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Abstract

As individuals age, death is a competing risk for Alzheimer’s disease (AD) but the reverse is 

not the case. As such, studies of AD can be placed within the semi-competing risks framework. 

Central to semi-competing risks, and in contrast to standard competing risks, is that one can 

learn about the dependence structure between the two events. To-date, however, most methods for 

semi-competing risks treat dependence as a nuisance and not a potential source of new clinical 

knowledge. We propose a novel regression-based framework that views the two time-to-event 

outcomes through the lens of a longitudinal bivariate process on a partition of the time scales 

of the two events. A key innovation of the framework is that dependence is represented in two 

distinct forms, local and global dependence, both of which have intuitive clinical interpretations. 

Estimation and inference are performed via penalized maximum likelihood, and can accommodate 

right censoring, left truncation, and time-varying covariates. An important consequence of the 

partitioning of the time scale is that an ambiguity regarding the specific form of the likelihood 

contribution may arise; a strategy for sensitivity analyses regarding this issue is described. The 

framework is then used to investigate the role of gender and having ≥1 apolipoprotein E (APOE) 

ϵ4 allele on the joint risk of AD and death using data from the Adult Changes in Thought study.
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1 | INTRODUCTION

Alzheimer’s disease (AD) is a brain disorder characterized by progressive dementia that 

slowly destroys memory and cognitive function. In 2018, an estimated 5.7 Americans were 

living with AD (Alzheimer’s Association, 2018). First described in 1906, factors that have 

been shown to be associated with AD include: age, family history, the apolipoprotein E 

(APOE) ϵ4 allele, midlife obesity, midlife hypertension, diabetes, education, and physical 

activity (Baumgart et al., 2015). Many of these factors are also strongly associated with 

mortality, suggesting that AD and mortality may be dependent within individuals and, 

furthermore, that this dependence may be influenced by a range of factors.

Practically, studies of risk factors for AD often focus on the timing of a diagnosis and thus 

use survival analysis methods. Such analyses typically treat death as a censoring mechanism. 

An alternative is the semi-competing risks paradigm, within which AD and mortality are 

considered simultaneously. In general terms, semi-competing risks refer to settings where 

interest lies in some nonterminal event, the occurrence of which is subject to a terminal 

event (Fine et al., 2001; Varadhan et al., 2014; Haneuse and Lee, 2016). Let T1 and T2 denote 

the time to the nonterminal and terminal events, respectively. Key to semi-competing risks is 

that one can potentially observe both T1 and T2 on individual study units. As such, in contrast 

to the standard competing risks setting (Tsiatis, 1975), there is partial information on the 

joint distribution of the two events (Jazić et al., 2016). This, in turn, provides an opportunity 

to learn about the dependence structure between T1 and T2.

Beyond the usual challenges of time-to-event analyses (i.e., structuring covariate effects, 

handling functions of time, and accommodating various forms of censoring and truncation), 

key challenges that arise in the analysis of semi-competing risks data are: (i) respecting 

the terminal event as a competing risk and (ii) structuring dependence between T1 and T2. 

In the statistical literature, numerous frameworks for the analysis of semi-competing risks 

data have been proposed, including: methods grounded in causal inference (Egleston et al., 

2006; Tchetgen Tchetgen, 2014; Nevo and Gorfine, 2020); methods based on structuring 

dependence via a copula (Fine et al., 2001; Peng and Fine, 2007; Li and Peng, 2015); the use 

of illness-death models (Xu et al., 2010; Lee et al., 2017, 2015); and the recently proposed 

cross-quantile residual ratio (Yang and Peng, 2016). While additional review details are 

provided in Section A.1 of the Supporting Information, we note that these methods either: 

(i) view dependence as a statistical nuisance, and not a potential source of new clinical 

knowledge; or (ii) focus on the role of the nonterminal event as a risk factor for the terminal 

event, thereby reframing the nonterminal event away from being an outcome of interest. As 

such, collectively, these methods fail to take advantage of the opportunity to learn about 

dependence between the two outcomes that semi-competing risks data provide.
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In this paper, we propose a novel regression-based framework for semi-competing risks data 

based on a partitioning of the time scales for the two events that simultaneously structures 

covariate effects on T1, T2, and the dependence between the two. A key innovation of the 

proposed framework is that dependence is represented in two distinct forms, termed the local 
and global dependence, both of which have intuitive clinical interpretations. Practically, 

since modeling within the framework is based upon probabilities conditional on survival, 

left truncation, right censoring, and time-varying covariates may be accommodated in a 

straightforward manner. An important consequence of the partitioning of the time scale is 

that an ambiguity regarding the specific form of the likelihood contribution may arise; a 

strategy for sensitivity analyses regarding this issue is described. Finally, in addition to a 

series of simulation studies, we illustrate the approach with a case study investigating the 

complex interplay between gender, APOE, AD diagnosis, and death using data from the 

Adult Changes in Thought (ACT) study (Kukull et al., 2002).

2 | A LONGITUDINAL BIVARIATE MODELING FRAMEWORK

This paper proposes a novel longitudinal bivariate modeling framework for semi-competing 

risks within which dependence between T1 and T2 is characterized in a meaningful and 

interpretable way, and is permitted to be a function of covariates. Prior to describing the 

framework, we note how semi-competing risks data are typically represented: letting L
and C denote study entry and right censoring times, respectively, the observed outcome 

data for the ith study participant is Di = Li, T 1i, δ1i, T 2i, δ2i , where T 1i = min T1i, T2i, Ci  and 

T 2i = min T2i, Ci . Furthermore, δ1i = I T 1i = T1i  and δ2i = I T 2i = T2i  indicate whether the 

nonterminal and terminal events, respectively, are observed.

2.1 | A novel representation of semi-competing risks data

The capacity of the proposed framework to investigate dependence between T1 and T2 hinges 

on a novel representation of semi-competing risks data that follows from a discretization 

or partitioning of the analysis time scale. Toward this, let τ = τ0, …, τK  be a set of 

user-specified points, with τk − 1 < τk for k = 1, …, K, that define a partition. For example, 

in analyzing data from ACT one could choose age beyond 65 years as the time scale 

and τ = 65, 70, 75, …, 100 . As will become clear, the specification of τ has important 

implications, and we return to this task in Section 3.

