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THE BIGGER PICTURE A challenge in understanding the long-term health burden of COVID-19, or any wide-
spread disease, is that clinical effects are observed through the experiences and data of individual hospitals,
and yet those hospitals vary in both the distribution of patients they see and the care they provide. Existing
studies pool data from multiple hospitals but fail to consider this heterogeneity, limiting the applicability of
their findings to local decision-making. Latent transfer learning (Latent-TL) leverages electronic health record
data from multiple heterogeneous hospitals to provide actionable insights tailored to each individual institu-
tion. As health systems seek to offer more adaptive, personalized care, our work highlights the power of
transfer learning to enhance evidence-based clinical decision-making, advocating for broader data sharing
to improve healthcare responses to future public health challenges.
SUMMARY
The long-term complications of COVID-19, known as the post-acute sequelae of SARS-CoV-2 infection
(PASC), significantly burden healthcare resources. Quantifying the demand for post-acute healthcare is
essential for understanding patients’ needs and optimizing the allocation of valuable medical resources
for disease management. Driven by this need, we developed a heterogeneous latent transfer learning
framework (Latent-TL) to generate critical insights for individual health systems in a distributed research
network. Latent-TL enhances learning in a specific health system by borrowing information from all other
health systems in the network in a data-driven fashion. By identifying subpopulations with varying health-
care needs, our Latent-TL framework can provide more effective guidance for decision-making. Applying
Latent-TL to electronic health record (EHR) data from eight health systems in PEDSnet, a national
learning health system in the US, revealed four distinct patient subpopulations with heterogeneous
post-acute healthcare demands following COVID-19 infections, varying across subpopulations and
hospitals.
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INTRODUCTION

Electronic health record (EHR) systems have allowed data cap-

ture and use within and across health systems to an extent

that was impossible when records consisted largely of hand-

written ink on individual charts. During the COVID-19 pandemic,

the usage of EHR data played a critical role in knowledge gener-

ation to better inform decision-making and public health pol-

icies.1–5 The global surge of COVID-19, accounting for over

600 million cases, prompted governments to implement a range

of preventive measures, from quarantine protocols to social

distancing initiatives.6 To understand the dynamic nature of the

pandemic and subsequently inform public health policies,

collaborative networks and research initiatives such as

RECOVER,7 N3C,8 and 4CE9 were established as critical re-

sources for clinical evidence generation. These initiatives facili-

tate the collaboration of diverse organizations and stakeholders,

fostering a collective learning environment that leverages in-

sights from EHRs across multiple health systems for enhanced

learning and response.

The COVID-19 pandemic strained healthcare infrastructures

globally, pushing capacities and workforces to their limits, espe-

cially in nations like the US. Quantifying the demand for health-

care resources following a COVID-19 diagnosis is crucial for

health systems and providers to more effectively assess patient

needs and optimize the allocation of health resources.10–12 As

the pandemic progressed, the focus shifted from acute manage-

ment of the disease to the long-term impacts on patients

suffering from post-acute sequelae of SARS-CoV-2 infection

(PASC).13 Emerging evidence shows that a significant subset

of patients in both adult and pediatric demographics, after

recovering from COVID-19, report a diverse spectrum of PASC

symptoms,14–16 which necessitate additional medical care and

contribute to a prolonged healthcare demand. A thorough under-

standing of the healthcare burden attributed to PASC is critical

for anticipating future healthcare needs and enhancing care de-

livery systems. While research has focused on the adult popula-

tion,10,11 there is limited knowledge regarding the utilization

pattern during the post-acute phase of COVID-19 among the pe-

diatric population.

PASC in the pediatric population is having a significant

impact on communities, highlighting an urgent need for its

assessment and management.17,18 Driven by the goal of

generating insights for local decision-making, our research

aims to understand hospital-specific utilization patterns in

children and adolescents during the post-acute phase of

COVID-19, leveraging data from multiple health systems

through a multi-site transfer learning pipeline. Our study offers

several appealing features. First, our analysis is targeted at the

level of individual hospitals rather than estimating a global ef-

fect by ‘‘averaging’’ across multiple hospitals. Given the het-

erogeneity of hospitals in patient demographics, severity of

illness, healthcare resources and facilities, and patient and

physician socio-economic factors, analyses that offer hospi-

tal-specific estimates are essential to provide insights that

are immediately applicable to local decision-making. Second,

our study employs a transfer learning pipeline that leverages

data from multiple hospitals to enhance learning within the

target hospital of interest, which yields more precise results
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when the outcome of interest is rare. Third, our study goes

beyond assessing the overall healthcare burden to pinpoint pa-

tient subgroups that may have additional medical needs. We

implement data-driven and interpretable identification of sub-

populations with potentially heterogeneous healthcare needs,

which may lead to more actionable guidance in practice.

Fourth, we focus on a pediatric population with pre-existing

chronic conditions, who may require considerable attention

within health systems due to the long-term and complex nature

of their healthcare needs.

To address the need for reliable inference, we introduce an

end-to-end heterogeneous latent transfer learning (Latent-TL)

pipeline. Our approach has two components. First, recognizing

that pediatric patients with chronic conditions form a heteroge-

neous population, Latent-TL leverages collaborative learning

across multiple participating health systems within a distributed

research network15 to identify latent patient subpopulations.

Second, Latent-TL estimates causal effects tailored to each sub-

population within each health system while borrowing informa-

tion from the remaining health systems. Together, these capabil-

ities provide a robust analytical tool that has the potential to

significantly enhance evidence-based policy decision-making.

