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For the blasting scenario, our research develops an emulsion explosive grasping and filling system 
suitable for tunnel robots. Firstly, we designed a system, YOLO-SimAM-GRCNN, which consists of an 
inference module and a control module. The inference module primarily consists of a blast hole position 
detection network based on YOLOv8 and an explosive grasping network based on SimAM-GRCNN. The 
control module plans and executes the robot’s motion control based on the output of the inference 
module to achieve symmetric grasping and filling operations. Meanwhile, The SimAM-GRCNN grasping 
network model is utilized to carry out comparative evaluated on the Cornell and Jacquard dataset, 
achieving a grasping detection accuracy of 98.8% and 95.2%, respectively. In addition, on a self-built 
emulsion explosive dataset, the grasping detection accuracy reaches 96.4%. The SimAM-GRCNN 
grasping network model outperforms the original GRCNN by an average of 1.7% in accuracy, achieving 
a balance between blast holes detection, grasping accuracy and filling speed. Finally, experiments are 
conducted on the Universal Robots 3 manipulator arm, using distributed deployment and manipulator 
arm motion control mode to achieve an end-to-end grasping and filling process. On the Jetson Xavier 
NX development board, the average time consumption is 119.67 s, with average success rates of 87.1% 
for grasping and 79.2% for filling emulsion explosives.

With the development of the global economy and technological advancements, mine safety has become a focus 
of attention for countries worldwide. Many countries have started applying intelligent technology in mining 
production to enhance safety and efficiency. Intelligent robot systems are the core of mining automation. These 
systems possess functions such as self-perception, decision-making, and control, enabling them to perceive the 
mining environment, predict and assess risks, and autonomously control the production process. By utilizing 
intelligent robot systems, manpower can be reduced, production efficiency can be improved, and accident risks 
can be effectively lowered1. “Drilling, blasting, filling, and transportation” are the four key stages in tunnel 
construction, with the blasting stage lagging in terms of intelligent automation compared to the other three 
stages. This has become a pressing demand for improving tunnel excavation efficiency. However, the filling of 
explosives is usually done with manual or makeshift filling equipment. This working environment not only has 
problems such as humid air and harsh conditions but also imposes heavy labor intensity and extreme danger on 
workers. Therefore, many large equipment companies are racing to develop emulsion explosive filling equipment.

Our research endeavors to solve an important scientific challenge: how can robots be employed to accomplish 
the task of intelligent emulsion explosive grasping and blast hole filling in complex tunnel drilling environments? 
Vision-based object detection and robot grasping techniques have emerged as important research directions 
in this field. These two technologies have been integrated into end-to-end automation systems for robots and 
are widely applied in various scenarios, including automobile assembly, fruit picking, and material stacking2–5. 
Vision-based object detection for robots can be achieved using traditional computer vision methods or deep 
learning like Convolutional Neural Networks (CNN)6 and You Only Look Once (YOLO)7. In this study, we 
focus on the detection of blast holes positions for robots, and we compare different YOLO series detection 
algorithms using a self-built blast holes dataset. Based on maintaining accuracy as much as possible, we found 
that YOLOv88 demonstrates significantly improved speed in blast holes detection9. Visual grasping with deep 
learning is a topic that has been diffusely studied in the field of robotics. The process of grasping detection 
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involves utilizing visual sensors to gather precise and swift information about the grasp box, such as the location 
and orientation of the intended object. Recently, substantial research has been focused on utilizing deep learning 
techniques that utilize 2D images as input for grasping detection, resulting in substantial theoretical and practical 
progress10. In this study, we present A Simple Attention Module (SimAM), a 3D attention mechanism-based 
method for detecting grasps in emulsion explosives11 and a Generative Residual Convolutional Neural Network 
(GRCNN)12. We enhance and optimize the grasping network of the model in 3D space, utilizing the local Mish 
activation function for propagation. The enhanced SimAM-GRCNN algorithm converts the emulsion explosive 
grasping detection task into target localization and angle classification, producing outcomes that depict the 2D 
grasp box. The key contributions of this study can be summarized as follows: 

 1.  A grasp-and-fill system has been developed for the blasting robot to handle emulsion explosives in tunnel 
scenarios. The system is composed of two modules: an inference module and a control module. The inference 
module incorporates a YOLOv8-based blast hole position detection network, and a SimAM-GRCNN-based 
explosive grasping network; the control module plans and executes the robot’s motion control based on the 
detected blast hole positions and emulsion explosive grasping poses to achieve symmetrical grasping and 
filling operations.