Given τ, one can query whether the nonterminal and/or the terminal event was observed 

to occur within or by the end of any given interval. Toward this, let Y 1i, k = I T1i ≤ τk

and Y 2i, k = I T2i ≤ τk  be indicators of whether the ith study participant experiences the 

nonterminal and terminal events by time τk, respectively. In practice, depending on when 

a study participant contributes person-time on the analysis time scale, they may or may 

not provide direct information about risk during each of the K intervals defined by τ. For 

example, an ACT participant enrolled at age 74 years cannot provide direct information 

about the (65, 70] interval. Thus, the observed outcome data for the ith study participant 

on partition τ will consist of a longitudinal bivariate process on a subset of the K
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intervals, specifically Y i = Y 1i, k, Y 2i, k ; k = ki
l, …, ki

r , where ki
l, ki

r ∈ 1, …, K  and ki
l ≤ ki

r. The 

determination of ki
l and ki

r represents a nontrivial task, and we return to it in Section 3.

Finally, let Xi τk  denote a vector of possibly time-varying covariates measured at time τk − 1, 

and Xi, k
H = Xi τ1 , …, Xi τk  the history of all such information at time τk − 1.

2.2 | The joint distribution of the observed data

Under the novel representation, we assume that the joint distribution of the observed 

outcome data, P(Y i = yi ∣ Xi, kir
H ), can be decomposed as the product:

k = ki
l

ki
r

P Y 1i, k = y1i, k, Y 2i, k = y2i, k ∣

Y 1i, k − 1 = y1i, k − 1, Y 2i, k − 1 = y2i, k − 1, Xi, k
H ,

(1)

y1i, k ∈ 0, 1  and y2i, k ∈ 0, 1 , and where we define Y 1i, 0 = Y 2i, 0 = 0. Underpinning this 

decomposition is a Markovtype assumption, specifically that, conditional on the totality 

of the covariate information to that point, the joint probability of the two events in a given 

interval depends on the history of the two events solely through the status at the start of 

the interval. As shown in Section A.2 of the Supporting Information, the components of 

expression (1) can be written in terms of:

π1i, k = P Y 1i, k = 1 ∣ Y 1i, k − 1 = 0, Y 2i, k − 1 = 0, Xi, k
H ,

(2)

π2i, k y1 = P Y 2i, k = 1 ∣ Y 1i, k − 1 = y1, Y 2i, k − 1 = 0, Xi, k
H ,

(3)

θi, k = OR Y 1i, k, Y 2i, k ∣ Y 1i, k − 1 = 0, Y 2i, k − 1 = 0, Xi, k
H

(4)

for y1 ∈ 0, 1  and where

OR Y 1i, k, Y 2i, k ∣ …

= P Y 1i, k = 1, Y 2i, k = 1 ∣ … × P Y 1i, k = 0, Y 2i, k = 0 ∣ …
P Y 1i, k = 0, Y 2i, k = 1 ∣ … × P Y 1i, k = 1, Y 2i, k = 0 ∣ … .

We emphasize that the interpretations of these three quantities are specific to the partition 

τ: π1i, k is the cumulative probability of experiencing the nonterminal event by time τk, 

given that neither event had occurred by time τk − 1; π2i, k ⋅  is the cumulative probability 

of experiencing the terminal event by time τk, given that the individual is alive at time 
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τk − 1; finally, θi, k is the cross-sectional odds ratio for the 2×2 table corresponding to the 

four possible observed Y 1i, k, Y 2i, k  outcome vectors at time τk, given that neither event had 

occurred by time τk − 1. Note that both π1i, k and π2i, k are quantities that are modeled in discrete 

time survival analyses (Prentice and Gloeckler, 1978).

2.3 | Regression structure

We proceed by placing regression structure on π1i, k, π2i, k y1  and θi, k, specifically:

π1i, k = g1
−1 α1, k + f1 Xi1, k

H ; β1 ,

(5)

π2i, k y1 = g2
−1 α2, k + f2 Xi2, k

H , y1; β2 ,

(6)

θi, k = gθ
−1 αθ, k + fθ Xiθ, k

H ; βθ ,

(7)

where g1 ⋅ , g2 ⋅ , and gθ ⋅  are user-specified link functions (e.g., the logistic or log link); 

Xi1, k
H , Xi2, k

H , and Xiθ, k
H  are each subsets of Xi, k

H ; and, f1 ⋅ , f2 ⋅ , and fθ ⋅  are user-specified 

functions that characterize how the respective quantities depend on the covariates. For 

example, one may adopt a linear specification with no interactions between the components 

of Xi2, k
H  and Y 1i, k − 1 in model (6) by setting f2 Xi2, k

H , Y 1i, k − 1; β2 ≡ Xi2, k
H Tβ2, X + Y 1i, k − 1β2, y.

While their precise interpretations will depend on the partition of the analysis time scale and 

the chosen link functions, β = β1, β2, βθ  characterize the impact of covariates; Section 2.4 

considers the role and interpretation of components of β2 that correspond to Y 1i, k − 1. Finally, 

α1 = α1,1, …, α1, K , α2 = α2,1, …, α2, K , and αθ = αθ, 1, …, αθ, K  represent baseline time trends in 

π1i, k, π2i, k ⋅ , and θi, k, respectively, with their precise interpretation again depending on the 

choice of τ, the link functions and covariates included in the models.

From a practical perspective, that α = α1, α2, αθ  consists of 3K parameters may result in 

computational and/or convergence issues unless the observed data are rich (i.e., a large 

sample size or high event rates) or the initial partition is coarse. To mitigate such issues, 

we propose that a B-spline structure be adopted across the K components of each of α1, α2, 

and αθ (Eilers and Marx, 1996). Focusing on α1, let {t1
1, …, t1

J1} denote a collection of J1

user-specified knots on the interior of the range (τ0, τK) and q1 the user-specified degree of 

the local polynomial basis functions. Given these choices, we specify the kth component 

of α1 as α1, k = ∑j = 1
J1 η1, jBj, k, where Bj, k is the value of the jth B-spline at time τk and 

J1 = J1 − 1 + q1 is total number of spline terms. Thus, this specification requires estimation 

of J1 coefficient terms, specifically η1 = (η1,1, …, η1, J1). Applying the same strategy to α2 and αθ
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will result in J1 + J2 + Jθ unknown coefficients, collectively denoted as η = η1, η2, ηθ . Finally, 

to distinguish between specifications, we refer to the model based on α with 3K unknowns 

as the unstructured model while that based on η as the B-spline model.