Our approach starts with multi-site latent class analysis

(MLCA),19 a robust tool for discerning multimorbidity patterns

and characterizing clinically significant subpopulations among

patients with chronic conditions. Then, to estimate the subpop-

ulation-specific effects of COVID-19 on healthcare utilization

within a specific hospital, we implement a transfer causal

learning framework. This method demonstrates increased preci-

sion over independently learning from individual health systems

by leveraging data from other institutions within a distributed

research network.

We applied our Latent-TL method to analyze EHR data from

eight institutions affiliated with PEDSnet,20 a pediatric learning

health system in the US. Our application identified four clinically

meaningful patient subpopulations characterized by distinct co-

morbidity patterns: mental health conditions, atopic/allergic

conditions, non-complex chronic conditions, and complex

chronic conditions. Using Latent-TL, for each participating insti-

tution, we identified varying impacts of COVID-19 on post-acute

healthcare utilization across these distinct groups. To account

for possible unmeasured confounding and other systematic

biases, we performed calibration using negative control out-

comes.21,22 This analysis serves as an example of a principled

approach to the adaptive integration of diverse data sources to

perform causal inference while accounting for heterogeneity

both within hospital-level patient populations and between

different health systems. Our approach facilitates an informed,

stratified decision-making process tailored to distinct patient

subgroups and individual health systems, which has general ap-

plications in informing patient care strategies and improving

healthcare outcomes.

RESULTS

Overview of the proposed Latent-TL pipeline
Figure 1 illustrates the workflow of the proposed Latent-TL pipe-

line. The proposed Latent-TL pipeline aims to determine the var-

ied impacts of COVID-19 infections on healthcare use during the



Figure 1. Overview of study design, cohort attrition, and the heterogeneous Latent-TL pipeline

The figure delineates the three core stages to implement the latent transfer learning (Latent-TL) pipeline: (1) identification of latent patient subpopulations

characterized by specific multimorbidity patterns based on data frommultiple health systems, (2) causal estimation tailored to the patient population in the target

hospital, and (3) adaptive integration across hospitals for enhanced estimation.
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post-acute phase within a designated target hospital, borrowing

relevant data from additional source hospitals (i.e., additional

hospitals that may provide useful information in learning at the

target hospital) within a distributed research network. We devel-

oped the Latent-TL pipeline based on the study cohort from the

EHR data collected from eight hospitals participating in the

PEDSnet network, focusing on the pediatric population with un-

derlying chronic conditions.

The Latent-TL pipeline was designed with a three-step pro-

cedure. The initial phase of the Latent-TL uses a MLCA19 to

discern four unique patient subpopulations characterized by

specific multimorbidity patterns. Utilizing data aggregated from

multiple institutions, these subpopulations are collaboratively

identified, even though their distribution (i.e., prevalence of

four subpopulations) might vary across individual hospitals.

Following this, the transfer learning pipeline assesses the effects
of COVID-19 infection on healthcare utilization during the post-

acute phase within each subpopulation in the target hospital.

Recognizing the differences in patient characteristics between

the target and source hospitals, in the second step, patient pop-

ulations from the source hospitals are ‘‘standardized’’ through a

weighting process, which results in comparable covariate pro-

files across hospitals. Then, in the third step, the pipeline ascer-

tains the influence of COVID-19 on healthcare utilization within

each subpopulation in the target hospital by collaboratively

analyzing data from both the target and source hospitals. Impor-

tantly, this approach selectively down-weights the source hospi-

tals that exhibit significantly different COVID-19 impacts

compared to the target hospital.

A comprehensive explanation of the techniques embedded

within the Latent-TL pipeline and the analytical models are given

in the experimental procedures section.
Patterns 5, 101079, November 8, 2024 3



Table 1. Baseline characteristics of patients aged <21 with chronic conditions in the study analyzing the post-acute healthcare

utilization outcomes following COVID-19 diagnosis in the pediatric population utilizing the Latent-TL pipeline

COVID-19 infection

(N = 49,430)

No COVID-19 infection

(N = 382,735) Overall (N = 432,165)

Age, years (%)

<5 13,497 (27.31) 135,466 (35.39) 148,963 (34.47)

5–11 16,172 (32.72) 126,709 (33.11) 142,881 (33.06)

12–15 10,120 (20.47) 64,936 (16.97) 75,056 (17.37)

16–20 9,641 (19.50) 55,624 (14.53) 65,265 (15.10)

Gender (%)

Female 23,852 (48.25) 177,879 (46.48) 201,731 (46.68)

Male 25,578 (51.75) 204,856 (53.52) 230,434 (53.32)

Ethnicity (%)

Non-Hispanic White 22,489 (45.50) 205,405 (53.67) 227,894 (52.73)

Non-Hispanic Black 12,238 (24.76) 66,434 (17.36) 78,672 (18.20)

Hispanic 8,923 (18.05) 57,619 (15.05) 66,542 (15.40)

Other/unknown 5,780 (11.69) 53,277 (13.92) 59,057 (13.67)

Obesity 16,217 (32.81) 106,589 (27.85) 122,806 (28.42)

Test location (%)

ED 11,645 (23.56) 69,517 (18.16) 81,162 (18.78)

Inpatient 2,227 (4.51) 27,192 (7.10) 29,419 (6.81)

Outpatient 35,558 (71.94) 286,026 (74.73) 321,584 (74.41)

Hospital (%)

A 9,926 (20.08) 64,213 (16.78) 74,139 (17.16)

B 12,335 (24.95) 92,020 (24.04) 104,355 (24.15)

C 6,970 (14.10) 56,241 (14.69) 63,211 (14.63)

D 1,790 (3.62) 22,463 (5.87) 24,253 (5.61)

E 10,843 (21.94) 68,153 (17.81) 78,996 (18.28)

