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Single-cell RNA-seq analysis of cancer-endothelial cell
interactions in primary tumor and peritoneal metastasis from a
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BACKGROUND: Peritoneal metastasis, a major complication of colorectal cancer (CRC), often leads to poor quality of life and
unfavorable outcomes. Despite numerous studies characterizing its biological features in CRC, intratumor heterogeneity and
interactions between cancer cells and tumor microenvironment cells remain poorly understood.
METHODS: To explore these aspects, we performed single-cell transcriptome analysis of matched primary tumor and peritoneal
metastasis samples from a treatment-naïve patient.
RESULTS: Our analysis revealed enrichment of “tip” endothelial cells in the primary tumor, driving angiogenic sprouting, whereas
these cells were absent in peritoneal metastases. Moreover, cancer cells in peritoneal metastasis displayed a distinct expression
signature associated with epithelial–mesenchymal transition and tumor invasiveness. Analysis of cell–cell communication between
endothelial and tumor cells revealed decreased VEGF signaling and increased CXCL–ACKR1 interactions in peritoneal metastasis.
CONCLUSIONS: Although limited by its N-of-1 design and requiring further validation, our study provides preliminary observations
suggesting that alterations in cancer-endothelial cell interactions could reduce dependence on VEGF signaling and influence
immune cell infiltration in CRC peritoneal metastasis.

BJC Reports; https://doi.org/10.1038/s44276-024-00112-3

INTRODUCTION
Colorectal cancer (CRC) is the second leading cause of cancer-
related mortality worldwide [1]. Metastases, particularly to the liver
and lungs, are a major contributor to this mortality. Systemic
chemotherapy has shown efficacy in treating these metastases,
leading to improved overall survival. However, patients with
peritoneal metastasis (PM) typically have poor outcomes due to
the lack of effective treatment options [2]. Although synchronous
PM is diagnosed in only around 5% of CRC cases, prior studies
suggest that its prevalence may be higher than previously
recognized, underscoring the persistent gaps in our under-
standing of its biological characteristics [3].
The tumor microenvironment (TME) comprises various non-

malignant cells, including immune, fibroblast, and endothelial
cells (ECs), playing critical roles in cancer development and
progression [4, 5]. Tumor-associated ECs, generated through
tumor angiogenesis, are crucial for supplying sufficient nutrients
and oxygen to cancer cells and facilitating metastasis [6]. The
vascular endothelial growth factor (VEGF) signaling pathway is a
major driver of tumor angiogenesis, and tumor cells often produce
VEGFA to promote EC proliferation, migration, and vascular
formation [7]. Although VEGF inhibitors, such as bevacizumab,

have improved outcomes in metastatic and recurrent CRC [8],
resistance to these drugs has been observed. Additionally, despite
the development of many VEGF or VEGF receptor inhibitors, some
clinical trials have failed to demonstrate their ability to prolong
survival in patients with metastatic CRC [9]. Therefore, a better
understanding of EC features in CRC is imperative for developing
effective strategies targeting tumor angiogenesis.
Single-cell analysis has emerged as a potent tool for studying

human tumors at the individual cell level [10]. Traditional
methods, such as fluorescence-activated cell sorting, allow
analysis of tumor and TME cells via their physical separation;
however, they show limitations in capturing the complexity of
tumor ecosystems and cell interactions. Single-cell RNA sequen-
cing (scRNA-seq) profiling has revealed intratumor heterogeneity
and cell–cell interactions among immune cells, fibroblasts, and
cancer cells [11, 12], highlighting its advantages in improving our
understanding of tumor ecosystems.
In the present study, we conducted single-cell transcriptome

profiling of a primary tumor (PT) and a PM from a patient with
untreated stage IV CRC. Our analysis successfully classified each
cell type, and we focused our investigation on endothelial and
tumor cells. Subclustering analysis of ECs showed that “tip” ECs,
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leading to angiogenic sprouting, were enriched in the PM but
absent in PT tissue. Additionally, the PM exhibited an increased
number of epithelial–mesenchymal transition (EMT)/stem-like and
invasive tumor cells, whereas differentiated cells were enriched in
the PT. Cell–cell interaction analysis between endothelial and
tumor cells revealed decreased VEGF signaling intensity in PM
tissue. Overall, our study highlights the distinction in cell
properties and intercellular communication between the PT and
PM in CRC.

