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Alterations in subcortical brain regions are linked to motor and non-motor symptoms in Parkinson’s
disease (PD). However, associations between clinical expression and regional morphological
abnormalities of thebasal ganglia, thalamus, amygdala andhippocampus are notwell established.We
analyzed 3D T1-weighted brainMRI and clinical data from 2525 individuals with PD and 1326 controls
from 22 global sources in the ENIGMA-PD consortium. We investigated disease effects using mass
univariate and multivariate models on the medial thickness of 27,120 vertices of seven bilateral
subcortical structures. Shape differences were observed across all Hoehn and Yahr (HY) stages, as
well as correlations with motor and cognitive symptoms. Notably, we observed incrementally thinner
putamen from HY1, caudate nucleus and amygdala from HY2, hippocampus, nucleus accumbens,
and thalamus from HY3, and globus pallidus from HY4–5. Subregions of the thalami were thicker in
HY1 and HY2. Largely congruent patterns were associated with a longer time since diagnosis and
worse motor symptoms and cognitive performance. Multivariate regression revealed patterns
predictive of disease stage. These cross-sectional findings provide new insights into PD subcortical
degeneration by demonstrating patterns of disease stage-specific morphology, largely consistent
with ongoing degeneration.

Alterations in subcortical brain regions play a crucial role in a wide range of
clinical domains known tobe affected inParkinson’s disease (PD), including
motor, cognitive, emotional, and autonomic functioning1. It remains to be
fully elucidated, however, how and to what extent localized morphological
differences in the basal ganglia, thalamus, amygdala, and hippocampus
contribute to the clinical manifestation of PD in vivo.

Shape analysis quantifies local inward and outward variations of the
gray matter surface boundaries, complementing standard global volumetry
as it can identify subtle regional differences thatmay not affect total volume.
Considering the complex organization of subcortical brain regions, with
each nucleus consisting of functionally specialized subdivisions, subcortical
shape analysis can provide insights into local vulnerability to disease. An
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overview of prior findings using shape analysis to study PD is provided in
Table S1 in Supplement2–25. The majority of case-control studies reported
subregional alterations of the putamen and caudate nucleus in PD2,4,5,8,12,23,25,
while several studies also demonstrated shape abnormalities in the globus
pallidus3,6,12, hippocampus6,8, nucleus accumbens7, and thalamus7,12,19. The
use of predictive modeling to distinguish PD patients from controls based
on shape features has been explored; predictive modeling applications in
smaller datasets have shown moderate to high classification
performance3,20,21,24.

While these findings show promise, the reported effects across studies
in terms of location, direction, and size vary substantially, which hampers a
clear understanding of disease patterns. The inconsistencies may be partly
explained by the small sample sizes of individual studies, differences
between study sample characteristics, the method quantifying morpho-
metric shape, and the regions of interest selected. Machine learning studies
in particular are highly susceptible to overfitting26. To address these lim-
itations, it is essential to conduct a well-powered study on a large PD sample
that transcends geographical and cultural boundaries, utilizing harmonized
processing methods.

Here we present findings from the largest international collaborative
analysis of subcortical shape in PD to date, using a combination of mass
univariate group comparisons, correlations, and interpretable machine-
learning approaches. We aimed to elucidate region-specific morphology
patterns and associations with clinical measures. We intended to apply
predictive models, not to reach high classification for diagnostic purposes,
but rather to better understand disease-stage-related patterns of morphol-
ogy using a multivariate approach, expanding on our previous work
detailing global subcortical volumetry in PD27. In line with our prior work,
we expected overall thinner subcortical regions in PD compared to controls,
except for increased thalamic thickness in mild stages of the disease27.

Results
Full sample
Data flow for each analysis is depicted in Fig. S1 and a summary of
demographic and clinicalmeasures for the PDand control group per source
is provided in Table 1 and per cohort in Table S2 in the Supplement. There
was a significant difference in age (D = 0.12, p < 0.001) and sex (χ2(1,
n = 3851) = 39.3, p < 0.001) between the PD and control group.