F 3,126 (6.32) 28,642 (7.48) 31,768 (7.35)

G 3,374 (6.83) 27,944 (7.30) 31,318 (7.25)

H 1,066 (2.16) 23,059 (6.02) 24,125 (5.58)

Entry time (%)

2020Q1Q2 1,713 (3.47) 24,202 (6.32) 25,915 (6.00)

2020Q3 2,824 (5.71) 48,504 (12.67) 51,328 (11.88)

2020Q4 11,288 (22.84) 59,940 (15.66) 71,228 (16.48)

2021Q1 8,383 (16.96) 52,815 (13.80) 61,198 (14.16)

2021Q2 4,747 (9.60) 55,311 (14.45) 60,058 (13.90)

2021Q3 9,786 (19.80) 70,337 (18.38) 80,123 (18.54)

2021Q4 10,689 (21.62) 71,626 (18.71) 82,315 (19.05)

Acute-phase illness severitya (%)

Asymptomatic 31,701 (64.13) 199,907 (52.23) 231,608 (53.59)

Mild 13,338 (26.98) 88,453 (23.11) 101,791 (23.55)

Moderate 2,695 (5.45) 78,463 (20.50) 81,158 (18.78)

Severe 1,696 (3.43) 15,912 (4.16) 17,608 (4.07)

Baseline visitsb (averaged per year) 3.3 (5.8) 3.1 (5.3) 3.1 (5.4)

Underlying chronic conditionsc (%)

Allergies 13,912 (0.281) 89,489 (0.234) 103,401 (0.239)

Asthma 9,158 (0.185) 56,659 (0.148) 65,817 (0.152)

Implant device or graft-related encounter 5,625 (0.114) 48,012 (0.125) 53,637 (0.124)

(Continued on next page)
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Table 1. Continued

COVID-19 infection

(N = 49,430)

No COVID-19 infection

(N = 382,735) Overall (N = 432,165)

Sleep-wake disorders 5,722 (0.116) 47,911 (0.125) 53,633 (0.124)

Esophageal disorders 4,929 (0.100) 38,172 (0.100) 43,101 (0.100)

This table summarizes the characteristics of patients within the cohort of COVID-19 infection, no infection, and the overall study cohort.
aThe acute-phase severity was evaluated within 27 days after the index date based on criteria developed in Forrest et al.23

bThe baseline visits were reported as the average number of visits within 3 years to 7 days prior to the index date.
cThe period for underlying chronic conditions is from 3 years to 7 days prior to the index date.
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Characteristics of the study population
The study cohort includes 432,165 individuals with 49,430 from

the COVID-19 infection cohort and 382,735 from the comparator

cohort. We summarize the baseline patient characteristics of the

studycohort inTable 1.Acomprehensivebreakdownofall chronic

conditions isdetailed inTableS2.Overall, 34.47%ofpatientswere

younger than 5 years old, and slightly more than half were male

(53.32%). Over half were non-Hispanic White (52.73%), while

18.20%were non-Hispanic Black. Additionally, 28.42%of the pa-

tients were categorized as having obesity. Most patients entered

the cohorts with an outpatient test (74.41%) as opposed to an

inpatient or emergency department (ED) test. In the COVID-19

infection cohort, 98.4% of the patients were confirmed to have

COVID-19 through a positive PCR test, while the remainder were

confirmed via diagnosis codes. An analysis of patient characteris-

tics summarizedat the hospital level, displayed in Figure 2, reveals

similar age and gender distributions across health systems. How-

ever, there is evidence of substantial variation in the ethnicity and

obesity metrics across different health systems, underlining the

heterogeneity of patient demographics between hospitals. This

underscores the point that a one-size-fits-all approach would be

inadequate in measuring the impact of COVID-19 on diverse

healthcare systems.
Subpopulations identified via MLCA
Through the collaborative MLCA approach, we identified four

distinct subpopulations, each characterized by a unique mix of

chronic conditions. Figure 3 shows the prevalence of different

chronic conditions across subpopulations. Here, each column

denotes a subpopulation, and each row represents a specific

chronic condition cluster. We show only the 50 most prevalent

chronic conditions. (A heatmap showing all conditions is avail-

able in the supplemental information.) We summarize the four

identified subpopulations as follows.

d Class 1 (mental health conditions) includes anxiety disor-

der, psychological symptoms, attention-deficit hyperactiv-

ity disorder, neurodevelopmental disorder, major depres-

sion, minor depression, autism spectrum disorder, etc.

d Class 2 (atopic/allergic chronic conditions) encompasses

patients predominantly affected by atopic conditions, like

allergies and asthma.

d Class 3 (non-complex chronic conditions) consists of pa-

tients with non-complex chronic ailments.

d Class 4 (complex chronic conditions) identifies patients

with complex conditions, evidenced by a significant reli-

ance on medical technology and severe multi-system

disorders.
There is substantial heterogeneity in the prevalence of these

subpopulations across hospitals. For instance, only 6.7% of pa-

tients in hospital H belonged to class 2, while in hospital B, this

percentage was nearly ten times as large, at 66.3%. Such dis-

parities could be attributed to a range of factors, including, for

example, the geographical location of the hospital, the types of

facilities available, the range of services offered, and the organi-

zation of clinics. The R code to compute class membership

probabilities for each individual is available in Data S1. By input-

ting the diagnosis information of chronic conditions for an indi-

vidual, the R function will output the estimated probabilities of

that individual belonging to each subpopulation, along with the

subpopulation membership determined by the maximum poste-

rior probability assignment.