RESULTS
Colon cancer cell and tumor heterogeneity
To compare the heterogeneity of gene expression between the PT
and PM, we performed single-cell transcriptome analysis of
matched PT and PM samples simultaneously removed via surgery
from a 61-year-old woman (age at the time of surgery) with no
history of cancer (Fig. 1a). The PT originated from the sigmoid
colon, whereas the PM was located at the Douglas pouch.
Histologically, both were adenocarcinomas, and the TNM stage
was IVC (T4aN1bM1).
Following quality filtering, we obtained 1,908 high-quality

transcriptome profiles from PT and PM samples (refer to Methods).
Dimensionality reduction, graph-based clustering, and uniform
manifold approximation and projection (UMAP) performed via
Seurat were used to classify cell types based on gene expression
patterns, with 14 distinct cell clusters identified (C1–C14;
Fig. 1b–d). For cell type identification, consensus annotation was
conducted using three approaches: (1) examining cell type marker
gene expression levels (Figs. 1e), (2) identifying differentially
expressed genes (DEGs) in each cluster (Fig. 1f), and (3)
performing automated cell type annotation (Fig. 1g, h).
Based on a consensus of the three approaches, clusters were

annotated as ECs (C1–3), smooth muscle cells (C4), fibroblasts (C5
and C6), epithelial cells (C7–9), monocytes (C10), macrophages
(C11), plasma cells (C12), T cells (C13), and B cells (C14) (Fig. 1d;
Supplementary Table 1). Notably, immune cells, including mono-
cytes, macrophages, T cells, and B cells, were enriched in the PM
sample compared with the PT sample (Fig. 1l). The number of
DEGs identified in these immune cells between the PT and the PM
was low (Supplementary Table 2), implying that the difference in
the expression program of immune cells between the PT and the
PM may be small in this patient. Taken together, we were able to
identify cancer and TME cells, highlighting the proportional
differences between PT and PM samples.

Tip ECs exist in the PT but not in the PM
To further investigate EC differences between PT and PM tissues,
we performed subclustering of 295 ECs, identifying 6 clusters
(En1–En6; Fig. 2a–c). To classify these EC clusters, we examined the
expression levels of typical EC subtype markers (Fig. 2d, e;
Supplementary Table 3). En1 and En2 showed relatively heigh-
tened expression levels of postcapillary vein markers, including
ACKR1 and SELP. En1 and En2 also expressed certain marker genes,
including CCL14 and PRCP, typically associated with high
endothelial venules, which are involved in immune cell recruit-
ment. En3 displayed significantly high expression levels of arterial
EC markers, including SOX17 and GJA5. En4 was classified as “tip”
ECs, leading to angiogenic sprouting, expressing APLN, INSR, and
several tip endothelial markers [13]. En5 exhibited a distinct
expression profile compared with the other clusters (Fig. 2b), with
high expression levels of lymphatic EC genes. En6, the smallest
cluster (N= 14), remained unclassified.
Comparison of PT and PM EC components revealed abundant

tip ECs (En4) in the PT but not in the PM (Fig. 2f). Most ECs in the
PM were postcapillary vein cells, whereas arterial ECs were
observed less frequently in the PM than in the PT. Our findings
illustrate differences in EC types between the PT and the PM,

notably the enrichment of tip ECs in the PT, implying heightened
and diminished angiogenesis in the PT and the PM, respectively.

