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ABSTRACT
Consumers employ a variety of foraging strategies, and oftentimes the foraging strategy employed is related to resource availa-
bility. As consumers acquire resources, they may interact with their resource base in mutualistic or antagonistic ways—falling 
along a mutualism-antagonism continuum—with implications for ecological processes such as seed dispersal. However, patterns 
of resource use vary temporally, and textbook herbivores may switch foraging tactics to become more frugivorous in periods of 
greater fleshy fruit availability. In this study, we investigated how fleshy fruit consumption of a generalist herbivore—the gopher 
tortoise (Gopherus polyphemus)—shifts intra-annually following seasonal precipitation and subsequently examined how this 
shift toward increased frugivory influences the suite of plant syndromes dispersed. We noted a clear intra-annual shift toward 
a more frugivorous diet which coincided with seasonal precipitation and subsequently observed a marked shift in the plant syn-
dromes dispersed with increasing frugivory. We found that as this generalist herbivore became more frugivorous, it dispersed a 
greater variety of plant syndromes at low levels of frugivory. However, when the gopher tortoise exhibited high levels of frugivory, 
the seed load was dominated by those exhibiting the endozoochory syndrome. This study illustrates a functional shift in a seed-
dispersing herbivore toward that of a classical frugivore, suggesting that temporal variation in foraging strategy and the temporal 
scale in which foraging habits and seed dispersal interactions are quantified have implications for the suite of plant syndromes 
species disperse. Furthermore, trade-offs may exist that provide plants with the endozoochory syndrome with a competitive 
advantage over seeds with contrasting traits, such as the foliage is the fruit syndrome which is expected to experience greater 
dispersal by classical herbivores.
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1   |   Introduction

Resource utilization is a fundamental ecological process that 
mediates a variety of interactions, from mutualisms to antag-
onisms (Bronstein  2015). Investigating resource use patterns 
provides insight into the trophic niche species occupy and the 
functional roles they may play in an ecosystem (Elton  2001; 
Chase and Leibold 2009). Furthermore, quantifying spatiotem-
poral patterns of resource use can reveal shifts in the dietary 
habits of consumers toward preferred food items that are limited 
in time and/or space (Abrahms et al. 2021). One spatiotempo-
rally limited resource that is closely tracked by animals is fleshy 
fruits (Koike et al. 2008; Takahashi et al. 2008). While botani-
cally, the consumption of any fruit type is considered frugivory, 
we hereafter refer to frugivory in an ecological sense, specifi-
cally as the consumption and passage of seeds, pulp, and skin 
from fleshy fruits (Howe and Smallwood 1982; Van der Pijl 1982; 
Howe 1986; Jordano 2000). In many ecosystems, as fleshy fruits 
become more abundant through time, animals shift their diet 
to become more frugivorous (Remis 1997; Herrera et al. 2008; 
Robira et al. 2023).

Consequently, as consumers become more frugivorous by in-
creasingly ingesting fleshy fruits, they may also become more 
effective seed dispersers for these species by more frequently 
dispersing their seeds (Schupp  1993; Schupp, Jordano, and 
Gómez 2010; Marques Dracxler and Kissling 2022), so long as 
they do not predate on the seeds themselves. Since seed disper-
sal is a fundamental aspect of the life cycle of plants (Traveset, 
Heleno, and Nogales 2014), quantifying the prevalence of fleshy 
fruits in the diets of consumers is a first step toward understand-
ing their functional roles as seed dispersers and where they fall 
along the mutualism-antagonism continuum (see van Leeuwen 
et al. 2022).

Although plant dispersal syndromes alone have shown to be 
unreliable in predicting the ingestion and dispersal (i.e., endo-
zoochorous dispersal) of seeds (Green, Baltzinger, and Lovas-
Kiss  2021), studies that determine how the functional role of 
seed dispersers may change with temporal dietary shifts could 
reveal the interplay between foraging strategies and the eco-
logical role of consumers as seed dispersers. In systems where 
the phenology of fleshy fruit-bearing plants is linked to sea-
sonal phenomena like precipitation (Bancroft, Bowman, and 
Sawicki 2000; Redwine et al. 2007), one approach could be to 
quantify temporal changes in these factors along with fleshy 
fruit consumption by the seed disperser of interest.

Subsequently, one could test if frugivory in the seed disperser 
corresponds with seasonal phenomena and consequently 
if the degree of frugivory influences the number of seeds 
dispersed from plants of different syndromes (Howe and 
Smallwood 1982; Van der Pijl 1982). Although consumers may 
become more frugivorous seasonally, it does not necessarily 
mean that the number of seeds of other syndromes dispersed 
should change. That is, unless there is indeed a competitive 
advantage to plants exhibiting the endozoochory (i.e., fleshy 
fruit) syndrome.