Transfer learning approach produces more adequate
and effective estimates
In this section, we demonstrates the effectiveness of the transfer

learning approach in estimating the subpopulation- and hospital-

specific effects of COVID-19 on post-acute healthcare utiliza-

tion. This approach is designed to use data from multiple health

systems to improve estimation precision. Figure 4 illustrates how

this method estimates the effect of COVID-19 on inpatient visits

at hospital A.

The forest plot in the first column of the figure displays effect

sizes when a standard causal inference approach was applied

individually to each subpopulation in each hospital (see supple-

mental information for more details). These estimates exhibit

variability across hospitals due to the distinct impact of

COVID-19 on each hospital, as well as the diverse patient popu-

lations served by these institutions. The variation in the impacts

of COVID-19 across various hospitals suggests that utilizing

global estimates for a specific hospital setting may not yield ac-

curate insights. The Latent-TL approach aims to derive causal

effects specifically tailored to an individual hospital through

two key adjustments.

First, focusing on a specific target hospital of interest (for

instance, hospital A in this illustration), a weighting algorithm is

used to harmonize baseline patient characteristics from source

hospitals, as depicted in the second column of the forest plots.

This "standardization" of samples through weighting ensures

that the data sourced from the additional hospitals more accu-

rately mirror the distribution of potential confounding variables

at the target hospital, thereby producing estimates in each

source hospital that are tailored to the patient population in the

target hospital.

Next, to achieve more precise estimation for the target hospi-

tal, the Latent-TL pipeline adaptively integrates estimates from
Patterns 5, 101079, November 8, 2024 5



Figure 2. Distribution of demographic attri-

butes including age, gender, race or

ethnicity, and obesity prevalence among pa-

tients from each of the eight participating

health systems in the PEDSnet network

The eight hospitals are indexed from A to H. The

height of the bars indicates the prevalence of each

demographic variable within each hospital. The

outermost circle corresponds to a prevalence of

0.6, with inner circles indicating lower prevalence

levels in increments of 0.2. This visualization re-

veals variations in ethnicity and obesity metrics

across different health systems, highlighting the

heterogeneity of patient demographics between

hospitals.
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source hospitals. Specifically, estimates from all hospitals are

aggregated, and source hospitals with a higher degree of similar-

ity to the target hospital are given greater weight in the aggrega-

tion process. Figure 5 illustrates the role of each hospital (both

target and source) in estimating the subpopulation-specific

impact of COVID-19 on inpatient visits in hospital A. The magni-

tude of each hospital’s contribution is determined based on the

estimated degree of similarity in the effects of COVID-19, which

can vary across subpopulations and hospitals.

Finally, Latent-TL synthesizes all of these elements to estimate

the impact COVID-19 has on inpatient visits at hospital A, as

shown in the last column of forest plots in Figure 4. To under-

score the precision gained by incorporating data from source

hospitals, as opposed to relying solely on data from the target

hospital, we sequentially incorporated the source hospitals in a

cumulative manner. We observe that including source hospitals

results in a reduction in estimated standard errors. This effi-

ciency gain shows how the Latent-TL pipeline can improve our

estimates by effectively sharing knowledge across hospitals.

Latent-TL pipeline quantifies hospital- and
subpopulation-specific post-acute healthcare demands
After identifying patient subpopulations, we used the transfer

learning approach described above to investigate the effects
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of COVID-19 infection on both inpatient

and ED visits during the post-acute phase

across both hospitals and subpopula-

tions. Figure 6 presents the estimated

causal effects, along with 95% confi-

dence intervals, as determined by the

Latent-TL method. The figure is divided

into two rows, with Figure 6A focusing

on inpatient admissions and Figure 6B

on ED visits.

From Figure 6, it is evident that COVID-

19 has variable impacts on inpatient and

ED visits, both across patient subpopula-

tions and across hospitals. For example,

at hospital D, patients with mental health

and complex chronic conditions had an

increased probability of an ED visit after

COVID-19 infection. In contrast, at hospi-

tal H, those with non-complex and com-
plex chronic conditions saw a significant rise in ED visits. The

rate of inpatient visits by patients with complex chronic condi-

tions at hospital D was significantly affected by COVID-19,

more so than at other hospitals. Similarly, hospital H observed

the most pronounced impact among patients with mental health

conditions.

Figure 7 highlights the distribution of patient subpopulations in

hospital A along with estimates of healthcare utilization (in terms

of inpatient visits) in two counterfactual scenarios: one in which

no patients were infected with COVID-19 and one in which all pa-

tients were infected. The former provides an estimate of baseline

utilization during the study period had the patients remained un-

infected. It is notable that while patients with complex chronic

conditions only constituted 6.8% of the overall population, they

accounted for a significant portion of healthcare utilization—

34.1% without COVID-19 infection and 30.2% during the post-

acute phase of COVID-19. Meanwhile, the subpopulation with

non-complex chronic conditions had the most significant in-

crease in healthcare utilization after COVID-19 infection. Esti-

mates of contemporaneous utilization for other hospitals can

be found in Figure S3.

In summary, this application evaluates the post-acute health-

care demand within the pediatric population, focusing on each

individual hospital participating in the PEDSnet network. Our



(legend on next page)
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findings reveal a heterogeneous pattern of healthcare demands

across various hospitals, indicating that a global- or national-

level estimate may not be adequately informative for localized

decision-making. The data-driven subpopulations exhibit

diverse healthcare needs, particularly noting that patients with

complex chronic conditions demanded more healthcare ser-

vices after COVID-19 in comparison to other subpopulations.

These findings suggest stratified healthcare strategies for patient

care and disease management of PASC.