2.4 | Dependence

The central innovation of the framework in expressions (5)–(7) is that dependence between 

the nonterminal and terminal events is quantified in two distinct and yet complementary 

ways. The first is captured through θi, k which can be viewed as a measure of local 

dependence in that it quantifies the risk of co-occurrence of the two events, via the odds 

ratio (Lipsitz et al., 1991; Carey et al., 1993; Ten Have and Morabia, 1999), during the 

(τk − 1, τk  interval; a large positive value of θi, k indicates that if the nonterminal event (e.g., 

AD) occurs during τk − 1, τk  then the terminal event (e.g., death) is likely to subsequently 

occur during the same interval. Because of the novel parameterization, we emphasize that 

the local dependence can vary over the time scale or as a function of covariates. As such, 

one could investigate whether local dependence between AD and death is weaker at younger 

ages relative to older ages. Furthermore, one could investigate whether the probability that 

the two events co-occur changes in response to key life events such as the death of a partner. 

The second quantification of dependence is through the components of β2 in expression (6) 

that correspond to how the status of the nonterminal event, Y 1i, k − 1, influences π2i, k. Labeling 

these components as β2, y, analogous to how one interprets covariates effects in regression 

models, these parameters capture the extent to which whether the non-terminal event has 

occurred is associated with a change in risk of the terminal event; for this reason, we refer 

to β2, y as capturing global dependence. Note that global dependence is conceptually similar 

to the explanatory hazard ratio and cross-quantile residual ratio (see section A.1 of the 

Supporting Information) in that it concerns the role that the nonterminal event plays in 

modifying risk of the terminal event.

3 | KEY PRACTICAL TASKS

The development in Section 2 indicated two practical tasks that analysts must engage in, 

specifically the choice of τ and the determination of ki
l and ki

r.

3.1 | Choice of partition, τ
The partition, τ, plays a critical role in the proposed framework in that it provides the 

foundation for being able to distinguish between local and global dependence, as we 

conceptualize them in Section 2.4, and for being able to investigate the role that covariates 

play. In Section A.2 of the Supporting Information, we show that the underlying distribution 

for T1, T2  induces the quantities (2)–(4) for any τ. Thus, regardless of the choice of τ, 

the components of the proposed model are well-defined mathematical objects and are, 

therefore, valid targets for estimation and inference. An important consequence of this is 

that one cannot say that any given partition corresponds to the “truth.” As indicated in 

Section 2.2, however, the choice of τ dictates the numerical values and interpretation of the 

quantities given by (2)–(4), and correspondingly (in part, at least) the numerical values and 
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interpretation of the parameters in the regression structure given by expressions (5)–(7). As 

such the choice of τ requires careful consideration.

In principle, one could approach choosing τ through consideration of the clinical condition 

under investigation such as the pace at which the disease progresses. In the ACT study, 

for example, the choice to schedule follow-up biennially was made in part for logistical 

considerations but also because AD is a slowly-developing condition. Alternatively, one may 

pursue a data-driven strategy where, for example, some goodness-of-fit criterion is specified 

and then optimized as a function of τ. Our perspective is that the decision should be based 

primarily, if not exclusively, on clinical considerations. Central to this position is that, in 

addition to their interpretation, the numerical values of (2)–(4) change with τ. To see this, 

we again note that the probabilities in each of (2)–(4) speak to the cumulative incidence 

of events during the interval τk − 1, τk . If the length of the interval is decreased then the 

incidence will necessarily decrease. The corresponding new interpretation and numerical 

value will not be “wrong,” however, but just different. Put another way, the change in 

the interpretation and the numerical values of the model parameters that result from, say, 

adopting a finer partition of the time scale should, arguably, be viewed as a change in 

the question that is being answered. Thus, in our view, purely data-driven approaches, 

while they may have some initial intuitive appeal, should be avoided. Nevertheless, we 

do acknowledge that it may not be easy to elicit a single partition, from the literature or 

collaborators, on which to base the analyses and conclusions. If it is the case that there is 

no clear choice, analysts may opt to perform a range of analyses over different partitions, 

both in terms of how fine the partition is and in terms of where the cut-points are for a given 

(common) interval length. We pursue this strategy in conducting the analyses of the data 

from ACT in Section 6.

3.2 | Determination of ki
l
 and ki

r

While the act of partitioning the analysis time scale provides the basis for learning about 

dependence, there is a trade-off in that there is a loss of information that impacts how one 

approaches setting ki
l and ki

r. To illustrate this, and the framework more generally, Figure 

1 provides a graphical representation of observed outcome data for two hypothetical study 

participants; an expanded figure, with five hypothetical participants, is provided in Section 

A.2 of the Supporting Information. From the top half of the figure, we see that the first 

participant was observed to enter the study in the τ1, τ2  interval, experience the nonterminal 

event in the τ3, τ4  interval and subsequently experience the terminal event in τ4, τ5 . From 

the bottom half of the figure, the second participant was observed to enter the study in 

the τ2, τ3  interval and subsequently experience the nonterminal event in (τ4, τ5 . In contrast 

to participant i = 1, however, they are censored prior to being observed to experience the 

terminal event, specifically in (τ5, τ6 .