In this study, we investigate patterns of frugivory in a popu-
lation of herbivorous hindgut fermenters, the gopher tortoise 

(Gopherus polyphemus), and aim to address whether its degree 
of frugivory is linked to seasonal patterns of precipitation and 
whether its functional role as a seed disperser changes as it be-
comes more frugivorous. Specifically, we aim to address the fol-
lowing questions:

1.	 Is there a temporal pattern of frugivory in this species, and 
if so, is it related to seasonal precipitation?

2.	 If shifts toward frugivory are associated with precipitation, 
what is the time lag between precipitation and frugivory?

3.	 As frugivory increases, does the suite of plant syndromes 
dispersed change?

4.	 What dispersal syndromes are most affected by functional 
shifts in seed dispersal with increasing frugivory?

Considering the phenology of many fleshy fruit-producing 
plants in south Florida coinciding with seasonal rains 
(Redwine et al. 2007; Lodge 2017), as well as the 2- to 3-week 
gut retention time of the gopher tortoise (Bjorndal 1987), we 
hypothesize that there will be a time lag between seasonal 
precipitation in south Florida and frugivory in the gopher tor-
toise on the order of months. This time lag would allow for the 
plant community to produce fleshy fruits and for the gopher 
tortoises to find, ingest, and egest them. We expect that as the 
gopher tortoise becomes more frugivorous, it will increasingly 
disperse more seeds of plants with the endozoochory disper-
sal syndrome but will continue to disperse similar numbers of 
seeds of other plant syndromes given its extremely broad diet 
(Birkhead et  al.  2005; Ashton and Ashton  2008; Moore and 
Dornburg 2014).

2   |   Materials and Methods

2.1   |   Site Description

Our study was conducted in Miami, Florida, USA, in the 
globally imperiled pine rockland ecosystem that surrounds 
Zoo Miami at The Richmond Tract (USFWS  1999; Possley 
et al. 2018, 2020). The Richmond Tract is a complex of prop-
erties that spans 830-ha and contains the largest extent of 
pine rockland habitat outside of Everglades National Park 
(Bradley and Gann  2005). The pine rockland is the most 
biodiverse ecosystem in South Florida with over 430 native 
plant species and a multitude of large vertebrates that have 
largely been extirpated as a result of defaunation and urban 
development (Dirzo et al. 2014; Lodge 2017; Trotta et al. 2018; 
Figueroa et al. 2023). This ecosystem is fire-maintained and 
characterized by a sparse, savanna-like canopy of endemic 
south Florida slash pine (Pinus elliottii var. densa) with rare 
and endemic herbs, as well as grasses, euphorbs, and succu-
lents interspersed between an understory of shrubs and palms 
(Possley, Woodmansee, and Maschinski  2008; Diamond and 
Heinen 2016).

South Florida is the ideal setting for this study due to its oscil-
lation between wet and dry seasons, which triggers seasonal 
fires in the dry-to-wet season transition (Slocum et al. 2010; 
Platt, Orzell, and Slocum  2015). During this transitory 
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period and well into the wet season, many plants across South 
Florida flower and set fruit, particularly in species that pro-
duce fleshy fruits (i.e., exhibiting the endozoochory dispersal 
syndrome) (Bancroft, Bowman, and Sawicki  2000; Redwine 
et  al.  2007). In addition to the diversity of plants they con-
tain, pine rocklands provide habitat for several states and 
federally listed fauna (USFWS 1999). One of these animals is 
the gopher tortoise—a longtime inhabitant of the pine rock-
land ecosystem that persists in remnant preserves to this day 
(Simpson 1920; Carr 1940; Monroe 1943; Enge, Robson, and 
Krysko 2004; Whitfield et al. 2018, 2022; Figueroa, Lange, and 
Whitfield 2021).

2.2   |   Study Species

The gopher tortoise is the only native tortoise found east 
of the Mississippi River (Auffenberg and Franz  1982; Bury 
and Germano  1994; Edwards et  al.  2016). Its range spans the 
southeastern United States, from Louisiana to South Carolina 
and south into Miami-Dade County and Cape Sable in Florida 
(Kushlan and Mazzotti 1984; Enge, Robson, and Krysko 2004; 
Waddle, Mazzotti, and Rice 2006; Whitfield et al. 2024). Gopher 
tortoises support over 350 commensal animal species that use 
their burrows (Diemer 1986; Lips 1991) and are known to for-
age on over 1000 plant species across their range (Ashton and 
Ashton 2008).