 2.  An improved grasping model, SimAM-GRCNN, has been developed and integrated with an eye-in-
hand calibration method to meet the end-to-end grasping requirements of robots. This novel model, Si-
mAM-GRCNN, achieves significant accuracy improvements over state-of-the-art methods for both sin-
gle-object and multi-object grasping tasks. Its performance has been rigorously evaluated on well-established 
public datasets, including Cornell and Jacquard, as well as on a self-built emulsion explosive dataset.

 3.  The emulsion explosive grasp-and-fill system is deployed on the Jetson Xavier NX development board, lev-
eraging the YOLO-SimAM-GRCNN system. This integration allows for the execution of tasks such as blast 
holes detection, emulsion explosive grasping, and filling. The average time for a complete grasping and filling 
process is 119.67 s, with average success rates of 87.1% for grasping emulsion explosives and 79.2% for filling 
respectively.This work is organized as follows: in the Methodologies section, we present the visual grasp and 
detection techniques employed by robots. In the System Model section, we establish the model for emulsion 
explosive filling robots. The Experimental Verification section assesses the effectiveness of YOLOv8 in de-
tecting visual elements through experimentation with the blast holes dataset. We also train and evaluate the 
SimAM-GRCNN model using three different grasp datasets. In the Grasping and Filling Experiment section, 
we integrate the system model to create an experimental platform and conduct experiments on explosive 
grasping and filling using the YOLO-SimAM-GRCNN system. Finally, the Conclusion section summarizes 
the paper and provides relevant discussions.

Related work
Robot vision detection and grasping are critical research areas in robotics. By combining machine learning 
methods, robots can achieve accurate perception and identification of target objects, enabling precise target 
detection and grasping tasks. Meanwhile, research in robot vision detection is also crucial, involving the detection 
and analysis of target object shape, quality, surface features, etc13,14. In the field of robot vision grasping, many 
researchers are dedicated to developing high-precision target detection and tracking algorithms, enabling robots 
to accurately locate and track target objects for precise grasping actions15. These endeavors require the fusion 
of knowledge and methodologies from various fields namely computer vision and deep learning. By means of 
ongoing research and innovation, endeavors are being undertaken to enhance the visual detection and grasping 
proficiencies of robots to cater to diverse domains, and to facilitate the extensive integration and utilization of 
robotic technology in pragmatic settings.

Visual detection
Presently, deep learning-based object detection methods can be classified into two categories based on their 
design. The first type, such as the Region-CNN series (R-CNN), is a two-stage algorithm that utilizes region 
proposals. The second type of deep learning-based object detection methods is a single-stage algorithm, 
represented by the Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) series, which employs 
regression16,17. In the domain of blast holes detection, several deep learning techniques have been employed. 
Zhang et al.18 improved the SqueezeNet and ResNet-51 networks to construct an enhanced Faster R-CNN model 
for detecting multiple blast holes and challenging blast holes. Through comparative experiments involving multi-
scale and multi-level feature fusion of blast holes images and distance-constrained Non-Maximum Suppression 
(NMS), they achieved fast and efficient recognition and localization of single blast hole. By fusing multi-level 
features and using distance-constrained NMS for filtering multiple challenging blast holes, they achieved a high 
accuracy and recall rate in the recognition and localization of multiple blast holes and challenging blast holes. 
Zhang et al.19 also used the R-CNN, Faster R-CNN, YOLOv2, and SSD512 network architectures to construct 
an underground blast holes recognition algorithm. The results showed that YOLOv2 and SSD512 were faster in 
detection speed compared to Faster R-CNN, but not as accurate. Yue et al.20 designed the blast holes intelligent 
detection model MCIW-2 and proposed an anchor box aspect ratio clustering algorithm and a lightweight 
blast holes intelligent detection model. However, the deployment validation of this model in actual filling tasks 
has not yet been carried out. YOLO models, ranging from YOLOv5 to YOLOv10, have become increasingly 
popular in the field of visual detection due to their high accuracy and real-time performance. Researchers have 
progressively adopted YOLOv8, which builds upon the advancements of previous versions, for applications in 
robotic vision and grasping21–24. This trend is driven by the need for efficient and accurate object detection in 
dynamic environments, where robots must quickly identify and manipulate objects. YOLOv8, with its robust 
object detection and segmentation capabilities, offers a powerful tool for enabling robots to perceive their 
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surroundings and perform complex tasks with precision and speed. Kolin et al.25firstly compared YOLOv8-seg 
with classical methods for object segmentation in robotic grasping. Yan et al.26improved YOLOv8s for apple 
detection and branch/trunk segmentation in modern orchards, enhancing robotic picking. They collected 
annotated images, augmented the dataset, and integrated SE modules and a dynamic snake convolution module. 
The improvements led to significant performance gains over YOLOv8s, YOLOv8n, and YOLOv5s. Nevertheless, 
the algorithm was not tested on an actual robotic picker.