Differentiated and VEGF-expressing cancer cell numbers are
decreased while EMT and invasive cancer cell numbers are
increased in the PM
To delineate cancer cell heterogeneity between the PT and PM,
we subclustered 480 epithelial cells, identifying 7 clusters
(Ep1–Ep7; Fig. 3a–c). To describe the properties of each epithelial
cell cluster, we identified each cluster’s DEGs (Log2FC > 1 and
adjusted P-value < 0.01; Fig. 3d, e; Supplementary Table 4). Ep1
expressed enterocyte differentiation markers, including FABP1 and
KRT20. Ep2 showed few significantly expressed genes, one of
which was MMP7, associated with poor prognosis in CRC and
potentially involved in invasion and metastasis [14, 15]. Ep3
exhibited significantly high expression of EMT markers, including
FN1 and SERPINE1 [16, 17], as well as SOX4, linked to stemness and
tumor metastasis [18]. Ep4 expressed L1CAM, involved in
metastatic ability [19], as well as laminins, associated with cancer
dissemination [20]. Ep5 showed high VEGFA expression. Ep6, a
proliferating cell cluster, expressed cell cycle markers, including
MKI67 and CCNB1. Ep7, a goblet-like cell cluster, expressed MUC2,
typically synthesized by secretory intestinal goblet cells. In
summary, the clusters were annotated as follows: Ep1, enter-
ocyte-like; Ep2, MMP7+; Ep3, EMT/stem-like; Ep4, invasive; Ep5,
VEGF+; Ep6, proliferative; and Ep7, goblet-like (Fig. 3c).
PT and PM tissues showed different proportions of each cluster.

Compared with the PT, differentiated cell types, including
enterocyte-like (Ep1) and goblet-like (Ep7) clusters, were markedly
decreased in the PM (Fig. 3f). Conversely, MMP7+ (Ep2), EMT/
stem-like (Ep3), and invasive (Ep4) clusters were more abundant in
the PM. Importantly, VEGF+ cell (Ep5) counts were higher in the PT
than in the PM, consistent with observed tip EC enrichment in PT
tissue. Taken together, these findings suggest that PT epithelial
cells were differentiated and angiogenesis-related, whereas PM
epithelial cells were dedifferentiated and invasive.

Crosstalk switch from VEGF to CXCL signaling between cancer
cells and ECs in the PT and PM
To investigate the interaction between TME cells and cancer cells,
we next performed cell-cell communication analysis between TME
cell clusters and epithelial cells. Interestingly, the endothelial
clusters (Cluster 3 in the PT; Cluster 2 in the PM) are the strongest
receiver of the interaction signals in both PT and PM (Supple-
mentary Fig. 1). Subset analysis of endothelial and epithelial cells
highlighted substantial differences in cell characteristics between
the PT and PM (Figs. 2 and 3). Then, we conducted the interaction
analysis between only ECs and epithelial cells in each sample
(Fig. 4a). In PT tissue, VEGF signaling was the strongest pathway
between each cluster (Fig. 4b). Communication analysis revealed
that the VEGF+ cluster (Ep5) was the primary sender of VEGF
signals, whereas the tip ECs (En4) were the most prominent
receiver of VEGF signals (Fig. 4c). Conversely, in PM tissues, the
CXCL pathway exhibited the strongest signal between clusters
(Fig. 4d). The invasive cell cluster (Ep4) was the principal sender of
CXCL signals, whereas postcapillary vein cells (En1 and En2) were
the most prominent receivers of CXCL signals (Fig. 4e). These
results indicate a shift from VEGF signaling in the PT to CXCR
signaling in the PM occurring in the crosstalk pathway between
endothelial and epithelial cells.
In the VEGF signaling pathway, the VEGFA ligand was significantly