Many studies have investigated the diet and foraging ecology 
of this species (McRae, Landers, and Garner 1981; MacDonald 
and Mushinsky  1988; Mushinsky, Stilson, and McCoy  2003; 
Ashton and Ashton 2008), classifying it as an herbivore that 
opportunistically engages in frugivory (Birkhead et al. 2005; 
Hanish  2018; Richardson and Stiling  2019a, 2019b). As 
such, it is a widely-recognized seed disperser by dispersing 
the seeds of fleshy-fruited (Hanish  2018; Richardson and 
Stiling  2019a), as well as species that exhibit the “Foliage is 
the Fruit” dispersal syndrome (sensu Janzen  1984, Carlson, 
Menges, and Marks  2003, Birkhead et  al.  2005, Figueroa, 
Lange, and Whitfield  2021), oftentimes enhancing seed ger-
mination (Falcón, Moll, and Hansen  2020). Furthermore, 
gopher tortoises can have home ranges spanning over 1 ha 
and are known to forage up to 40 m away from their burrows 
(McRae, Landers, and Garner 1981; Eubanks, Michener, and 
Guyer 2003), potentially dispersing seeds far from their par-
ent plants and allowing them to escape density dependent. 
Additionally, male gopher tortoises can travel distances up-
wards of 500 m in search of females (Guyer, Johnson, and 
Hermann 2012), potentially providing long-distance dispersal 
services for the plants whose seeds they consume (Nathan and 
Muller-Landau 2000).

The gopher tortoise thus serves as a model species for investi-
gating how frugivory might fluctuate temporally in a generalist 
seed-dispersing herbivore, providing an opportunity to quan-
tify how its frugivory varies temporally and whether its func-
tional role as a seed disperser changes. The tortoises in this 
study (n = 21) are individually marked wild individuals found 
in three aggregations which we refer to as the East, South, and 
West sites—named after the cardinal directions in which they 
are located across the pine rockland habitat surrounding Zoo 

Miami (see Figure 1). These tortoise aggregations are due to a 
combination of the species' social behavior (Guyer, Johnson, 
and Hermann  2012), as well as the geology of this ecosystem 
(Hoffmeister, Stockman, and Multer  1967), which can limit 
the availability of deep sandy soils that facilitate burrowing 
(Whitfield et al. 2022). During the study, no tortoises migrated 
from one site to another, as we regularly tracked individuals 
via radio telemetry, so each site has a perfectly nested subset of 
individuals that occupy it. While formal surveys were not con-
ducted, the plant communities in both the South and West sites 
were representative of managed pine rockland habitat while 
the East site had a greater presence of invasive plant species 
such as Burma reed (Neyraudia reynaudiana), showy rattlebox 
(Crotalaria spectabilis), and shrub verbena (Lantana camara).

2.3   |   Study Design

2.3.1   |   Scat Collection and Dissection

We conducted this study over a 1.5-year period with scat col-
lection beginning on May 11, 2021, and ending on November 9, 
2022. We tracked wild gopher tortoises at the Richmond Tract 
twice weekly via radio telemetry. If an individual defecated 
during handling, we collected the samples and labeled it with 
the tortoise's ID number, location, and the date of collection. 
Sometimes, we encountered fresh fecal samples belonging to 
unknown tortoises and thus collected them. For these samples, 
we marked the GPS location, noted the date, and labeled each 
with a unique identifier indicating it came from an unknown 
individual.

Fecal samples were either dissected on the same day of col-
lection or frozen for dissection at a future date. We performed 
scat dissections with forceps over laminated graph paper 
(29.59 × 21.01 cm) containing 5 × 5 mm grids as a static back-
ground reference to compare the relative contributions of food 
items to the total fecal volume. All food items recovered from 
fecal samples were identified to the lowest taxonomic unit or 
qualified as their own category (e.g., fur/hair was recovered 
from multiple species and subsequently categorized as mammal 
fur). We then aggregated the food items into five functional food 
categories—grasses, legumes, other plants, fleshy fruit, and an-
imal remains based on their taxonomic identity and importance 
in the gopher tortoise diet (Birkhead et  al.  2005; Ashton and 
Ashton 2008; Moore and Dornburg 2014; Hanish 2018).

We then visually estimated the relative contribution of each food 
category to the total scat volume; this approach has been com-
pared with other methods resulting in its acceptance for dietary 
studies (Klare, Kamler, and MacDonald 2011). We recorded the 
contribution of each food category to the total fecal volume as 
proportions of either 0.01, 0.05, or in increments of 0.05 all the 
way to the total scat volume of 1.00. If a value less than 0.05 
remained after quantifying the relative contribution of all food 
items, we would allocate the amount to the most abundant food 
category in the sample.

While other studies have used activity budgets to quantify the 
strength of frugivory (Pavelka and Knopff  2004), we directly 
measured frugivory as the proportion of total fecal volume 
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comprised of fleshy fruit in the fleshy fruit food category. As a 
result, we focus our analyses on the fleshy fruit category exclu-
sively, and hereafter refer to it as the “degree of frugivory,” as 
this quantifies fleshy fruit consumption.