Mass univariate analysis: case-control
The majority of structures were regionally thinner in PD, with the largest
differences in the putamen ([% significant of all vertices, peak beta value]
left: 42.3%,−0.17; right: 49.2%,−0.18). The thalami, caudate nuclei, globus
pallidus, putamen, and left amygdala were regionally thicker, with the lar-
gest differences in the thalami (left: 32.4%, 0.13; right 32.4%, 0.13; Fig. 1A–D
and Tables S3 and S4 in the Supplement). A comparison of age- and sex-
matched PD (n = 2502, 35% female, age 63.5 ± 9.5 years) and control
(n = 610) subsample overall aligned with these patterns (Fig. S2A–B in the
Supplement).

Mass univariate analysis: HY stages
A summary of demographic and clinical measures across Hoehn and Yahr
(HY) stages is depicted in Table S5 in the Supplement.Mann–Whitney tests
revealed significant differences in the time since diagnosis and Montreal
Cognitive Assessment (MoCA) score among all HY groups (Fig. S3A, B in
the Supplement). The matching procedure selected 887 controls to match
the 451 HY1 participants, 1068 controls to match the 1068 HY2 partici-
pants, 846 controls to match the 282 HY3 participants, and 680 controls to
match the 85 HY45 participants. The control sample partially overlapped
across stage analyses (Table S6 in the Supplement). For optimal matching,
some HY2 (135), HY3 (1), and HY45 (1) participants were removed from
this analysis.

Case-control shape differences were found for all HY stages, notably
showing thinner putamen in HY1 ([% significant of all vertices, peak beta
value] right: 8.2%,−0.18) andHY2 (left: 16.5%,−0.14; right: 21.8%,−0.17)

and thicker bilateral thalamus in HY1 (left: 8.9%, 0.19; right: 19.5%, 0.13)
and HY2 (left: 10.5%, 0.15; right: 19.5%, 0.13). Thinner subregions of all
structures were identified in HY3 and HY45 (Fig. 2A–D and Table S7A–D
in the Supplement). Excluding age and sex as covariates to the models
generated comparable patterns (Fig. S2C–F in the Supplement).

Spin permutation tests revealed significant similarities in disease pat-
terns, with breaks in similarity generally betweenHY2 andHY45. HY1 and
HY2 maps were significantly similar for the right putamen (spatial corre-
lation coefficient r = 0.52, p < 0.001), right caudate nucleus (r = 0.48,
p < 0.001), left globus pallidus (r = 0.19, p = 0.016), right nucleus accumbens
(r = 0.53, p = 0.006), and thalamusbilaterally (left: r = 0.46, p = <0.001; right:
r = 0.39, p < 0.001). HY2 and HY3 maps were similar bilaterally for the
putamen (left: r = 0.53, p < 0.001; right: r = 0.62, p < 0.001) and caudate
nucleus (left: r = 0.60, p < 0.001; right: r = 0.28, p < 0.001) and the left tha-
lamus (r = 0.26, p = 0.004). HY3 and HY45 maps were similar for all ROIs
(rmin = 0.46; rmax = 0.93) except the globus pallidus bilaterally and the left
thalamus (see Fig. S4A–C).

Massunivariate analysis: time since diagnosis,MoCA, andMDS-
UPDRS3
Asubsample of PDparticipants had time since diagnosis (n = 2350),MoCA
(n = 1216), and Movement Disorder Society-sponsored revision of the
UnifiedParkinson’sDiseaseRating Scale part 3 (MDS-UPDRS3) (n = 1153)
scores available. Demographic and clinical characteristics of these subsets
are provided in Table S8 in the Supplement. All three variables were
moderately correlated with each other (Table S9 in the Supplement).

Increasing time since diagnosis was associated with regional thinning
in the putamen, caudate nucleus, amygdala, and nucleus accumbens, and to
a lesser extent in the thalamus and hippocampus (Fig. 3A and Table S10 in
the Supplement). Worse MoCA performance was predominantly asso-
ciated with regional thinning in the bilateral putamen, amygdala, caudate
nucleus, nucleus accumbens, and hippocampus, as well as thicker sub-
regions in the bilateral caudate nucleus, right globus pallidus, and right
thalamus (Fig. 3B andTable S11 in the Supplement).WorseMDS-UPDRS3
performance was predominantly associated with regional thinning of the
bilateral thalamus, amygdala caudate nucleus, and left nucleus accumbens,
as well as thicker subregions of the bilateral caudate nucleus and globus
pallidus (Fig. 3C and Table S12 in the Supplement).