highly expressed in the VEGF+ cluster (Ep5; log2FC= 2.3, adjusted
P= 0.005, compared to other clusters), as previously shown (Figs. 3e
and 4f). The receptor FLT1 (VEGFR1) was significantly highly
expressed in tip ECs (En4; log2FC= 2.1, adjusted P= 1.1e-9),
enriched in the PT (Fig. 4f). KDR (VEGFR2) was highly expressed in
tip endothelial (En4; log2FC= 0.81, adjusted P= 0.056), whereas
FLT4 (VEGFR3), a lymphatic EC-specific VEGF receptor, was relatively
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expressed in lymphatic ECs (En5; log2FC= 1.6, adjusted P= 0.65). In
the CXCL pathway, the ligand CXCL8 was significantly expressed in
both enterocyte-like cell clusters (Ep1; log2FC= 1.7, adjusted
P= 3.0e-19), enriched in the PT, and invasive cell clusters (Ep4),
enriched in the PM (Fig. 4f), whereas the receptor ACKR1 was
expressed only in postcapillary veins (En1; log2FC= 1.7, adjusted
P= 9.6e-9 and En2; log2FC= 1.0, adjusted P= 1.2e-8), enriched in
the PM. Collectively, these results highlight the differences between
the two signaling pathways: both ligands and receptors in the VEGF
pathway were highly expressed in the PT but not in the PM, whereas

ligands in the CXCL pathway were expressed in both the PT and PM
while receptors were specifically expressed in the PM (Fig. 4g).

DISCUSSION
In recent years, studies have emphasized the heterogeneity of
tumor-associated ECs. For instance, a study using scRNA-seq to
investigate lung tumor ECs resulted in a molecular atlas of various
EC types, highlighting the importance of tip cells for patient
survival and sensitivity to VEGF signaling blockade [13].
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Additionally, this study showed that treatment with a VEGFR
tyrosine kinase inhibitor, vatalanib (PTK787), reduced the propor-
tion of tip cells, whereas postcapillary veins exhibited lower
sensitivity to this drug. Despite complete vatalanib-mediated
blockade of the VEGFR pathway, two clinical trials, namely
CONFIRM-1 (for first-line treatment) and CONFIRM-2 (for second-
line treatment), evaluating the drug’s efficacy against metastatic
CRC failed to show a significant improvement in overall survival
[21, 22].

Our study, although limited by its N-of-1 design and the
relatively small number of cells analyzed, offers preliminary
observations that may guide future research. Specifically, we
found distinct cellular characteristics and interactions between PT
and PM in CRC, suggesting potential differences in endothelial-
cancer cell communication. Below, we explore key findings from
our analysis and discuss their implications.
In the present study, we observed the presence of tip cells

specifically in PT tissue and an increased number of postcapillary
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veins in the PM, suggesting that ECs in metastatic tumors may lack
expression of VEGFRs, particularly VEGFR2, a critical factor in tumor
angiogenesis [23]. This finding implies that VEGFR blockade may
be less effective for treating CRC with PM. We also observed a
significant increase in postcapillary vein ECs expressing ACKR1,
also known as Duffy antigen receptor chemokines, in PM tissue.
ACKR1 is a chemokine receptor classified as a “silent” heptahelical
receptor. These receptors do not bind to G proteins; therefore,
they do not produce detectable intracellular signals [24]. A
previous study revealed that ACKR1 promotes inflammation by
binding to CXCL8 and other chemokines, facilitating their
internalization and transport from the basolateral side to the
apical side of ECs [25]. This process enhances the immobilization
and presentation of these chemokines to leukocytes, ultimately
promoting their extravasation and contributing to the inflamma-
tory response. In the present study, the increased infiltration of

immune cells observed in PM tissue compared with PT tissue
(Fig. 1i) aligns with the function of ACKR1. These findings suggest
that the reprogramming of interactions between ECs and cancer
cells may have transformed the PM into a “hot tumor.”
In conclusion, while our study provides insights into

endothelial-cancer cell interactions, its N-of-1 design and limited
cell numbers restrict the generalizability of the findings. Further
investigations with large sample sizes and mechanistic studies will
be essential to validate these observations and better understand
how these interactions influence metastatic processes.

METHODS
Clinical specimens
Colon cancer samples were obtained from surgically removed tumors.
Tissues were dissociated into single cells using the MACS Tumor
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Dissociation Kit and a gentle MACS dissociator (Miltenyi Biotec) following
the manufacturer’s instructions. Written informed consent was obtained
from the participant prior to sample collection. The protocol received
approval from the institutional ethical committee of Cancer Institute
Hospital, Japanese Foundation for Cancer Research (No. 2013-1003). The
study was performed in accordance with the Declaration of Helsinki.