Addressing residual bias in EHR data through negative
control experiments
While our analysis adjusted for a large number of measured po-

tential confounding variables, hidden biases due to unmeasured

confounders could still influence results. Tomitigate this, we em-

ployed a negative control experiment, a technique popularized

by Schuemie and colleagues21,22 found to be effective in phar-

macoepidemiologic studies.24,25 We identified 33 outcome vari-

ables not thought to be influenced by COVID-19 infection as

negative controls (see supplemental information for details). By

applying the same causal transfer learning pipeline to the set

of negative control outcomes, we established a baseline or

"null" distribution, which helps to measure and adjust for the

bias in estimating the effects of interest. Figure 8 presents the

estimated impacts of COVID-19 on these control outcomes us-

ing our method, denoted by blue dots. While traditional signifi-

cance testing rendered 70.9%of these effects as non-significant

(indicated by dots below the dashed line), calibration using the

null distribution increased this rate to 91.1%, as shown by solid

orange lines. Figure S4 shows the results from the Latent-TL

analysis of healthcare utilization outcomes after calibrating using

the empirical null distribution. There was a negligible shift in point

estimates, accompanied bywider confidence intervals, suggest-

ing a minimal degree of systematic bias.

DISCUSSION

In this study, we introduced Latent-TL, a multi-site transfer

learning framework designed to identify patient subpopulations

and estimate hospital- and subpopulation-specific causal ef-

fects. Our approach combined MLCA, a method that collabora-

tively identifies latent subpopulations of patients from multi-site

data, and causal transfer learning, which adaptively incorporates

data from source hospitals to enhance learning within a target

hospital. To further ensure the integrity of our results, we em-

ployed a set of negative control outcomes, which served as a

mechanism to detect and correct any residual biases in our anal-

ysis. We used the Latent-TL pipeline to evaluate the effects of

COVID-19 on healthcare utilization during the post-acute phase

in each of the eight pediatric hospitals participating in PEDSnet.

Our analysis identified four clinically significant patient subpop-

ulations that experienced heterogeneous effects of COVID-19

on healthcare utilization.
Figure 3. Collaborative identification of subpopulations based on unde

Top: a heatmap detailing the four discerned subpopulations (or latent classes). Co

of specific chronic condition clusters. The heatmap emphasizes the 50 most pre

distribution of chronic condition cluster incidences. Bottom: pie charts illustratin

within individual hospitals.
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Numerous studies have been conducted to support decision-

making in the context of COVID-19. While a significant portion

of them focus on mitigating the overall burden of the virus or pro-

jecting future infection rates, hospitalizations, and fatalities at a

population level,3,26–29 our research delves into the care-seeking

behaviors of patients, offering insights critical for patient manage-

ment within hospital settings. We have segmented the patient

population into distinct categories based on types of chronic con-

ditions. By doing so, we aim to generate knowledge on the varied

healthcare utilization patterns across these subgroups, which

ideally can be translated into clinical care. For instance, in our illus-

tration example from hospital A, we observed that patients with

non-complex chronic conditions experienced themost significant

increase in inpatient visits following COVID-19 infection. This

insight highlights the potential for increased demand in this patient

subgroup, prompting healthcare providers to allocate resources

accordingly, prioritize follow-up care, and personalize treatment

plans for these patients. In addition, the focused analysis by

Latent-TL provides a more tailored approach for guiding hospital

decisions, moving beyond broad national-level estimates. Appro-

priate situational awareness in COVID-19, at the provider and

administrative levels, required balancing broad, national-level

data with the patterns in care seen locally. An ability to confidently

apply national-level data to a local system was not readily avail-

able, and so the impact of demographic and subpopulation differ-

ences between centers, such as those demonstrated in Figures 2

and 3, were challenging to interpret. In Figure 6, hospital H serves

as an illustrative example of the impact that application of the het-

ero-Latent-TL approach could have at an individual center. A

multi-center estimate of ED visit risk for complex patients would

likely underestimate what providers and administrators at site H

were observing at their care center. However, applying this model

could inform hospital H that, in fact, their complex population was

at higher risk of ED utilization, with estimation improved by the in-

clusion of the multi-site data without losing insight into the site-

level differences. Armed with these data, one could imagine that

hospital H could more appropriately plan for ED care at the time

of COVID-19 surge or evaluate why their local practice and ED

referral patternsmight drive higher EDutilizationwithout a concur-

rent increase in inpatient utilization for the complex subpopulation.

Lastly, we can expect greater statistical power due to leveraging

information across health systems. The effective deployment of

Latent-TL in COVID-19 research underscores the invaluable role

of data sharing in enhancing hospital-specific decision-making

processes.

Several contemporary studies have also emphasized the

importance of borrowing information across multiple sites for

causal inference. For instance, Dahabreh et al.30 introduced a

causally interpretable meta-analysis. This method is applicable

when individual-level data are only available for the target popula-

tion but summary-level data from multiple studies with potential

population heterogeneity are also available. This approach first

estimates the treatment effect from the external studies and
rlying chronic conditions through MLCA approach

lumns symbolize individual subpopulations, while rows indicate the prevalence

valent chronic conditions. Each subpopulation is characterized by its unique

g the overall prevalence of each subpopulation and its respective prevalence



Figure 4. Estimation of subpopulation-specific impacts of COVID-19 infection on post-acute inpatient visits at hospital A (target hospital)

using Latent-TL pipeline

The first column illustrates effect sizes estimated by applying standard causal inference within each hospital. The second column shows effect sizes after

standardizing the source samples via a weighting mechanism in alignment with the patient characteristics in the target hospital. The final column showcases the

causal effects by incorporating the source hospital in a cumulative manner, highlighting the efficiency gains by involving data from source hospitals cumulatively

using the Latent-TL pipeline. The error bars represent 95% confidence intervals of estimates. The estimates, marked with the star, have the highest estimation