In considering the value of ki
r, it seems clear that setting ki

r = 5 for the first participant is 

appropriate, so that their outcome data in the τ4, τ5  interval are Y 1i, 5, Y 2i, 5 = 1, 1 . For the 

second participant, one could follow suit and set ki
r = 6 so that, acknowledging that they had 

previously been observed to experience the nonterminal event but not the terminal event, 
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their outcome data in the τ5, τ6  interval would be Y 1i, 6, Y 2i, 6 = 1, 0 . Doing so, however, 

assumes that the terminal event did not occur in the subinterval Ci, τ6 . Alternatively, one can 

interpret the choice as assuming complete person-time in the τ5, τ6  interval when this was 

not, in fact, the case. With this latter interpretation, there is an argument to be made that one 

should not attempt to learn about expressions (2)–(4) for τ5, τ6  and that, instead, one should 

adopt a more conservative stance by setting ki
r = 5 and forgoing the partial information 

regarding this particular interval.

Figure 1 also helps illustrate similar considerations regarding ki
l. Specifically, in considering 

which of the intervals the first participant can be said to first contribute to, since Li ∈ τ1, τ2

setting ki
l = 2 seems a natural choice and, coupled with ki

r = 5, would result in observed 

outcome data in four intervals, specifically Y i = 0, 0 , 0, 0 , 1, 0 , 1, 1 . Problematic 

with setting ki
l = 2, however, is that complete person-time for the τ1, τ2  interval was not 

observed since Li > τ1. As such, there is, arguably, incomplete data regarding the quantities 

given by expressions (2)–(4) for this particular interval and a more conservative approach 

would be set ki
l = 3 so that, again coupled with ki

r = 5, the observed outcome data would 

be restricted to three intervals, specifically Y i = 0, 0 , 1, 0 , 1, 1 , and that the partial 

information in τ1, τ2  is ignored.

To summarize, in setting both ki
l and ki

r analysts have an option that can be viewed as 

being conservative, in which partial information is ignored. In contrast, analysts have the 

option to be anticonservative by including the intervals with partial person-time as if they 

had complete person-time. One common feature of both of these strategies is that they are 

agnostic to the amount of partial information; that is how close Li and Ci are to the right-

hand limit of the interval in which they were observed. We therefore propose a third strategy, 

labeled the nearest neighbor strategy in which the partial information is acknowledged. 

Focusing initially on ki
l, suppose Li ∈ τk − 1, τk . While the anti-conservative and conservative 

strategies would always set ki
l = τk and ki

l = τk + 1, respectively, the nearest neighbor strategy 

takes ki
l = τk if τk − Li > τk − τk − 1 /2 and ki

l = τk + 1 otherwise. Similarly, suppose Ci ∈ τk − 1, τk . 

While the anticonservative and conservative strategies would always set ki
r = τk and ki

r = τk − 1, 

respectively, the nearest neighbor strategy takes ki
r = τk if τk − Ci ≤ τk − τk − 1 /2 and ki

r = τk − 1

otherwise.

To highlight the impact adopting each of the three proposed strategies have, Figure 1 

provides the corresponding outcome information for the two hypothetical study participants. 

In practice, analysts will need to base the decision of which strategy to use by balancing 

the information gain/loss with their own conservatism regarding taking person-time to be 

complete in an interval when it is not. Since the nearest neighbor strategy represents, in 

a sense, a compromise, it is the primary strategy that we would recommend. Of course, 

analysts may consider other strategies or, as we do in Section 6, consider a range of 

strategies and examine their impact. Finally, we note that the extent to which this is a 

concern depends, in part at least, on how coarse the partition is; with finer and finer 

partitions, the information loss associated with the conservative strategy will decrease.
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4 | ESTIMATION AND INFERENCE

4.1 | The observed data likelihood

Building on the notation developed in Section 2, the first two columns of Table 1 provide 

the six possible outcome data scenarios in the kth interval of the partition given by τ as a 

function of the outcome vector in the previous interval (i.e., as a function of Y 1i, k − 1, Y 2i, k − 1 ). 

The third column provides the corresponding likelihood contributions, that is the interval-

specific components in the decomposition given by expression (1), with

π12i, k

= P Y 1i, k = 1, Y 2i, k = 1 ∣ Y 1i, k − 1 = 0, Y 2i, k − 1 = 0, Xi, k
H

=
π1i, kπ2i, k 0 θi, k = 1

1
2 θi, k − 1 × [1 + aij − 1 + ai, k

2 − 4θi, k θi, k − 1 π1i, kπ2i, k(0)] θi, k ≠ 1,

where ai, k = π1i, k + π2i, k(0) θi, k − 1  (Ten Have and Morabia, 1999).

Let ϕ denote the collection of unknown parameters in the specification of model (5)–

(7). Note that if the unstructured form of the model is fit then ϕ ≡ ϕα = (α, β) while 

ϕ ≡ ϕη = (η, β) if the B-spline model is fit. For either specification, the observed data 

likelihood for a random sample of N study participants from the population of interest, 

ℒ(ϕ) is the product of N terms, each of the form:

ℒi(ϕ) =
k = ki

l

ki
r

P Y 1i, k = y1i, k, Y 2i, k = y2i, k ∣ Y 1i, k − 1

= y1i, k − 1, Y 2i, k − 1 = y2i, k − 1, Xi, k
H ,

=
k = ki

l

ki
r

π12i, k
y1i, ky2i, k π1i, k − π12i, k

y1i, k 1 − y2i, k

× π2i, k(0) − π12i, k
1 − y1i, k y2i, k

× 1 − π1i, k − π2i, k(0)

+π12i, k
1 − y1i, k 1 − y2i, k 1 − y1i, k − 1 1 − y2i, k − 1

× π2i, k(1) y2i, k 1 − π2i, k(1) 1 − y2i, k y1i, k − 1 1 − y2i, k − 1 .

See Section A.2 of the Supporting Information for further details.

4.2 | Estimation

If the unstructured form of model (5)–(7) is adopted, estimation can proceed in a 

straightforward manner by finding the maximizer of ℓ ϕα = logℒ ϕα , denoted by ϕ̂α
. 