Single-cell RNA-seq experiment
scRNA-seq libraries were generated using the BD Rhapsody Single-Cell
Analysis System (BD, New Jersey, USA) according to the manufacturer’s
instructions. Briefly, cells were labeled using the BD Single-Cell Multi-
plexing Kit after thawing. The labeled cells were then washed, pooled, and
loaded onto the BD Rhapsody microwell cartridge, and cDNA was
synthesized using the BD Rhapsody Whole Transcriptome Analysis
Amplification Kit. The resulting gene expression and cellular label libraries
were sequenced on an Illumina NextSeq 550 platform (Illumina, California,
USA) with paired-end reads (read1, 75 bp; index1, 8 bp; read2, 75 bp).
Sequencing data were processed using the BD Rhapsody Analysis pipeline
on the Seven Bridges Genomics platform and subsequently converted into
a gene expression count matrix.

Data analysis
Preprocess, clustering, visualization, and identification of DEGs. The web-
based analysis pipeline for BD Rhapsody and BD Precise ASSAYS (https://
www.sevenbridges.com/bdgenomics/) was employed to generate the
count matrix, with RSEC counts used as the input count matrix. The
Seurat package [26] was used for downstream analysis. Low-quality cells
with >40% mitochondrial RNAs and <400 or >9000 features were filtered
out. For filtered cells, the transcript count matrix was normalized to the
total number of counts for the cell and multiplied by a scaling factor of
10,000. The normalized values were then natural-log transformed using
Seurat’s “NormalizeData()” function, followed by a linear transformation
applied via the “ScaleData()” function. Principal component analysis was
performed using the “RunPCA()” function, with the top 2000 highest
variable features identified using the “FindVariableFeatures()” function with
the vst selection method. Subsequently, Seurat’s standard clustering
procedures were performed using the “FindNeighbors()” and “FindClus-
ters()” functions with the top 20 principal components (PCs) and a
resolution of 0.5. Data visualization was achieved through the “RunUMAP()”
function, with the same PCs employed to identify clusters. The
“FindAllMarkers()” function with “only.pos = TRUE, min.pct = 0.25,
logfc.threshold = 0.25” was employed to identify DEGs for each cluster
(Only test genes that are detected in a minimum of 25% of cells in one of
the two groups, and that show at least a 0.25-fold difference between the
two groups of cells). For subclustering of endothelial and epithelial cells, 10
and 20 PCs were used with resolutions of 0.8 and 0.6, respectively.

Cell type annotation. We performed three different analyses to identify
cell types: (1) lineage marker gene estimation, such as PECAM1 for ECs,
ACTA2 for smooth muscle cells, COL1A2 for fibroblasts, EPCAM for epithelial
cells, ITGAM for myeloid cells, IGLL5 for plasma cells (C12: IGLL5+), CD3D for
T cells, and PAX5 for B cells; (2) gene set enrichment analysis using the top
50 DEGs and cell type annotation gene sets, including PanglaoDB [27] and
Tabula Sapiens [28]; and (3) automated annotation using SingleR [29].

Cell–cell interaction analysis. The CellChat package [30] was used for cell–cell
communication analysis. The “secreted signaling” subset was employed as
the communication database, obtained using “subsetDB(search = “Secreted
Signaling”).” Each Seurat object of the PT and PM was employed as input to
create a CellChat object using the “createCellChat()” function. Communication
analysis was achieved using the standard CellChat flow.

Statistics and reproducibility
For identifying cluster-specific DEGs, we used Seurat’s “FindAllMarkers()”
function and determined genes with log2FC > 1 and adjusted P-value < 0.01
as DEGs.

DATA AVAILABILITY
The processed scRNA-seq data are available from the lead contact upon reasonable
request.

CODE AVAILABILITY
The R code used to conduct the analyses is available from the lead contact upon
reasonable request.
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