2.3.2   |   Classification of Dispersal Syndrome

To ensure thorough extraction of seeds, we carefully combed 
through fecal contents using forceps and an illuminated 
AmScope SM-2 series trinocular stereo microscope (7×–45× 
magnification). Mounted to the microscope was a 14-megapixel 
AmScope MU1403 high-performance digital camera, which 
facilitated the viewing, counting, and photographing of seeds 
needing further identification. Seeds were identified to the low-
est taxonomic unit using dichotomous keys, online references, 
and consultations with local botanists (Gann et al. 2001; Gann, 
Bradley, and Woodmansee 2002; Wunderlin et al. 2016; Flora 
of North America Editorial Committee, eds. 1993+ 2023). All 
seeds were counted and those identified to the species level 
had their dispersal syndromes recorded according to criteria 
from Howe and Smallwood  (1982), Van der Pijl  (1982), and 
Janzen (1984) (see Table 1). In samples containing exception-
ally high numbers of small seeds (e.g., Buchnera americana, 

Euphorbia hirta, Mosiera longipes), where it was impractical to 
manually count every seed, we aggregated all seeds within the 
frame of view of the microscope and extrapolated to the rest 
of the sample (see Data S1 for further details). To ensure only 
potentially viable seeds were considered, we recorded whether 
the seeds appeared to be intact or were obviously scarified/
damaged. Only seeds in the intact category were used in our 
analyses.

2.3.3   |   Precipitation Data Collection

To collect data on seasonal precipitation, we accessed the online 
Florida Climate Center database from Florida State University 
and downloaded daily precipitation data from a nearby National 
Oceanic and Atmospheric Administration cooperative mete-
orological station (25.5819, −80.4361), located less than 5 km 
from our study site. To ensure the data were relevant to our 
study, we selected data in a search window spanning from May 
1, 2021 to November 30, 2022, encompassing all precipitation 
during our study period. The daily precipitation for each month 
was summed to obtain total monthly precipitation values. For 
months with data collected in both 2021 and 2022, we calculated 
the mean of the total monthly precipitation.

FIGURE 1    |    Our study site, Zoo Miami, lies on the largest expanse of pine rockland habitat outside of Everglades National Park known as The 
Richmond Tract in Miami-Dade County, Florida, USA.
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2.4   |   Statistical Analysis

All statistical analyses were carried out in R version 4.3.2 using 
various packages explicitly stated in the following subsections 
(R Core Team 2022).

2.4.1   |   Seasonal Patterns of Precipitation and Frugivory

For the research question on the relationship between time 
and precipitation, we constructed a generalized additive model 

(GAM) to investigate total monthly precipitation as a nonlinear 
function of the calendar month (Pedersen et al. 2019). The GAM 
was estimated using the Bayesian brms package (Bürkner 2017, 
2018), specifying a normal distribution for the response variable 
(precipitation in cm) with the default uninformative priors from 
the brms package. We included flat priors for regression coef-
ficients (with vectorization for specific months), and Student's 
t-distributions with 3 degrees of freedom for the intercept, stan-
dard deviations, and sigma, where the intercept has a mean of 
13.3 and a scale of 11.4, while the standard deviations and sigma 
have a mean of 0 and a scale of 11.4.

TABLE 1    |    Criteria for classifying the plant dispersal syndromes using guidance from Howe and Smallwood  (1982), van der Pijl  (1982), and 
Janzen (1984).

Criteria for classification of plant dispersal syndromes

Syndrome
Adapted mechanism 

of dispersal Indicative structures (on fruit or seeds) References

Anemochory Wind-dispersal Plumes or wings Howe and Smallwood (1982), 
van der Pijl (1982)

Autochory Self-dispersal Dehiscing or exploding fruits/seed pods van der Pijl (1982)

Endozoochory Ingestion by animals Fleshy structures in the form of 
an aril, pericarp, or pulp.

Howe and Smallwood (1982), 
van der Pijl (1982)

Epizoochory Adhesion to animal 
hairs/feathers

Hooks, barbs, or other clingy appendages Howe and Smallwood (1982), 
van der Pijl (1982)

Foliage is the 
Fruit

Ingestion by herbivores Seeds enveloped in nutritive leaves/foliage Janzen (1984)

Hydrochory Water-dispersal Small, light seeds capable of 
floatation and/or unwettable

Howe and Smallwood (1982), 
van der Pijl (1982)

Myrmecochory Ant-dispersal Fatty appendages known as elaiosomes Howe and Smallwood (1982), 
van der Pijl (1982)

Synzoochory Scatter-hoarding Cacheable fruits/nuts typically 
in the Fagaceae

van der Pijl (1982)

FIGURE 2    |    Seasonal patterns of precipitation (blue line) and frugivory (purple line) with 95% credible intervals in gray. Purple triangles represent 
each fecal sample and the colored rectangles in the background represent the calendar seasons. Winter is blue, spring is green, summer is red, and 
fall is orange. The horizontal axis is the calendar month of the year, the left vertical axis is the total monthly precipitation for a given month, and the 
right vertical axis is the degree of frugivory.
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Similarly, we modeled the relationship between time and fru-
givory through a GAM where the calendar month was the pre-
dictor and the degree of frugivory (a continuous proportion) was 
the response variable. For this analysis, we utilized the Bayesian 
ordbetareg package which models continuous proportion 
variables, while allowing for possible values of exactly 0 and/
or exactly 1 (Kubinec 2022). In this model, we also specified the 
default uninformative priors. These uninformative priors in-
cluded normal priors with a mean of 0 and standard deviation of 
5 for the regression coefficients (vectorized for specific months), 
induced Dirichlet distributions for categorical cuts, a Student's 
t-distribution with 3 degrees of freedom for the intercept and 
standard deviations (mean 0, scale 2.5), and an exponential dis-
tribution with a rate of 0.1 for the parameter phi.