Predictive models for HY classification
Thepatternsof expansionandcontraction in thebinary classification largely
correspond to the patterns shown in the mass univariate model (Fig. 4A),
while the ordinal classification shows more dispersed patterns of contrac-
tions andexpansions (Fig. 4B).Overlaying ahippocampal subfield atlas over
the ordinal shape patterns showed greatest atrophy in CA1, CA3, and
regions surrounding the hippocampal fissure, and relative sparing of the
fimbria and subiculum (Fig. S5A, B in the Supplement).

The TV-L1 regularized logistic regression (Logit-TVL1) model
achieved a receiver operating characteristic area-under-the-curve (ROC-
AUC) score of 0.65 for the full PD sample compared to controls, 0.61 for
HY1 vs HY2 and 0.66 for HY2 vs HY345 classification. The binary classi-
fication maps of HY stages contrasted with each other and controls are
shown inFigs. S6A–C, S7A–C, andS8A–C in the Supplement.We report on
the classification performance between the multi-task classification models
(one-against-all vs ordinal logistic regression (Ordit) model) in Table S13
andFig. S9A–E in the supplement.Additional validity checkson the caudate
nucleus revealed no differences in medial curve discrepancy between sites,
the PD and control group, and HY disease stages (Fig. S10A–D).

Discussion
In the largest study on subcortical shape in PD to date, we found local
abnormalities of subcortical brain regions in people with PD compared to
controls across all disease stages. Each HY increment was characterized by
greater impairment in both cognitive andmotor domains, as well as greater
time since diagnosis, on average, highlighting the close relationship between
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Fig. 1 | Mass univariate analysis: significant vertex-wise differences in thickness
between the full PD group and controls. A Effect map projected onto the sub-
cortical regions showing the PD versus control group comparison. Positive b-values
indicate that regions are thicker and negative b-values indicate that regions are
thinner in PD compared to controls. Themodel is corrected for age, sex, intracranial
volume and cohort.BAdissection of the fourteen subcortical structures of interest in
this study to guide the interpretation of panel (A).C Thalamus effect maps showing

group differences and D anatomical drawing of the thalamus and its subnuclei
displayed approximately in the same angle for interpretation purposes. L left
hemisphere, R right hemisphere, Ant anterior nucleus, In intralaminar nuclei, LD
lateral dorsal nucleus, LGN lateral geniculate nucleus, LP lateral posterior nucleus,
MDmediodorsal nucleus, MGNmedial geniculate nucleus, Mid midline nuclei, Pul
pulvinar nucleus, VA ventral anterior nucleus, VL ventral lateral nucleus, VPL
ventral posterior lateral nucleus, VPM ventral posterior medial nucleus.
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HY staging and overall clinical progression28. Accordingly, the cross-
sectional HY stage patterns are in line with the neurodegenerative process
that is expected in PD, suggesting progressive thinning of selective sub-
regions of the basal ganglia and limbic regions. This overall aligns with
longitudinal findings in mild to more severe PD stages showing the most
marked atrophy in the striatum and amygdala29.

Largely symmetrical and focal patterns of abnormal shape were found
in low stage PD, and more diffuse and pronounced across all structures in

higher disease stages. Notably, relatively thinner striatal regions can be
observed at the lowest stages. This includes parts of the medial putamen,
followed by posterior and anterior putamen regions, and parts of the dorsal
caudate nucleus. Later HY stage associations involve the ventral striatum,
including the nucleus accumbens. Of note is that the staging pattern aligns
with the frameworkdescribing thedeteriorationof thenigrostriatal pathway
in PD; subregions of the striatum are shown to not be equally and simul-
taneously affected; rather, evidence suggests a systematic distribution of
pathology across striatal subfields with disease progression, in a similar
pattern as presented in the current study30–34. Conjecturally, spatial simi-
larity analysis across HY stages suggests that a substantial change in the
morphometric correlates of PD progression takes place between HY2 and
HY3 across nearly all subcortical regions considered. Only the globus pal-
lidus and the left thalamus have consistent differential patterns of atrophy
fromHY1 throughHY3, with only theHY45-associated shape effects being
different from effects in earlier stages.