efficiency and are showcased in Figure 6.
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subsequently translates it to the designated target population, uti-

lizing covariates that could modify the effect. The effectiveness of

Dahabreh et al.’s technique, in comparison to conventional meta-

analysis, was evaluated by Rott et al.31 Meanwhile, Han et al.32,33

proposed federated algorithms to assimilate data from numerous

source sites to deduce the causal effect in target sites. Their strat-

egy modifies the covariate distribution in each source site to

match the target site. It then aggregates the source and target

site estimates by optimizing the site-level weights. Clark et al.34

proposed amethod that bridges causally interpretablemeta-anal-

ysis with random-effect meta-analysis, allowing for site-level het-

erogeneity beyond differences in the covariate distribution. Our
Latent-TL framework is unique in its accommodation of latent

subpopulation structures spanning multiple hospitals. It ad-

dresses site-level heterogeneity in several dimensions: by esti-

mating the variation in subpopulation composition via the

MLCA, adjusting source samples to align with the target hospital,

and considering the variability in subpopulation-level causal ef-

fects and adaptively weighting source estimates in accordance

with resemblance to the target population.

Weacknowledgeseveral limitationsof thisstudy.First, toensure

an adequate follow-up period, our study excluded patients in-

fected during the Omicron surge, which means recent infections

predominantly from the Omicron variant of SARS-CoV-2 (from
Patterns 5, 101079, November 8, 2024 9



Figure 5. Hospital contributions in esti-

mating the subpopulation-specific effect of

COVID-19 infection on post-acute inpatient

visits in hospital A

Contribution magnitudes are determined based on

the similarity of COVID-19 effects across different

hospitals.

ll
OPEN ACCESS Article
December25, 2021)were not considered. Future studies updating

the analysis to include these variants would be beneficial for a

more current understanding of the findings. Second, our primary

data sources were diagnoses, symptoms, and indications from

EHRs, which might lack pertinent laboratory, imaging, and proce-

dural findings. Third, our study aimed to infer the causal effect of

COVID-19 infection on healthcare utilization from observational

data. While a list of potential confounders was carefully identified

by domain experts in the field, there is no assurance that all influ-

ential confounding variableswere included in the analysis. Tomiti-

gate this, we conducted negative control experiments to assess

and calibrate the potential residual bias from unmeasured con-

founders. These experiments revealed negligible systematic error

in point estimates. Fourth, the comparator cohort was assembled

from patients without any recorded evidence of COVID-19 infec-

tion but with at least one negative COVID-19 test. This approach

might potentially target a cohort with a higher frequency of health-
Figure 6. Hospital- and subpopulation-specific COVID-19 effects on po

Hospital- and subpopulation-specific COVID-19 effects on post-acute inpatien

represent 95% confidence intervals of estimates. The estimates concerning inpa

Figure 4.
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carevisits, subsequently introducingbias to theestimates.Theuse

of negative control experiments serves as a vital tool in assessing

and mitigating these possible biases. Lastly, evidence suggests

that long-COVID can persist for longer than 6 months.35 We

acknowledge that the interpretation of the findings in this study

is limited to the first 6 months following acute COVID-19 infection.

Future studies that extend the follow-upperiod and analyze trends

over time would be beneficial for a more comprehensive under-

standing of the condition.

In conclusion, our proposed Latent-TL method underscores

the transformative potential of adopting transfer learning to

distributed research networks to generate evidence for local

decision-making. By discerning latent subpopulations and

harnessing transfer learning, our methodology elevates the

applicability and accuracy of healthcare utility analyses. Our

findings highlight the profound implications of this approach

in delivering more nuanced, data-informed insights for patient
st-acute inpatient and ED visits in eight health systems fromPEDSnet

t (A) and ED (B) visits in eight health systems from PEDSnet. The error bars

tient visits at hospital A, marked with a star, serve as illustrative examples in



Figure 7. Distribution of patient subpopula-

tion and corresponding healthcare utiliza-

tion with no COVID-19 infection and health-

care utilization during post-acute phase of

COVID-19 for four identified subpopulations

This analysis involves estimating healthcare utili-

zation in two hypothetical scenarios where all pa-

tients were presumed to be either non-infected or

infected with COVID-19.
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care and management. As health systems strive for more

adaptive and personalized care, the integration of such

advanced methodologies may be pivotal in navigating future

health challenges.

EXPERIMENTAL PROCEDURES

Database

The cohorts for this study were extracted from the large-scale EHR database

of PEDSnet,20 which is a national patient-centered clinical research network

consisting of eight participating systems: Children’s Hospital of Philadelphia

(CHOP), Cincinnati Children’s Hospital Medical Center, Children’s Hospital

of Colorado, Ann & Robert H. Lurie Children’s Hospital of Chicago, Nationwide

Children’s Hospital, Nemours Children’s Health System (sites in Delaware and

Florida), Seattle Children’s Hospital, and Stanford Children’s Health. Routinely

collected EHR data on more than 7 million children and adolescents were

available in PEDSnet. Data from different institutions in PEDSnet are harmo-

nized based on the common data model,36 an extension of the Observational

Medical Outcomes Partnership common data model.37 The PEDSnet COVID-

19 Database v.2022-03-17 was used for this study.

Cohort construction

We constructed the COVID-19 infection cohort and comparator cohort by se-

lecting individuals <21 years of age betweenMarch 1, 2020, andDecember 25,

2021, who have a history of chronic conditions.

d The COVID-19 infection cohort was determined by a positive SARS-

CoV-2 PCR test during any type of healthcare visit, a COVID-19 diag-

nosis associated with an inpatient or ED encounter, or a diagnosis of

multi-system inflammatory syndrome in children (MIS-C) or PASC dur-

ing any healthcare encounter. The index date for patients in this infected

cohort was defined as the date of either the first positive PCR test or the

earliest COVID-19 diagnosis or the date of the earliest PASC/MIS-C

diagnosis minus 28 days, whichever occurred first.

d The comparator cohort consisted of patients who had at least one nega-

tive PCR test, with no recorded positive test results or COVID-19,
P

MIS-C, or PASC diagnoses. The index date for

patients in this non-infected cohort was deter-

mined as the date of a randomly selected nega-

tive SARS-CoV-2 PCR test from among multi-

ple tests.