2.4.2   |   Time Lag Between Precipitation and Frugivory

Since frugivory can only occur after fleshy fruits become avail-
able, there is a natural time lag between precipitation and fruit 
appearance in fecal samples. To explore this time lag, we per-
formed a cross-correlation analysis using the astsa package 
(Shumway, Stoffer, and Stoffer  2000). The cross-correlation 
function (CCF) was computed to examine the association be-
tween average monthly precipitation and the mean degree of 
frugivory in each month across lags from −12 to +12 months. 
This range accounts for the variable time it takes the plant com-
munity to flower and produce fruits (van Schaik, Terborgh, and 
Wright 1993), and the gopher tortoise's gut passage rate, which 
is typically around 2–3 weeks (Bjorndal 1987).

To formally test the relationship between lagged precipitation 
and frugivory, we estimated a GLM through the ordbetareg 
package with the default uninformative priors and the ordered 
beta distribution family. The priors included a normal distri-
bution with a mean of 0 and standard deviation of 5 for regres-
sion coefficients, vectorization for lagged average monthly 
precipitation, Dirichlet distributions for categorical cuts, a 
Student's t-distribution with 3 degrees of freedom for the in-
tercept (mean 0, scale 2.5), and an exponential distribution 
with a rate of 0.1 for the parameter phi. We specified monthly 
precipitation as the predictor variable with a time lag based 
on the results of the CCF, and we specified the degree of fru-
givory as the response variable. After running the model, we 
examined the model diagnostics and summary statistics using 
Bayesian measures of effect size and existence implemented in 
bayestestR (Makowski, Ben-Shachar, and Lüdecke  2019; 
Makowski et al. 2019).

2.4.3   |   Functional Shift in Seed Dispersal With 
Increasing Frugivory

To investigate whether frugivory influences the gopher tor-
toise's functional role as a seed disperser, we first categorized 
the levels of frugivory by calculating all quartiles for the degree 
of frugivory. The first and second quartiles had a value of 0.00, 
which combined to become the “No” frugivory category. The 
third quartile had a value of 0.05, so values > 0.00 and ≤ 0.05 
became the “Low” frugivory category, and the fourth quartile 

had a value of 0.99, so values that were > 0.05 and ≤ 1.00 became 
the “High” frugivory category. In addition to the quartile val-
ues, considering that the gopher tortoise is a primarily herbiv-
orous species (Ashton and Ashton 2008), we determined it was 
adequate for samples with > 0.05 of fecal volume comprised of 
fleshy fruit to be considered “High” frugivory.

We then aggregated seed counts for all species exhibiting the 
same dispersal syndrome. This process provided us with total 
seed counts for each of the syndromes listed in Table 1 within 
each fecal sample. We then normalized the seed counts for 
each syndrome as the proportion of all seeds dispersed in each 
sample using the formula xi

∑n
i=1

xi
, where 𝑥i is the number of 

seeds of dispersal syndrome i in the sample of interest, for all 
n dispersal syndromes. This transformation resulted in a com-
positional dataset, ideal for performing correspondence anal-
ysis (CA), which we conducted using the easyCODA package 
(Greenacre 2019).

CA is a multivariate technique that ordinates compositional 
data, allowing for the visualization of the associations between 
grouping variables and the various parts of the composition 
(Greenacre 2017). In our case, the grouping variable is the fru-
givory level. We ordinated the normalized seed counts in the 
CA, plotted the 99% confidence intervals for each frugivory level 
(No, Low, and High), and followed the ordination with a permu-
tational multivariate analysis of variance (PERMANOVA) using 
the vegan package (Oksanen et al. 2022). This was done to test 
for differences in the seed dispersal syndromes dispersed based 
on the level of frugivory exhibited. The PERMANOVA was per-
formed on the original count data, given its suitability for ana-
lyzing ecological count data.

We performed the PERMANOVA with 10,000 permutations 
based on Bray–Curtis dissimilarity. Additionally, we created a 
distance matrix using the Bray–Curtis method and performed 
a multivariate homogeneity of group dispersions analysis 
(PERMDISP) to assess dispersion differences between frugivory 
levels. An ANOVA was conducted on the PERMDISP object, fol-
lowed by a Tukey post hoc test to determine which frugivory 
levels differed significantly in the seed syndromes dispersed.