Under the proposed B-spline model, however, care is needed to avoid overfitting. To resolve 

this, we maximize the observed data likelihood subject to a penalty that imposes smoothness 

in resulting estimated functions. One such penalty is the integrated squared second derivative 

which, following Eilers and Marx (1996), can be approximated by penalizing coefficient 
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differences. Let Δ be the difference operator so that, for example, Δη1, j = η1, j − η1, j − 1. Then, 

letting λ = λ1, λ2, λθ , consider the penalized likelihood:

ℒ ϕη; λ = ℒ ϕη − λ1
j = m + 1

J1

Δmη1, j
2

−λ2
j = m + 1

J2

Δmη2, j
2 − λθ

j = m + 1

Jθ

Δmηθ, j
2,

where Δm corresponds to the difference operator having been applied m times; for example, 

Δ2η1, j = Δ Δη1, j = η1, j − 2η1, j − 1 + η1, j − 2. Note that letting Dm denote the matrix representation of 

Δm, such that, for example, ∑j = m + 1
J1 Δmη1, j

2
 can be written as η1

TDm
TDmη1 (Section A.2 of the 

Supporting Information), the penalized likelihood can be written as:

ℒ ϕη; λ = ℒ ϕη − λ1η1
TDm

TDmη1 − λ2η2
TDm

TDmη2

−λθηθ
TDm

TDmηθ .

(8)

Let ℓ ϕη; λ = log ℒ ϕη; λ  be the log-penalized likelihood. Furthermore, let 

U ϕη; λ = ∇ϕη ℓ ϕη; λ  be the gradient of ℓ ϕη; λ  with respect to ϕη and 

H ϕη; λ = ∇ϕηϕη ℓ ϕη; λ  the corresponding matrix of second partial derivatives (i.e., the 

Hessian matrix). For a given value of λ, the penalized maximum likelihood estimator, which 

we denote by ϕ̂λ
η
, is the solution to U ϕη; λ = 0. Note, since the penalty is quadratic in 

η1, η2, and ηθ, gradient-based maximization is relatively straightforward to carry out. This 

penalization induces smoothing in the estimated α function as it approximates penalization 

of the mth derivatives of the α functions (Eilers and Marx, 1996).

Finally, toward choosing the value of λ on which the final results are to be based, 

say λ*, one can proceed using any standard model-selection criteria such as the Akaike 

Information Criterion (AIC) or cross-validation (Gray, 1992; Eilers and Marx, 1996). 

In our implementation of the methods, we follow Gray (1994) by taking the trace of 

H ϕη; 0 H−1 ϕη; λ  as the effective degrees of freedom when calculating the AIC.

4.3 | Asymptotic properties

For the unstructured model, under standard regularity conditions, the asymptotic distribution 

of ϕα
 follows from standard likelihood theory. That is, ϕ̂α

 is consistent and, letting ϕα

denote the value of ϕα induced from the partition, N1/2(ϕα − ϕα) is asymptotically normal 

with variance equal to the inverse of Fisher information matrix.

For the B-spline model, careful consideration of the asymptotic properties of ϕη
 requires 

specification of how the number of knots, J = J1, J2, Jθ , and the penalty, λ*, change with the 

Nevo et al. Page 10

Biometrics. Author manuscript; available in PMC 2024 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sample size N. This has been the focus of a large body of work, much of which is concerned 

with error estimation for the nonparametric function(s) (e.g., Li and Ruppert, 2008). Here, 

however, primary interest lies with inference for ϕη. Given this, we consider the behavior of 

ϕ̂η
 in settings where both J  and λ are fixed. With this, henceforth, we denote the estimator as 

ϕλ
η
.

In Section A.3 of the Supporting Information, assuming standard regularity conditions, we 

show that N1/2(ϕλ
η − ϕλ

η
) is asymptotically normal with variance that can be consistently 

estimated by

V = NH−1(ϕη; λ) 1
N i = 1

N
Ui(ϕ̂

η; λ)Ui
T(ϕ̂η; λ)

× NH−1(ϕ̂η; λ),

(9)

where ϕλ
η
 is the solution of E U ϕη; λ = 0 and where Ui( ⋅ ; λ) is the gradient of the log-

penalized likelihood of a single observation i. For individual parameters, the appropriate 

entry in the diagonal of (9) is used for estimating the variance. For the baseline time 

trends, let Vη1 be the submatrix corresponding to the estimated variance matrix of η1. 

Note that α1 can be written as α1 = η1
Tℬ with ℬ being a J1 × K matrix with elements 

ℬjk = Bj, k. Therefore, to construct a 95% confidence interval (CI) for the AD time-varying 

reference probability, π1i, k, one can use g1
−1 η̂1 ± 1.96[diag(ℬTVη1ℬ)]1/2} where here g−1 to be 

understood as operating entrywise on the vector, and diag( ⋅ ) returns the diagonal of a matrix.

5 | SIMULATION STUDIES

We conducted a series of simulations to investigate: (i) finite-sample properties of the 

methods proposed in Section 4; and (ii) the potential bias-variance trade-off that analysts 

will have to contend with when choosing the degree of regularization in ℒ(ϕ; λ). We note 

that we make no attempt to perform a comparison with existing methods since the proposed 

framework was developed to investigate dependence in a way that is distinct from how 

existing methods approach it. Due to space constraints, we present brief details and a 

summary of the main conclusions; see Section A.4 in the Supporting Information for full 

details.

Building on features of the observed data from the ACT study, we generated the data 

according to models (5)–(7) as a function of both time-fixed and time-dependent covariates 

under three scenarios for dependence: a null scenario, a simple dependence scenario, and 

a complex dependence scenario. A range of right-censoring rates (0–30%) and sample 

sizes (500–5000) were considered. For each scenario, 1000 data sets were generated. All 

simulations were carried out using code available in the LongitSemiComp package for R. 

Simulation code, seeds, and results are all available online via the Github repository of the 

first author.
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Figures A.2 and A.3 in the Supporting Information summarize performance regarding 

estimation of time-varying functions. The time-varying terminal event probability function 

expit α2  was generally well-estimated. The time-varying nonterminal probability function 

expit α1  was also well-estimated except when the number of knots was small and a 

substantial amount of regularization were used (i.e., J = 5 and λ ≥ 5); in this case the 

B-spline estimator was oversmoothed, resulting in bias for later time points where less 

information is available. The time-varying odds ratio function exp αθ  was well-estimated by 

the 10 knots B-spline estimator for large enough sample size, as well as by the five knots 

B-spline estimator when sample size was large enough and there were no oversmoothing. 