Patients having aminimum of 179 days of follow-

up time after the index date were included,

enabling us to examine healthcare utilization out-

comes during the post-acute phase of COVID-19.

All patients were required to have a history of

chronic conditions, identified by 199 chronic condi-

tion clusters based on ICD-10-CM codes (drawing

from the Agency for Healthcare Research and

Quality [AHRQ] Clinical Classification Software

Refined16) documented at any time up within 3

years up to 7 days before the index date. A popula-

tion selection workflow is available in Figure S1. For
a more detailed list of diagnosis codes used to define the study cohort, please

refer to the supplemental information.

Outcome and confounding variables

The outcome of interest in this study was a binary variable indicating a specific

type of medical visit between 28 and 179 days after the index date. Specif-

ically, we defined two outcomes as (1) at least one inpatient visit 28–

179 days after the index date and (2) at least one ED visit 28–179 days after

the index date. We focused on evaluating general patterns of healthcare de-

mands in the post-acute period without focusing on any specific cause. Be-

sides 199 pre-existing chronic conditions, we further collected patient baseline

covariates including age groups (categorized into <5, 5–11, 12–15, or 16–20

years) at index date, gender (female, male), race/ethnicity (non-Hispanic

White, Non-Hispanic Black, Hispanic, other, or unknown), test location (ED,

inpatient, outpatient), obesity (defined as age-sex-standardized BMI Z score

R 95th percentile based on weight measurement at the index date and height

within 60 days of index date), cohort entry period (March 2020–June 2020, July

2020–September 2020, October 2020–December 2020, January 2021–March

2021, April 2021–June 2021, July 2021–September 2021, October 2021–

December 2021), and the number of visits per year associated with existing

chronic conditions during the 3-year time period prior to the index date. See

supplemental information for a detailed list of study variables.

Development of the Latent-TL pipeline

The Latent-TL pipeline aims to assess the impact of COVID-19 on post-acute

healthcare demands using data frommultiple health systems, i.e., K + 1 hospi-

tals. The study is focused on gaining a deeper understanding of healthcare

patterns within an individual health system (target hospital) while utilizing

data collected from additional relevant hospitals (source hospitals).

Let Si be the hospital index for the i-th subject such that Si = 0, indi-

cating that the subject was collected from the target hospital, and

Si = 1;.; K if the subject belongs to a source hospital. Let

nk =
P

i IðSi = kÞ be the sample size of each hospital and n =
PK

k = 0 nk be

the total sample size. In the application of the Latent-TL pipeline on EHR

data from PEDSnet, each hospital was in turn designated as the target hos-

pital, while knowledge was leveraged from the other K = 7 relevant source

hospitals. Given that the variability in underlying chronic comorbidities
atterns 5, 101079, November 8, 2024 11



Figure 8. Funnel plot of traditional and calibrated significance testing

(A)–(H) corresponds to the results from hospital A through H, respectively. Areas below the dashed line indicate p < 0.05 based on traditional p value calculations.

Estimates in orange areas have p < 0.05 after calibrating the empirical null distribution. Blue dots indicate estimates corresponding to negative control variables.

The overall coverage of the null hypothesis changed from 70.9% to 91.1% after calibration.
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significantly influences the clinical manifestation of COVID-19 and PASC

and the corresponding healthcare-seeking behavior, we hypothesize that

the overall patient population across different hospitals is divided into C
12 Patterns 5, 101079, November 8, 2024
subpopulations or classes based on chronic conditions. This allows for po-

tential heterogeneity in the healthcare utilization pattern across different

subpopulations.
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Identification of patient subpopulation via MLCA

To better understand the heterogeneity of baseline conditions in the cohort, we

characterized patient subpopulations based on their distinct patterns of

chronic comorbidities. We employed a MLCA19 to collaboratively identify pa-

tient subpopulations with distinct patterns of pre-existing chronic conditions

using data from multiple hospitals.

Let zi = ðzi1;.; ziqÞT ˛ f0; 1gq be the q binary manifest variables, which are

pre-existing chronic conditions, observed for i-th subject. Assume that the

manifest variables are conditionally independent given the class membership

Ci , that is,

PrðZij = 1jCi = cÞ = pcj ; c = 1;.;C; j = 1;.;q:

lkc = Pr ðCi = cjSi = kÞ, c = 1;.;C; k = 0; 1;.;K, is denoted as the

probability of a subject from the k-th hospital belonging to class c. Through

the formulation of MLCA, these subpopulations are characterized by distinct

patterns in the prevalence of chronic conditions, establishing a unified defini-

tion for subpopulations across different healthcare systems. The MLCAmodel

accommodates variations in the distribution or prevalence of these subpopu-

lations among different hospitals, recognizing the inherent between-site het-

erogeneity. Our model aligns with the family of latent class regression

(LCR)38 models, wherein the covariate for the subject is a categorical variable

indicating the health system to which the subject belongs. The expectation

maximization (EM) algorithm,39 an effective method for estimating LCR

models, is utilized to estimate the parameters, specifically the prevalence of

chronic conditions within subpopulations and the distribution/prevalence of

these subpopulations across individual hospitals. In this study, we assume

that the number of latent subpopulations is known a priori. However, in prac-

tical applications, one can employ data-driven approaches like the Akaike in-

formation criterion (AIC) or Bayesian information criterion (BIC) to ascertain the

optimal number of subgroups.