3   |   Results

3.1   |   Seasonal Patterns of Precipitation 
and Frugivory

In total, we collected 180 fecal samples from 24 known individ-
uals and 27 samples from unknown tortoises for a total of 207 
samples. Of the 207 fecal samples, 72 of them (34.78%) exhib-
ited frugivory in at least trace amounts while the remaining 135 
(65.22%) showed no signs of frugivory. The GAM revealed no-
table increases in monthly precipitation throughout the spring 
and summer months with a clear peak of close to 20 cm of rain-
fall in July (Figure  2). Subsequently, we observed an increase 
in frugivory through the late spring and entire summer before 
peaking in the early fall (Figure  2). At its peak in September, 
fleshy fruits comprised approximately a quarter of the go-
pher tortoise diet (24% of fecal volume) and fruit consumption 
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persisted throughout much of the fall before declining to nearly 
nonexistent levels in the winter.

3.2   |   Time Lag Between Precipitation 
and Frugivory

The cross-correlation analysis revealed the highest correlation 
at a lag of −3 months, with a significant correlation coefficient of 
0.65 (Figure 3a). This suggests that frugivory was most strongly 
correlated with precipitation occurring 3 months prior, mean-
ing that after seasonal rains begin it takes about 3 months—or a 
full season—for fleshy fruits to subsequently appear in the fecal 
contents of the gopher tortoise. The GLM relating lagged precipi-
tation to frugivory demonstrates that monthly precipitation with 
a 3-month time lag is a strong predictor of frugivory (Figure 3b). 
The median effect of lagged monthly precipitation on frugivory 
is 0.04, with a credible interval (CI) from 0.03 to 0.07. In our 
analysis using an ordbeta regression with a logit link, the model 
predicts that in the absence of rain, the baseline probability of 
observing significant frugivory is approximately 17%. For each 
additional centimeter of monthly precipitation, the odds of ob-
serving greater frugivory increase by about 4.1%. The proba-
bility of direction (pd) for this association is 100%, indicating a 
certain positive association between lagged monthly precipita-
tion and frugivory in the gopher tortoise (Makowski et al. 2019). 
The model's Rhat value of 1.00 confirms convergence and an 
effective sample size (ESS) of 16,160 suggests high reliability in 
this estimate.

3.3   |   Functional Shift in Seed Dispersal With 
Increasing Frugivory

Of the total 17,886 seeds ingested, we recorded a total of 13,619 
intact seeds dispersed by the gopher tortoise. A total of 62 seed 
species were identified (Table 2), with at least one species per 
dispersal syndrome from Table 1. However, some dispersal syn-
dromes had a greater frequency of occurrence in the fecal sam-
ples than others. Foliage is the fruit species that had a frequency 
of occurrence of 98.07%, followed by seeds with the autochory 
(76.81%) and endozoochory (50.72%) syndromes, respectively. 
Although seeds exhibiting the synzoochory syndrome were in-
gested, all seeds (n = 3) were visibly damaged in the digestive 
process and were thus excluded from further analyses.

The CA was ultimately performed on 188 of the 207 samples 
because the remaining 19 samples either did not have seeds 
or only had visibly damaged seeds. The CA illustrated clear 
differences in the syndromes dispersed as frugivory increased 
(Figure  4). The 99% confidence ellipses in the CA provide a 
visual representation of variability and significant changes in 
the dispersal syndromes associated with frugivory levels. The 
No and Low frugivory level ellipses indicated increased dis-
persal of seeds with the myrmecochory and foliage is the fruit 
syndromes, while the No frugivory level ellipse was stretched 
in the direction of the autochory and hydrochory eigenvec-
tors—indicating dispersal of those syndromes as well. When 
the tortoises exhibited low levels of frugivory, they dispersed a 
relatively even distribution of seed syndromes, whereas when 

FIGURE 3    |    (a) Cross-correlation analysis illustrating the monthly lags backward (indicated by negative values) and forward (indicated by positive 
values) in time between total monthly precipitation and the mean frugivory exhibited in that month. The dashed red lines depict the 95% confidence 
bands around a cross-correlation of 0.00, with bars exceeding the range being statistically significant. The solid red lines pinpoint the value with the 
highest correlation coefficient, being the −3 lag with a correlation coefficient of 0.65. (b) Generalized linear model (GLM) regression model depicting 
the relationship between 3-month-lagged average monthly precipitation on the horizontal axis and the degree of frugivory on the vertical axis.
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they exhibited high levels of frugivory, they mainly dispersed 
seeds with the endozoochory syndrome. This observed shift 
in plant syndromes dispersed depicts seed dispersal behavior 
more aligned with that of a primarily frugivorous seed dis-
perser than that of an herbivorous one, as the gopher tortoise 
species is.