Cognitive impairment and dementia become increasingly frequent as
PD progresses35. The implication of first the amygdala and then the hip-
pocampus, accompanied by more selective anterior putamen and anterior-
medial dorsal thalamus involvement,fit the expected decline in cognition in
this group30,36, further emphasized by overlapping subregions that were
associated with lower cognitive performance. Overall, the demonstrated
regional thinning associated with a longer time since diagnosis agrees with
the patterns found in the staging analysis, with a notable difference: the non-
linear and non-uniform thalamic pattern across stages can not be captured
by the linear regression model, while in turn the implicated subregions
largely align with the final HY stage. Regions showing thinning associated
with global cognitive and motor impairment largely overlap, highlighting
the congruent progression of both domains in PD overall37. The bidirec-
tional patterns in the caudate nucleus suggest that the progression of motor
and cognitive symptoms is associated with complex shape changes.

Few regions, including parts of the medial dorsal and (ventral) pos-
terolateral thalamus, head of the right caudate nucleus, and lateral globus
pallidus, were thicker inmild-stage PD, and did not exhibit thinning even in
higher stages. This would suggest that distinct subregions may be tem-
porarily enlarged and thennormalized during the disease process, ormay be
larger premorbidly. The clustering of the mild-stage participants based on
shared thalamic shape features revealed no distinct clinical profiles of the
identified clusters, suggesting that the variation in thalamic size is not
explained by global motor or cognitive severity, see Fig. S11 and Table
S14A–D. Possibly, more specific symptom domains are associated with
focal enlargement. There is supporting evidence that thalamic hypertrophy
may occur in early PD38, and could possibly be linked to increased con-
nectivity of thalamic subdivisions that are involved in basal ganglia-
thalamocortical and cerebellothalamic circuitry responsible for controlling
movement, including the ventral anterior and ventral lateral territories,
respectively39,40. Evidence suggests that increased functional connectivity of
the globus pallidus interna and putamen with the cerebellothalamic path-
way is likely involved in the pathophysiology of PD tremor39. The con-
tinuous activation of the motor system in PD, as well as compensatory
homeostasis by remaining cells, may result in a temporary increase in tissue
size; a model supported by observations that depletion of striatal dopamine
is associated with both striatopallidal hyperactivity41 and enlargements of
striatopallidal synaptic boutons42. The demonstrated relation between
greatermotor impairment and selectively thicker putamen, caudatenucleus,
and globus pallidus territories in this study, and similar findings from a
recent study43, further support this notion. Other thalamic subdivisions that
are among themost densely innervated by dopamine, including themidline
limbic nuclei and mediodorsal and lateral posterior association nuclei44,
seem to be predominantly implicated in mild PD. The pattern agrees with
histopathological studies showing that the largest concentrations of Lewy
body pathology are found in limbic territories of the thalamus, with the
sensory-motor subdivisions being relatively spared45,46.

The difference in model maps between binary classification and
ordinal HY staging suggests that the morphometric correlates of PD do not

Fig. 2 | Mass univariate analysis: significant vertex-wise differences in thickness
betweenHY stage and age- and sex-matched controls. AHY1,BHY2,CHY3, and
DHY45 results are shown in the dorsal and ventral view. Positive b-values indicate
that regions are thicker in the PD group compared to controls and negative b-values
indicate that regions are thinner. The models are corrected for intracranial volume,
age, sex, and cohort. HY Hoehn and Yahr.
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vary linearly with disease progression. While regions such as the dorsal
caudate nucleus and medial putamen are consistently important in disease
prediction, other regions have a more nuanced course. In particular, the
dorsal thalamic subregion sees initial expansion (consistent with the uni-
variate analysis), followed by compression in the Ordit model (which
excluded control participants). While the binary and ordinal models both
work by producing simple linear combinations of local morphometric
features, the ordinal model allows for this linear combination to be related
non-linearly to a granular measure of disease severity with the addition of

only a few more parameters. Critically, this way Ordit strikes a balance
between anatomical interpretability and accuracy in severity prediction.

In contrast to univariate analysis, a negatively-weighted region of a
subcortical boundary in Ordit may not necessarily imply focal atrophy.
While such an interpretationmaywell be correct, it is also possible that such
a region experiences an expansion that is highly correlatedwith, but reduced
relative to, another region with more marked gray matter contraction. In
this sense, multivariate maps must be observed as a whole rather than the
sum of individual parts47. It is precisely this “whole-picture” representation

Fig. 3 | Mass univariate analysis: significant
vertex-wise correlation between clinical measures
and thickness within the PD group. A Time since
diagnosis, B MoCA, and C MDS-UPDRS3 motor
score while off medication are shown. Positive b-
values indicate a positive correlation and negative b-
values indicate a negative correlation. All regression
analyses were corrected for age, sex, and intracranial
volume. MoCA Montreal cognitive assessment,
MDS-UPDRS3 OFF Movement Disorders Society-
sponsored revision of the Unified Parkinson’s dis-
ease rating scale part 3 assessed in OFF medica-
tion state.
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of disease effects—rather than the power to make diagnostic predictions—
that captures the value of amultivariate linear shape classifier in the context
of PD imaging.