Similar to the nonterminal probability, the five knots over-smoothed estimator suffered from 

bias. A model with completely unrestricted α1, α2, and αθ performed well for α1, α2 but 

not for αθ, for which considerable bias was found for low and moderate sample sizes. 

Instability of the undersmoothed estimators for time-varying odds ratio, and biased, yet 

stable, estimators when using excessive smoothing were found when the sample size was 

small. Using AIC to choose λ, more smoothing was desired for J = 10 compared with J = 5
(Table A.2).

Turning to the coefficients (Tables A.3–A.10), small finite-sample bias for β1 and β2

was mitigated under larger sample sizes. The global dependence parameter β2, y was well-

estimated, with negligible bias for all sample sizes and censoring rates. A small finite-

sample bias was observed for βθ in some of the scenarios, although it decreased as the 

sample size increased. Furthermore, the bias was more substantial when the sample size 

was low and the unrestricted model was used for the time-varying functions. Unpenalized 

estimation under B-spline representation also resulted in bias for βθ. However, penalization 

largely mitigated this and also reduced the standard error. For larger sample sizes, this 

bias disappeared. These results were consistent with the performance of the time-varying 

component estimator of the odds ratio. Finally, in most cases the proposed variance 

estimators performed well, with empirical coverage of confidence intervals close to the 

nominal level.

We conducted additional simulations to compare the different strategies in setting ki
l and ki

r

(Section 3.2). Details are presented in Section A.4.4 of the Supporting Information.

6 | ANALYSIS OF DATA FROM THE ACT STUDY

The ACT study is an ongoing community-based prospective study of incident all-cause 

dementia and AD among the elderly in western Washington state (Kukull et al., 2002). 

Initiated in 1994, the goals of the study are to learn about how the brain ages and to 

identify risk factors for AD. In this paper, we consider data on N = 4367 ACT participants 

enrolled between 1994 and 2015, and who were aged 65 years or older and cognitively 

intact at the time of enrollment. Table A.12 in the Supporting Information summarizes 

key characteristics measured at study entry, including: age, gender, race, marital status, 

education, comorbid depression, and APOE- ϵ4 carrier status. Follow-up in ACT consists of 

biennial visits during which participants undergo a comprehensive neurological evaluation. 

For the purposes of this paper, follow-up time was administratively censored at the first of 
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December, 2016 or age 99 years. Based on these criteria, 205 (5%) were diagnosed with AD 

during follow-up but were censored prior to death, 818 (19%) were diagnosed with AD and 

died during follow-up, 1613 (37%) died during follow-up without a diagnosis of AD, and 

1731 (39%) were censored prior to either a diagnosis of AD or experiencing death. Figure 

A.5 in the Supporting Information provides a summary of the observed person-time.

Having ≥1 APOE ϵ4 allele is well-established as a genetic risk factor for AD (Baumgart 

et al., 2015). The extent to which having ≥1 APOE ϵ4 allele is associated with mortality, 

however, is unclear (Helzner et al., 2008). Since, to the best of our knowledge, no previous 

studies have examined the role of the APOE ϵ4 allele through the lens of semicompeting 

risks, the opportunities that semi-competing risks analyses provide, particularly in terms of 

explicit acknowledgment of death as a competing risk and in terms of being able to learn 

about dependence, have not been taken advantage of.

With this backdrop, we present a case study with the goal to investigate the role of having 

≥1 APOE ϵ4 allele on the joint risk of AD and death, and whether this varies by gender. 

Throughout, we use data from ACT with the time scale taken to be “time since age 

65” or “time since a diagnosis of AD,” as appropriate. In reporting results, we focus on 

those that pertain to dependence; additional details, results, and sensitivity analyses are 

provided in Section A.6 of the Supporting Information. In addition, we performed a series of 

analyses based on a range of existing methods, including a standard illness-death model, the 

explanatory hazard ratio, and the cross-quantile residual ratio; Section A.6 of the Supporting 

Information provides details on the different analyses, results, and discussion.

6.1 | Analyses based on the proposed framework

As emphasized in Section 3.1, the choice of the partition τ is important. 

Toward illustrating the role of this choice, and recalling that participants in 

ACT underwent biennial visits, we considered two partitions of the time 

scale [65, 100): τ2.5 = 65.0, 67.5, 70.0, … , 97.5, 100.0 , for which K = 14; and, 

τ5.0 = 65.0, 70.0, 75.0 … , 95.0, 100.0 , for which K = 7. See Tables A.13 and A.14 in 

the Supporting Information for the 2×2 outcome tables.

Toward specification of models (5)–(7), we used logit links for π1i, k and π2i, k y1 , and a 

log link for the cross-sectional odds ratio, θi, k. In these models, Xi1, k
H , Xi2, k

H , and Xiθ, k
H  were 

specified with the overarching goal of assessing the joint impact of having ≥1 APOE ϵ4
allele and gender on the joint risk of AD and death. As such, the models for π1i, k and 

θi, k included main effects for having ≥1 APOE ϵ4 allele and gender, and their interaction, 

while the model for π2i, k( ⋅ ) included main effects, two-way interactions and the three-way 

interaction between AD diagnosis, having ≥1 APOE ϵ4 allele and gender. For Xi1, k
H , Xi2, k

H , we 

additionally included all other variables available in data set.

To complete the models specifications, we considered unstructured and B-spline baseline 

parameters, α1, α2, and αθ. For the latter, we used 10 knots for τ2.5 and five knots 

for τ5, with a cubic spline and a second-order difference penalty (i.e., m = 2 in Δm), 
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and considered varying degrees of penalty, specifically setting λ1 = λ2 = λθ = λ, with 

λ ∈ 0.0, 0.1, 0.5, 1.0, 2.5, 5.0 . Finally, following the discussion of Section 3.2, we 

considered all three strategies for determining ki
l and ki

r. Table A.19 in the Supporting 

Information reports AIC from the various fitted models from which we see that the optimal 

values of λ were λ* = 2.5 and λ* = 0.0 for τ2.5 and τ5.0, respectively, across all three 

strategies for determining ki
l and ki

r. While there were no convergence issues in the data 

analysis, in our experience with the simulation studies adding a small penalty may mitigate 

potential convergence issues (see Section A.4.2 in the Supporting Information).