The PERMANOVA returned a statistically significant result (p-
value = 9.99E-05***), indicating significant differences in the 
plant syndromes dispersed between the three levels of frugiv-
ory (Table 3). The PERMISP and Tukey post hoc tests further 
confirmed that there was a significant difference in Low-High 
comparison and an even stronger difference in the syndromes 
dispersed between the No-High frugivory comparison (Table 3). 
These combined results suggest that the suite of plant syndromes 
dispersed indeed shifts during periods of greater frugivory.

4   |   Discussion

The findings of this study reveal that frugivory in the gopher 
tortoise is aligned with seasonal precipitation and strongly in-
fluences the dispersal of seeds exhibiting different syndromes. 
The 3-month time lag between peak precipitation and frugiv-
ory likely reflects the time required for the production and 
availability of fleshy fruits following rainfall, consistent with 
previous studies indicating that frugivory in various species 
is temporally linked to the phenology of fruit-bearing plants 
(Remis  1997; Herrera et  al.  2008), which is often triggered 
by seasonal rainfall (Bancroft, Bowman, and Sawicki  2000; 
Redwine et al. 2007).

In the case of the western lowland gorilla, seasonal patterns of 
fleshy fruit availability shift its diet from a primarily folivorous 
to a more frugivorous one (Remis 1997). These seasonal dietary 
shifts toward frugivory alter the behavior and movement pat-
terns of this species during periods of fleshy fruit abundance 
(Robira et al. 2023). Furthermore, frugivorous bats use seasonal 
increases in fleshy fruit availability to diverge their resource use 
patterns from conspecifics, thereby resulting in a greater inci-
dence of individual diet specialization (Herrera et al. 2008)—a 
phenomenon recently confirmed to be occurring with the tor-
toises of this study (Figueroa et al. 2024), as seasonal fluctuations 
in rainfall subsequently trigger fleshy fruit production in the 
local plant communities (Bancroft, Bowman, and Sawicki 2000, 
Redwine et al. 2007).

The strong correlation between lagged precipitation and fru-
givory suggests that gopher tortoises track seasonal fleshy 
fruit availability, adjusting their diet accordingly to maximize 
fruit consumption when it is most abundant. This behavior 
may be exhibited as a result of increased ecological opportu-
nity (Herrera et  al.  2008; Araújo, Bolnick, and Layman  2011; 
Figueroa et  al.  2024), to reduce intraspecific resource compe-
tition (Bolnick et al. 2003), or to meet energetic demands (Bury 
and Germano  1994). The seasonal tracking of fleshy fruits 
is not very surprising as it has been observed in other species 
(Remis 1997; Koike et al. 2008; Abrahms et al. 2021), but its im-
plications for community-wide seed dispersal are important to 
consider.

While dispersal syndromes alone may be unreliable for pre-
dicting animal-mediated seed dispersal (Green, Baltzinger, and 

FIGURE 4    |    Correspondence analysis (CA) illustrating the influence of frugivory on the plant syndromes dispersed by the gopher tortoise. The 
99% confidence intervals are drawn around the “No” (green), “Low” (orange), and “High” (purple) frugivory levels. The red arrows depict the 
eigenvectors for each dispersal syndrome, indicating how they change in relation to frugivory. The dispersal syndromes are labeled in the following 
fashion, “endo” = Endozoochory, “myrme” = Myrmecochory, “foliage” = Foliage is the Fruit, “anemo” = Anemochory, “epizoo” = Epizoochory, 
“auto” = Autochory, “hydro” = Hydrochory.



12 of 16 Ecology and Evolution, 2024

Lovas-Kiss 2021), the adaptation of fleshy fruits may indeed con-
fer competitive advantages by not only increasing seed dispersal 
for fleshy-fruited species, but decreasing seed dispersal for com-
peting species that exhibit other syndromes. Interestingly, the dis-
persal syndrome that was most strongly (negatively) affected by 
increased frugivory in this study was the foliage is the fruit syn-
drome (Janzen 1984). This syndrome is suggested to have evolved 
in many herbaceous plants to increase ingestion of their seeds by 
large herbivores. These plants offer a nutritious reward of foliage 
that is contaminated with seeds in order to coax herbivores into 
dispersing their seeds. This syndrome is prevalent in the Poaceae 
plant family and is found in species of Fabaceae (Janzen 1984). 
Considering that both plant families are important in the gopher 
tortoise diet (Birkhead et  al.  2005; Ashton and Ashton  2008; 
Figueroa, Lange, and Whitfield 2021), the insights from this study 
could have broad implications for better understanding the seed 
dispersal ecology of seeds exhibiting this syndrome.