A number of limitations should be discussed. First, the cross-sectional
nature of this study complicates making inferences on disease progression.

In spite of this, it is striking that the morphometric and clinical patterns in
separate PD groups are correlated and strongly incremental, in agreement
with progressive degeneration. Secondly, subsamples were available for the
analysis due to missing data for some cohorts. While we are aware this may
challenge the exchangeability of findings between analyses, we emphasize

Fig. 4 | Machine learning: binary and ordinal classification maps. Binary and
ordinal classification uses vertex-wise thickness information from all subcortical
structures. The color bars represent the learned weights of the classification model,
positive values (SD from the learned weights) in red, and negative values in blue.

More intense colors indicate a stronger predictive power of the classification. Dis-
played are the results of A the binary classification of people with PD and controls,
B the ordinal classification of HY1–HY2–HY345.
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the unprecedentedly large samples that remained available, enabling the
detection of subtle disease patterns that can not be adequately assessed in
smaller, underpowered studies. Thirdly, the number of available participants
across HY stages was imbalanced. The fewer participants in HY4 and HY5
necessitated combining participants at stageHY3 and higher into one group
for the purposes of ordinal regression. This is, however, mitigated by the
clinical intuition that the greatest qualitative jump in symptom severity
occurs between HY2 and HY3. Fourthly, the level of striatal morphometric
asymmetry is possibly dependent on body asymmetry of motor symptom
severity,more pronounced in early than late PD stages48, whichwe could not
investigate here, but aim to include in future analyses. Finally, the shape
method provides fine-grained information on surface deformations, but it
does not capture the underlying structure. This reduces the translatability to
the subnucleus level, especially in structurally complex brain regions such as
the thalamus.

The findings of this unprecedented large study offer new insights into
patterns of subcortical degeneration and associations with symptom
domains in PD. Notably, the relation between clinical staging and shape
alterations aligns with the progressive nature of PD.

Methods
Participants
The data in this study were acquired between September 2016 and January
2022 and subsequently pooled by the ENIGMA-PDworking group. A total
of 38513DT1-weightedbrainMR images, of 2525 individualswithPD(35%
female, age 63.69 ± 9.75 years [mean ± SD]) and 1326 control participants
(46% female, 60.00 ± 12.20 years), were included from 22 different sources,
resulting in 50 cohorts with distinct scanning and clinical testing environ-
ments (Fig. S12). MR images were collected and processed by the individual
source institutions; the output of the processing pipeline was uploaded to a
central repository for statistical analysis. Clinical characteristics such as HY
stage49, time since diagnosis,MoCA scores50, and scores from the UPDRS351

and theMDS-UPDRS352 obtained in theOFF statewere requested for all PD
participants and, if available, for controls. HY stage was used as ameasure of
disease severity and ranged from HY1 to HY5. Participants who were allo-
cated to stagesHY1.5 orHY2.5, according to themodifiedHY classification,
were regrouped into HY2. Similarly, smaller groups of PD participants with
themost severe stages were merged to increase statistical power, resulting in
HY45 for mass univariate analyses and HY345 for the machine learning
experiments. Nearest neighbor-matching using the MatchIt package in R
was performed to create subsamples of age- and sex-matched controls for
each HY PD group53. Cohort-specific inclusion and exclusion criteria are
summarized in Table S2 in the Supplement.