Causal estimation with population standardization

We focus on estimating the causal effects of COVID-19 on post-acute health-

care utilization specifically tailored to each identified patient subpopulation,

adapting to the unique characteristics of a target hospital (K = 0). Let xi ˛
Rp be a p-dimensional vector of covariates for the i-th subject (i.e., all con-

founding variables in the study), where i = 1;:::;n. Ai denotes the binary expo-

sure in the study (i.e., infection or non-infection of SARS-CoV-2), and Yi de-

notes the observed outcomes (e.g., inpatient visits 28–179 days after cohort

entry). The membership of each subject toward each class is indicated by

Ci . Following the potential outcome framework, we let Yið1Þ and Yið0Þ denote
the potential outcomes when Ai = 1 and Ai = 0. Then, the Latent-TL pipeline

aims to estimate the average treatment effect for the target population (TATE)

of each subpopulation of the target hospital:

Dc = EðYið1Þ � Yið0ÞjCi = c;Si = 0Þ; c = 1;.;C:

It is crucial to acknowledge that the patient populations across source hos-

pitals might markedly vary from the target population, primarily owing to differ-

ences in geographical locations and the range of hospital services offered. To

account for this, Latent-TL facilitates the accommodation of heterogeneous

covariate distributions across different hospitals. It is achieved by modeling

the sampling probability for each hospital, conditional on covariates and sub-

population membership, and subsequently re-weighting the source patients to

more accurately represent the target population.

Specifically, in each source hospital, we implement a doubly robust esti-

mator for the causal effect of c-th subpopulation in the target hospital30,31:

bDc;k =
1

n0c

X
i

�
g0cð1; xi ; bq0c;1Þ � g0cð0; xi ; bq0c;0Þ�IðCi = c;Si = 0Þ

+
1

n0c

X
i

pðSi = 0jXi ;Ci = cÞ
pðSi = kjXi ;Ci = cÞ

�
Ai

�
Yi � g0cð1; xi ; bq0c;1Þ�

ekcðxi ; bbkcÞ

� ð1 � AiÞ
�
Yi � g0cð1; xi ; bq0c;1Þ�

1 � ekcðxi ; bbkcÞ

�
IðCi = c;Si = kÞ;

where PrðSi = 0jXi ;Ci = cÞ and PrðSi = kjXi ;Ci = cÞ represent the conditional

inclusion probabilities for the target and source hospitals, respectively, which

can be determined through the application of a classification model;

g0cð1; xi ; q0c;1Þ is a regression model of the outcome on covariates and
COVID-19 infection in subpopulation c of the target hospital; and ekcðxi ; bkcÞ is
a propensity scoremodel for subpopulation c of source hospital k. The proposed

estimator bDc;k is doubly robust in the sense that if either the outcome model

g0cða; xi ; q0c;aÞ or both the sampling probabilities and propensity scores are

consistently estimated, then the overall estimator is consistent for the TATE.

Adaptive integration of source hospitals

To effectively incorporate insights from source hospitals, we constructed the

final estimator as a linear combination of estimates derived from both the

target and source hospitals. The weights used in the linear combination

were estimated based on the degree of similarity between the estimates

from the target and source hospitals. Specifically, we define the final estimator

as bDc = bDc;0 +
PK

k = 1 hkðbDc;k � bDc;0Þ. Intuitively, the final estimator offers an

enhanced precision compared to the estimator that relies solely on data from

the target hospital without introducing substantial bias from integrating dissim-

ilar source hospitals. Besides, a source estimator that presents a minimal

discrepancy with the target should exert a greater influence on the final esti-

mator through a larger weight, while the weights associated with dissimilar

sources should be reduced, converging toward zero. As a result, our strategy

anchors to the point estimate that relies solely on data from the target hospital.

The weights of hospitals were determined byminimizing themean-squared er-

ror (MSE) of the final estimator, all while penalizing the discrepancy between

source and target estimates30,31:

MSEðh1;.; hKÞ+ l
XK

k = 1
jhk j

�bDc;k � bDc;0

�2
;

where the MSE is defined as

MSEðh1;.; hKÞ =
Xn

i = 1

(bIi;T+bDc;T+
XK

k = 1
hkðbIi;S;k+bDc;S;k

� bIi;T � bDc;T Þ � bDc;T

o2

=
Xn

i = 1

(bIi;T+XK

k = 1
hkðbIi;S;k+bDc;S;k � bIi;T � bDc;T Þ

)2

:

Ii;k represents the influence function of the doubly robust estimator in k-th

hospital.
PK

k = 1 jhk jfbDc;k � bDc;0g2 defines a penalty term on the discrepancy

between target and source estimators. The asymptotic variance is calculated

by applying appropriate weights to these influence functions, which are subse-

quently utilized to construct confidence intervals in the results section.
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Materials availability

No physical materials were used in the conduction of this research.

Data and code availability

d The data are not publicly available due to privacy concerns. The individ-

ual de-identified participant data will not be shared. The individual

de-identified participant data that support our findings can only be

shared with qualified researchers after a successful application for

PEDSnet Study Approval (https://pedsnet.org/research/accessing-

pedsnet/request-pedsnet-study-approval/). These requests will be

evaluated by the steering committee and processed by the coordinating

center.

d The source code and an illustration based on synthetic data are publicly

available on GitHub at https://github.com/Penncil/Latent-TL and have

been archived at Zenodo.40
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