Although the gopher tortoise exhibits flexibility in its diet 
(Ashton and Ashton  2008), its effectiveness as a seed dis-
perser for various plant syndromes is enhanced when it con-
sumes more fleshy fruits. The significant results from the 
PERMANOVA and subsequent analyses underscore the dis-
tinct differences in the plant syndromes dispersed across vary-
ing levels of frugivory. Our study demonstrates that as the 
gopher tortoise becomes more frugivorous, its functional role 
as a seed disperser shifts substantially. At high levels of fru-
givory, the gopher tortoise not only primarily disperses seeds 
with the endozoochory syndrome, but also drastically reduces 
the seeds they disperse that exhibit the foliage is the fruit syn-
drome. These observations not only suggest a shift in foraging 
strategy, but a functional shift toward a role better character-
ized as that of a classical frugivore (Jordano 2000; Levey, Silva, 
and Galetti 2002), which can be thought of as a conceptual shift 
along the mutualism-antagonism continuum illustrated in van 
Leeuwen et al. (2022).

The ability of gopher tortoises to adapt their diet in response to 
seasonal changes in fruit availability underscores their crucial 
role as seed dispersers for the critically imperiled pine rockland 
plant community of South Florida and the plant communities 
of other ecosystems they inhabit (Auffenberg and Franz 1982; 
Figueroa, Lange, and Whitfield 2021; Whitfield et al. 2022). By 
dispersing a wide range of seeds, including those from fleshy 
fruits and other syndromes, they contribute to maintaining 
plant diversity and ecosystem function (McConkey et al. 2012; 
Howe  2016). The identified lag in frugivory following precipi-
tation highlights the tortoises' capacity to exploit temporal re-
source peaks, which is crucial for the regeneration of the pine 
rockland flora in periods where disturbances such as hurri-
canes and fires may result in open habitat for colonization 
(Snyder 1991; Henry et al. 2020).

Moreover, the predominance of fleshy fruit seed dispersal 
during periods of high frugivory suggests that gopher tortoises 
can significantly influence the recruitment and spatial distri-
bution of fleshy fruit-bearing plants. This functional shift may 
have broader implications for the dynamics of plant communi-
ties, potentially enhancing the competitive advantage of plants 
with the endozoochory syndrome over others with competing 
dispersal syndromes such as the foliage is the fruit syndrome. T
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Gopher tortoises are already known to be effective seed dispers-
ers for many plant species (Richardson and Stiling 2019a), with 
their use of movement corridors directing the dispersal of seeds 
to suitable sites for germination (Hanish 2018).

Although herbivory may mediate plant community succession 
(Heinen and Castillo  2019), and alter species richness and di-
versity via nonselective foraging (Richardson and Stiling 2019b; 
Ceballos and Goessling  2023), the gopher tortoise likely has 
an understated impact on plant communities via seed disper-
sal. The impacts of the gopher tortoise via seed dispersal can 
be gleaned from the diversity of seeds dispersed in this and 
previous studies (Carlson, Menges, and Marks 2003; Birkhead 
et al. 2005; Figueroa, Lange, and Whitfield 2021), as well as in 
the habitat associations of this species which include areas with 
open canopy and sandy soils (Whitfield et al. 2022)—often fa-
vorable conditions for seed germination.

For fleshy-fruited species whose seeds have a high frequency of 
occurrence, the gopher tortoise may be a reliable seed disperser 
by consistently consuming their fruits and dispersing their 
seeds. However, even for species whose seeds may not have been 
dispersed as frequently, the gopher tortoise may still be an ef-
fective seed disperser by gorging on their fruits which may be 
more temporally restricted in availability but are consumed in 
exorbitant amounts, as in the case of the state-threatened locust-
berry (Byrsonima lucida), West Indian lilac (Miconia bicolor), 
and longstalked-stopper (Mosiera longipes), resulting in a nar-
row window of active seed dispersal. As a result, the conserva-
tion of the gopher tortoise is not only in service of protecting this 
chelonian, but it is in service of protecting the commensals that 
use their burrows (Diemer 1986; Lips 1991; Melanson 2021), and 
the thousands of plant species with which it interacts (Ashton 
and Ashton 2008).

While this study provides a comprehensive analysis of frugiv-
ory and seed dispersal in the gopher tortoise, several limitations 
should be acknowledged. The reliance on scat analysis, al-
though effective, may not capture all aspects of the tortoises' diet 
or the fate of dispersed seeds. Future studies could quantify the 
availability of plants exhibiting different dispersal syndromes 
or integrate tracking of seed fates from dispersal to germina-
tion and establishment (Godoy and Jordano 2001; Schupp and 
Jordano 2011), providing a more holistic understanding of the 
ecological impacts of gopher tortoise as a seed disperser for var-
ious species. Additionally, a thorough quantification of seed dis-
persal effectiveness for the gopher tortoise could provide insight 
into how effective it is as a dispersal vector, opening the possi-
bility for comparative studies along the mutualism-antagonism 
continuum (sensu van Leeuwen et al. 2022). Finally, long-term 
studies examining interannual variability in precipitation and 
frugivory would also be valuable in understanding the impacts 
of climate change on these dynamics.
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