6.1.1 | Baseline time trends—Figures 2 and 3 report estimated baseline time trends, 

with the latter focusing on the estimates obtained based on the nearest neighbor strategy. 

Note that the interpretation of these quantities is specific to a population of individuals 

who are cognitively intact at age 65 and have the following characteristics: male, nonwhite, 

non-college-educated, married without depression, and no APOE ϵ4 alleles.

From Figure 2, we find little overall sensitivity in the estimates across the three strategies 

for determining ki
l and ki

r, with the sole exception being in the tails of the conditional 

probability of death. That this is the case may not be surprising, however, given that overall 

probability is larger and that the sample size is smaller as the population ages into their 

90s. As expected, however, the nearest neighbor strategy provides a reasonable compromise 

between the conservative and anticonservative strategies.

From Figure 3, the unstructured models, not surprisingly, exhibit greater uncertainty, 

especially in information-poor parts of the age scale (i.e., early on when there are relatively 

few AD events). From the top panel of Figure 3, under the B-spline analysis with λ = 2.5, 

the estimated baseline probability of an AD diagnosis during a given 2.5 year age interval, 

conditional on being AD-free and alive at the start of the interval, increases from 0.005 in 

(65.0, 67.5] to 0.11 in (97.5, 100.0]. From the bottom panel of Figure 3, the same increasing 

pattern emerges under partition τ5.0 with λ = 0.0, specifically from 0.01 in (65.0, 70.0] 

to 0.17 in (95.0, 100.0]. Note that this is as expected since the intervals are longer and, 

correspondingly, the cumulative number of events higher. Also from Figure 3, we see that 

the estimated baseline probability of death conditional on being event free during a given 

2.5-year age interval increases from 0.01 in (65.0, 67.5] to 0.38 in (97.5, 100.0]. Again, the 

same general pattern is observed under τ5.0, with the probability increasing from 0.03 in 

(65.0, 70.0] to 0.59 in (95.0, 100.0].

6.1.2 | Covariate effects for AD—Table 2 reports estimated covariate associations 

from the B-spline fits for the main effects and interactions corresponding to gender, having 

≥1 APOE ϵ4 allele and AD diagnosis (as appropriate). Results based on all three strategies 

regarding ki
l and ki

r are presented; complete results, including those from the unstructured 

models, are given in Tables A.20–A.24 of the Supporting Information.

From the first two columns of Table 2, the results regarding risk of AD are largely consistent 

between the two partitions as well as across the three strategies for determining ki
l and ki

r. 

Specifically, we find that, while having ≥1 APOE ϵ4 allele is a strong risk factor, there is no 
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evidence that gender is a risk factor nor that it is an effect modifier of the APOE effect. Note 

that the results under the unstructured model are similar (see the Supporting Information).

6.1.3 | Covariate effects for death and global dependence—The middle set of 

results in Table 2 report on how gender, having ≥1 APOE ϵ4 allele and having a diagnosis 

of AD jointly influence risk of mortality. Note the four components involving a diagnosis of 

AD correspond to β2, y in model (6) and, thus, jointly represent global dependence between 

AD and mortality. As with the results regarding the risk of AD, the results for death are 

largely consistent across the three strategies for determining ki
l and ki

r. Interestingly, there 

are some differences between those based on the τ2.5 partition and those based on the τ5.0

partition, although the overarching conclusion that there is an important interplay between 

the three factors in determining risk of mortality is consistent between the two.

To further facilitate discussion of the results, Table 3 reports odds ratio estimates and 95% 

confidence intervals for mortality, based on the B-spline model with the nearest neighbor 

strategy for determining ki
l and ki

r, across combinations of whether the patient has had an AD 

diagnosis, their gender, and whether they have ≥1 APOE ϵ4 allele. From the first four rows, 

in the absence of a diagnosis of AD, female gender is associated with approximately 40% 

lower odds of mortality while there is no evidence to indicate that the number of APOE ϵ4
alleles play a role.

From the lower half of Table 3, the odds of mortality among those patients with a diagnosis 

of AD diagnosis, and, thus, extent of global dependence, is substantially higher with the 

magnitude depending on the interplay between gender and the number of APOE ϵ4 alleles. 

Moreover, while having at least APOE ϵ4 alleles seems to be associated with higher odds, 

the increase is substantially larger for males.

6.1.4 | Local dependence—Turning to the assessment of local dependence, the third 

row in the two subfigures of Figure 3 suggest that there are meaningful time trends in the 

co-occurrence of AD and death, specifically that the risk of co-occurrence within a given 

interval are highest at the early ages. From the B-spline specification with λ = 2.5 applied to 

partition τ2.5, for example, the odds ratio among males with no APOE ϵ4 alleles decreases 

from 2.61 (95% CI: 0.89, 7.69) during the (65.0, 67.5] interval to 1.20 (95% CI: 0.57, 

2.51) during the (97.5, 100.0]. From Table 2, although the confidence intervals all include 

1.00, the point estimates for all three covariates in the model applied to the τ2.5 partition 

are indicative of clinically meaningful associations. For example, the local dependence odds 

ratio is estimated to be 44% smaller among males with ≥1 APOE ϵ4 allele compared to those 

without. The corresponding odds ratio for females is estimated to be approximately 31% 

smaller (0.56 × 1.24 ≈ 0.69) for those with ≥1 APOE ϵ4 allele compared to those without.