Imaging acquisition and subcortical shape analysis
T1-weighted MRI scans were collected according to local MRI protocols
(Table S15 in the Supplement). All scans were processed using the auto-
mated ENIGMA-shape pipeline including FreeSurfer v5.3 recon-all and
subcortical parcellation tools54–59, together with Matlab and R scripts to
perform statistical analysis and visualization (http://enigma.ini.usc.edu/
ongoing/enigma-shape-analysis)60,61. For each participant, the pipeline
extracted a surface mesh of seven regions of interest (thalamus, caudate
nucleus, putamen, globus pallidus, hippocampus, amygdala, and nucleus
accumbens, unilaterally) representing the outer boundaries of the region. A
measure of radial distancewas used to examine regional shapedeformations
across participants, which is computed as the distance from the surface to
the medial curve, a smooth curve that is fitted through the approximate
center of each structure. This distance is further referred to as thickness60,62.
Detailed steps of the ENIGMA-Shape pipeline (Fig. S13) and a second
measure of shapemorphometry (Figs. S13, S14A–H,andS15A–CandTable
S16A–H) are reported in the Supplement.

Mass univariate statistics
Mass univariate statistics across vertices were computed using the lme4
package with standardized R scripts63. Vertex-wise group differences (full

sample and HY stages vs controls) in thickness were assessed using linear
mixed-effectsmodelswith the variable cohort as a random intercept.Age, sex,
and total intracranial volume were added as nuisance covariates. We addi-
tionally tested vertex-wise correlations between thickness and variables time
since diagnosis (in years),MoCA score, and (MDS-)UPDRS3 off-medication
score. UPDRS3 scores were converted to MDS-UPDRS3 scores using a
validated formula64. For each vertex, we corrected the p-value from the mass
univariate analyses formultiple comparisons using searchlight false discovery
rate correction, at q = 0.05 as further explained in the legend of Fig. S1365.

Permutation tests
Over the course of this study, several related statistical maps were derived
modeling disease effects at different stages on deep gray-matter structures.
The abundance of spatially distributed statistical tests naturally begs the
question: in what ways are the patterns of disease similar over the course of
PD progression? To quantify spatial coherence between two different
effects, we adapted a previously established approach in neuroimaging
known as the “spin test”66. Briefly, the idea is to preserve the overall spatial
structure of the effect pattern while randomly shifting the pattern position
with respect to theother effect in thepair. In thisway,we canbootstrapanull
distribution of spatial correlations between two effectmaps—independently
in any given brain region—and compare it to the observed correlation. In
the casewhere effects aremapped to a surface of spherical topology, the shift
can be accomplished by a spherical rotation leading to the term “spin test”.
Here, we generated 10,000 random rotations for each test, using a qua-
ternion representation. The strength of evidence that the patterns are indeed
correlated more strongly than by chance can then be measured in the usual
frequentistway: the p-value is the proportionof times that the absolute value
of the observed correlation is greater than the absolute value of the null
distribution draws.

Multivariate predictive models
Due to the unfavorable sample-to-feature ratio in neuroimaging data,
effective regularization is critical to train interpretable models that gen-
eralize well outside of the training samples. Here, we used a logistic
regression (logit) model with “Structured Sparsity”, in which the linear
vertex loadings are sparse (using the “L1” norm) and spatially cohesive
(using the “Total Variation” or “TV” norm). This combination has been
shown to substantially improve model interpretability67. Logit-TVL1 has
been widely used in functional and diffusion MR brain imaging67,68, and
more recently for regression and spectral analysis of mesh-based data69.

The case-control binary classification was performed by training the
Logit-TVL1 on vertex-wise thickness across all structures. Hyper-parameters
weighing the relative importance of the TV and L1 terms were optimized
using a grid search with 4-fold cross-validation (CV). For assessment, ROC-
AUC scores were computed using a “nested” 4-fold-CV approach, which
eliminated much of the uncertainty resulting from selecting a single random
independent validation subset. Our methods for imputation of missing data
and accounting imbalanced groups are described in the legend of Fig. S13.

To identify a multivariate signature of disease progression across all
stages usingHYstages as the target variable,weused thenatural extensionof
the Logit classification, the Ordit. Briefly, Ordit models consider HY stages
to be ordered without assuming any specific functional relationship—such
as a linear dependence—between stage and biomarker value. The task is
then to simultaneously identify a universal linear multivariate stage pro-
gressionmodel andK− 1 thresholds θ1 < θ2 < θ3 <… < θK−1,whereK is the
number of stages considered. Aswith the binarymodels, we used Structured
Sparsity regularization. We applied our ordinal classifier using three HY
stage classes (HY1, HY2, and HY345). We followed the same hyperpara-
meter tuning and cross-validation approach as with binary classifiers,
replacing AUC with a balanced F1 score as performance criteria.

