small size of the wounds and ambiguous features, such
as a somewhat dry appearance, which confuses the infection
classifier.

3) Effects of Noise Strengths t, on Infection Classifica-
tion: This experiment involves varying noise strengths ¢y to the
input images. The guidance scale w was fixed at 7.5.

Table IV highlights the significant role of perturbed noise in
image synthesis. As the noise strength ¢( increases, the guided
synthesized images corresponding to different labels exhibit
greater divergence, facilitating more straightforward predictions
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Fig. 8. (Left) Ly norm squared between iéyl) and :?:éy2> plot with respect to initial noise perturbation steps o, (Right) illustration of conditional
synthesized images of ConDiff + CFG-DDIM sampling: w = 7.5 with various ¢ initialization. As ¢ increases, the difference in image level between

conditional generated images increases.

TABLE IV
QUANTITATIVE COMPARISON OF THE RESULT OF DFU INFECTION
CLASSIFICATION ON THE TEST DATA BY CONDIFF CLASSIFIER WITH
DIFFERENT STRENGTHS to OF PERTURBED NOISE

to  Acc F1 SEN SPEC PPV
05 0721 0.761 0.757 0.670 0.767
06 0721 0.757 0.736 0.699 0.779
0.7 0773 0.800 0.770 0.777 0.832
0.8 0.833 0.858 0.858 0.796 0.858
09 0.809 0.829 0.791 0.835 0.873

The bold values indicate the highest scores.

by our distance-based classifier D4. However, when ¢ is in-
creased beyond certain thresholds, the distances between input
images and their respective guided synthesized counterparts be-
come excessively large for both labels. This increase in distance
diminishes the distinguishability of Dy. Classifications with %
values ranging from 0.1 to 0.4 were excluded from our analysis,
as depicted in Fig. 8 (Left), where it is shown that the average
difference in the Lo norm squared between the two guided
syntheticimages £’ and 2*/ is relatively small. Fig. 8 (Right)
presents examples of conditional synthetic images generated by
ConDiff + CFG-DDIM sampling across different ¢, values.

IV. DISCUSSION

Summary of Findings: The ConDiff classifier outperforms
other deep learning models in detecting infections in DFU
images by minimizing triplet loss instead of binary cross-
entropy loss, enabling it to effectively match input images with
the most similar conditionally synthesized images in embedding
space.

Overfitting Mitigation: ConDiff’s training strategy in Train-
ing Stage 2, involving triplet loss, not only enhances its per-
formance but also reduces overfitting by learning to discern
between infected and uninfected wounds in the dataset.

Score-CAM enhances ConDiff s Interpretability: As shown in
Fig. 6, ConDiff focuses on wound features critical for accurately
predicting infection status in its decision-making.

Clinical Significance: The ConDiff framework not only out-
performs other SOTA baselines in sensitivity but also achieves
high specificity, allowing wound experts to focus on more severe
cases. This advancement ensures accurate and efficient wound
infection detection, ultimately improving patient outcomes and
resource utilization. Furthermore, ConDiff exhibits lower stan-
dard deviations in different test folds, indicating better gener-
alization and robust model performance in detecting infections
from wound images.

Model Limitation: ConDiff’s major drawback is its high com-
putational cost during inference, taking 4-5 seconds per image
on an NVIDIA A100 GPU, in contrast to less than 0.02 seconds
for other models. This is due to its generative discriminative
approach, which synthesizes conditional images for each input
by gradually removing noise through a reverse diffusion process.

Dataset Limitation: The infected DFU dataset [6] lacks
records or meta-data about the conditions or medical clarifi-
cations. Consequently, ConDiff’s predictive framework is not
to predict whether ulcers will become infected in the future.
Instead, we envision an infection screening tool to assist DFU
patients, who are not undergoing antibiotic treatment, in evalu-
ating their current wound infection status at the POC.

Future Work: In medical contexts, model interpretability or
understanding the reasons behind predictions of wound infec-
tions (e.g., signs of wound infection) is as crucial as the visual
classification and interpretation themselves. Exploring multi-
modal data, such as incorporating thermal images or generating
medical notes from Large Language Models (LLMs) could
further enhance the classification capabilities of deep learning
models.

V. CONCLUSION

This study introduced the Guided Conditional Diffusion clas-
sifier (ConDiff), a new framework for classifying Diabetic Foot
Ulcer (DFU) infections from wound images. Outperforming
traditional models by at least 3%, ConDiff achieves up to
81% average accuracy. The proposed work has clinical sig-
nificance as ConDiff enhances both sensitivity (85.4%) and
specificity (74.4%), and also generalizes better to previously
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unseen wounds in different test sets, facilitating the early auto-
mated detection of infections from DFU images at the POC.
Its unique approach utilizes Triplet loss instead of standard
cross-entropy minimization, enhancing robustness and reducing
overfitting. This is especially important in medical imaging,
where datasets are often small. ConDiff employs a forward
diffusion process, to add a specific amount of Gaussian noise
into input images, and a reverse diffusion with classifier-free
guidance to iteratively refine these images for classification
based on the closest Euclidean distance in an embedding space.
Its precise, real-time infection detection could play a crucial
role in early DFU infection identification, reducing serious
complications such as limb amputation.
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