Finally, Tables 2 and 3 highlight that the choice of partition can have a meaningful impact 

on the conclusions regarding local. In particular, under τ5.0 the evidence regarding an 

interaction between gender and having ≥1 APOE ϵ4 allele on local dependence is weaker 

when the partition intervals are 5 years in length.
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7 | DISCUSSION

Although less familiar than competing risks, semi-competing risks arise in a wide range 

of clinical settings, including: AD, as illustrated in this paper; hospital readmission (Lee 

et al., 2015, 2016); shock among patients with implanted cardiac devices (Reeder et al., 

2019); and graft-versus-host disease (Jazić et al., 2020; Lee etal., 2020). One distinguishing 

feature of semi-competing risks is that there is partial information about the joint distribution 

between T1 and T2. To leverage that information, we have proposed novel framework that 

seeks to gain interpretable insight into dependence between the two events. Because the 

interpretation of the model components, including the proposed notions of global and local 

dependence, are distinct from those obtained from existing methods, we view the framework 

as being scientifically complementary to existing methods. Moreover, we view the proposed 

framework as being in-line with recent work that seeks to better understand whether and 

how specific factors confer risk jointly on multiple outcomes, such as the dual hazard rate 
(Prentice and Zhao, 2020).

The foundation for the proposed framework is the discretization of the time scale. As 

discussed in Sections 2.2 and 3.1, one cannot say that a given choice of τ is the “truth” 

and yet the specific choice dictates the numerical values and interpretation of the results. 

This results in a tension that is illustrated in Table 2: one cannot claim that either τ2.5

or τ5.0 is the “right” choice and yet there are instances where the numerical results differ 

in meaningful ways. Our view of this dilemma is that consideration of multiple partitions 

should be viewed as an opportunity to obtain additional insight. Consider, for example, the 

main effect of female gender in the model for θi, k based on the B-spline specification: under 

τ2.5 the estimated impact of female gender is to reduce the local dependence odds ratio 

by 20% while the reduction is only 10% under τ5.0. Thus, ignoring (for the purpose of 

discussion) the lack of statistical significance, there is an indication that among individuals 

with no APOE ϵ4 alleles, gender plays a role in the co-occurrence of AD and death over 

relatively short time frames (i.e., 2.5 years) and over longer time frames (i.e., 5 years), 

although the magnitude of the effect attenuates over the longer time frame. Conceptually, 

this is analogous to the results that one might see in a Cox model for a univariate outcome if 

the effect of a covariate varies over time (i.e., nonproportional hazards) and yet proportional 

hazards is adopted; in such settings, the value of the common hazard ratio that is being 

estimated will depend on the interval over which data are available.

While the proposed framework provides researchers with a flexible approach to investigating 

dependence in semi-competing risks data, one trade-off is that, as discussed in detail in 

Section 3.2, a degree of ambiguity arises regarding the specific form of the contribution 

to the likelihood for select individuals. Our approach to addressing this challenge, one 

that is similarly faced in other time-to-event analyses based on a discretization of the time 

scale (Prentice and Gloeckler, 1978; D’Agostino et al., 1990; Hernán et al., 2000), is via 

sensitivity analyses. While the simulations we present and data application point to little 

sensitivity for the contexts they are based on, in other settings (e.g., when there is substantial 

censoring and/or when the intervals of the partition are wide) the results may indeed be 

sensitive. For these settings, researchers may opt to report all results and attempt to glean 
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insight from the specifics of the context or to view the sensitivity as an indicator that there is 

insufficient information on which to base definitive conclusions regarding dependence.

A number of extensions to the proposed framework are possible. The Markov assumption 

(1) could be relaxed, for example, by having π2i, k y1  in (3) depend on the entire disease status 

history Y 1i, 1, …, Y 1i, k − 1. More broadly, a topic for future research is developing methods for 

testing of assumptions and assessment goodness of fit. From a theoretical perspective, an 

interesting alternative to having λ fixed is to consider λ = λN = o(1); that is the amount of 

regularization decreases as more data become available. This framing of the asymptotics, 

however, leads to a variance expression that does not involve λ and thus has been perceived 

as of less useful in practice (Gray, 1992; Yu and Ruppert, 2002). Another issue concerns 

interval-censoring of the data. As mentioned in Section 6 follow-up in ACT consists of 

biennial visits. As such, while the date of death can be precisely ascertained through 

death records, AD is subject to interval censoring. Therefore, generalizing our approach to 

interval-censored data will be of interest. A related problem may arise in defining covariate 

values when time-dependent covariates are observed only intermittently (Nevo et al., 2020).
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FIGURE 1. 
Graphical representation of the interplay between standard notation for semi-competing 

risks outcome data and the proposed bivariate longitudinal framework; see Sections 2 and 

3.2 for details.
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FIGURE 2. 
Comparison in the ACT data between the three approaches to overcome within-interval 

censoring and study entry times. The figures present the estimated baseline time trends, 

expit α1 , expit α2 , and exp αθ , under the unstructured specification and the B-spline 

specification with λ ∈ 0.0, 2.5  and under the two partitions τ2.5 (top panel) and τ5.0

(bottom panel). Note that the y-axis has been truncated at 0.8 for expit α1  and at 10 for 

exp αθ .
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FIGURE 3. 
Estimated baseline time trends, expit α1 , expit α2 , and exp αθ  from a series of analyses 

to the ACT data, under the unstructured specification and the B-spline specification with 

λ ∈ 0.0, 2.5  and under the two partitions τ2.5 (top panel) and τ5.0 (bottom panel). See 

Section 6.1 for details. Also shown are 95% confidence intervals. Note that the y-axis has 

been truncated at 0.8 for expit α1  and at 10 for exp αθ . For results under more λ values, 
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see Supplementary Figures A.10 and A.11. Results presented under the nearest neighbor 

strategy

Nevo et al. Page 23

Biometrics. Author manuscript; available in PMC 2024 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nevo et al. Page 24

TABLE 1

Six possible data scenarios for the kth interval in the partition given by τ (see Section 2)

Y 1i, k − 1, Y 2i, k − 1 Y 1i, k, Y 2i, k Likelihood contribution

(0, 0) (0, 0) 1 − π1i, k − π2i, k(0) + π12i, k

(0, 0) (1, 0) π1i, k − π12i, k

(0, 0) (0, 1) π2i, k(0) − π12i, k

(0, 0) (1, 1) π12i, k

(1, 0) (1, 0) 1 − π2i, k(1)
(1, 0) (1, 1) π2i, k(1)
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