Inclusion and ethics statement
Within the PD working group of the ENIGMA consortium, we strive for
inclusivity by allowing researchers from around the globe to participate in
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large-scale and impactful investigations. We actively encourage participa-
tion from low-income countries and aim to uncover biological insights that
transcendborders, race, and socioeconomic status differences. This research
was conducted in accordance with the World Medical Association’s
Declaration of Helsinki. Approval from the respective institutional review
boards and written consent from participants were obtained at each source
institution: Amsterdam—Amsterdam I: Medisch Ethische Toetsingscom-
missie VU Medisch Centrum approval #ID2018.198. Amsterdam II:
COGTIPS, METc VUmc #NL58750.029.16 (2016.543). Amsterdam III:
Medisch Ethische Toetsingscommissie VU Medisch Centrum approval
#ID2018.198. Bern—BE I–II: approved by the Cantonal Ethics Committee
(CEC) #2016-00369. Cape Town—Cape Town Stellenbosch: approved by
IRBs at Stellenbosch University (IRB reference number: M07/05/019) and
the University of Cape Town (IRB reference number: 261/2007). Chang
Gung—CGU:ChangGungMedical Foundation InstitutionalReviewBoard
#202001592B0. Charlottesville—Charlottesville I–III:University ofVirginia
Institutional Review Board for Health Science Research #16778. Christch-
urch: SouthernHealth andDisability Ethics Committee of theNewZealand
Ministry of Health #URB/09/08/037/AM07. Donders—Donders Radboud:
METC Oost-Nederland #2014-123 and CMO Regio Arnhem, Nijmegen
NL47614.091.14. METC 2014/014. Liege—Liege I–II: The Ethics Com-
mittee of the University of Liège approved the study. https://www.
sciencedirect.com/science/article/pii/S1053811914005102. Milan: Fonda-
zione Ca’ Granda, IRCCS, Policlinico, the ethical committee approved”,
authorization granted by Dr. Giuseppe Di Benedetto, General Director,
dated November 19, 2008. This authorization is issued under the authority
of Legislative Decree 211/2003, Article 2, Paragraph 1.” Determination
number: n.172. NW-England—NW-England I–II: NWE, ethics (North
West—Preston Research Ethics Committee) IRAS ID #122770 REC refer-
ence 13/NW/0295. Oxford—Oxford DISCOVERY: South-Central Oxford
Research Ethics Committee #15/SC/0117. Pennsylvania: University of
Pennsylvania Institutional Review Board Protocol #820710. Graz—PRO-
MOVEASPS I–II: EthicsCommittee of theMedicalUniversity ofGraz #21-
345-ex 09/10 and IRB: Medical University of Graz PROMOVE 21-345 ex
09/10ASPSF: 17-088 ex 05/06. Rome—Rome SLF: Fondazione Santa Lucia
Local Institutional Review Board. Approval ID #CE/PROG.905. Stanford—
Stanford I–II:TheMJFFMRI study (IRB-22722) and theADRCstudy (IRB-
33727). Campinas—UNICAMP: Comitê de Ética de Pesquisa da UNI-
CAMP; approval #CAAE: 45873415.9.0000.5404.

Data availability
Publicly available datasets used in this work include PPMI (ppmi-info.org),
OpenNeuro Japan including Udall cohort (openneuro.org/datasets/
ds000245/), and Neurocon and Tao Wu’s data set (fcon_1000.pro-
jects.nitrc.org/indi/retro/parkinsons.html). Individual ENIGMA-PD sites
retain ownership of theirMRI scans and only share the anonymized derived
data for this analysis. Data are thus not openly available, but researchers are
invited to join the ENIGMA-PDWorking Group where they can formally
request derived data via secondary proposals. Data requests are then con-
sideredby the individual site’s principal investigators. If you are interested in
joining ENIGMA-PD, please contact enigma-pd@amsterdamumc.nl. For
more information please see the working group website: https://enigma.ini.
usc.edu/ongoing/enigma-parkinsons/.

Code availability
The ENIGMA-Shape pipeline with code to perform processing, statistical
analysis, and visualization is available here: http://enigma.ini.usc.edu/
ongoing/enigma-shape-analysis. The source code for the in-house analysis
scripts for the predictive modeling analysis is made available here: https://
github.com/LAMCIG/ML-for-surface-data.
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