Robot grasping
To achieve stable grasping tasks, researchers first studied the mechanical characteristics and the movement of 
the end-effector while in contact with objects and conducted grasp analysis as described in previous studies27,28. 
Previous research has used supervised learning methods to handle robot grasping tasks of novel objects by training 
with synthetic data. However, these methods have limitations in specific environments like offices and kitchens. 
In order that overcome this challenge, Satish et al.29 introduced a technique known as Fully Convolutional 
Grasp Quality Convolutional Neural Network (FC-GQ-CNN). This method utilizes data collection strategies 
and synthetic training environments to predict stable grasp quality. As a result, it significantly enhances the 
processing capacity, allowing for a higher number of grasps to be analyzed per second. Furthermore, with the 
widespread availability of affordable RGB-D cameras. Present research depends on using RGB-D image data 
to predict grasp poses, recent experiments have shown the effectiveness of deep neural networks, with these 
methods relying solely on deep learning can efficiently compute stable grasps30–32. Mousavian et al. presented a 
GraspNet with 6 degrees of freedom (6-DoF). This network evaluates the quality of 6D gripper poses by mapping 
observed target and robot gripper point clouds. Moreover, GraspNet’s gradients can guide the robot gripper to 
prevent collisions and align with the object during manipulation33. Murali et al.34 proposed a technique to plan 
6-DoF grasps for objects in cluttered environments using partial point cloud data. Their method enables efficient 
grasp sequences to be generated for objects that are currently inaccessible . Kumra et al.35 presented A Real-Time 
Multi-Grasping Detection Network for Robotic Grasping (GRCNNv2). The network is based on image depth 
information and extracts multiple potential grasp points in the image using methods such as pyramid dilated 
convolutions and multi-resolution receptive fields, enabling accurate and efficient grasp point detection in real-
time scenarios. Ge et al.36 arranged a robot grasping method that utilizes a 3D detection network. Using a CNN, 
they calculated 3D bounding boxes and generated a strategy for optimal grasping poses. However, the network 
did not incorporate depth information from the camera for fusion. Bin et al.37 integrated an CBAM attention 
mechanism into the SqueezeNet architecture, harnessing a sophisticated five-parameter scheme to encode 2D 
grasp configurations. This innovation facilitated object grasping without necessitating intricate enhancements to 
the network’s design, thereby maintaining architectural simplicity. On another front, Yang et al.11 introduced the 
SimAM attention module, distinguished by its streamlined design and remarkable efficacy, further advancing 
the realm of attention-based methodologies in neural networks.

Different from previous works, our study focuses on visual detection and robotic grasping simultaneously. 
Table  1 provides a comparative summary of our research findings and the latest trends in robotic grasping and 
filling.

Problem formulation
In this work, we define the problem of emulsion explosive grasping localization from image to robot grasp 
transformation in a robotic grasping scenario. In the general object-grasping task of robots, Kumra et al.35 
proposed a grasping model based on eye-to-hand. In this system, an improved version of the eye-in-hand 
grasping model is proposed, representing the grasping poses in the robot framework as:

 Gr = (Pr,Wr,Θr, Qr) (1)

The grasping pose of the image can be defined as the center position of the grasping target Pr = (xr, yr, zr), 
As Wr is the width of the gripper opening necessary for grasping the target, Θr is the rotation angle of the tool 
around the z-axis, and Qr is the quality score that assesses the current target’s grasping quality. We detect grasps 
from an n-channel image, the image’s height and width are represented by h and w, respectively. The grasping 
pose of the image can be represented as:

Authors Robot grasping Robot filling Cornell dataset Jacquard dataset Explosive dataset

Lenz et al.2 ✓ × ✓ × ×
Redmon et al.38 ✓ × × × ×
Zhou et al.39 ✓ × ✓ × ×
Morrison et al.40 ✓ × ✓ × ×
Yu et al.41 ✓ × ✓ ✓ ×
Kumra et al.35 ✓ × ✓ ✓ ×
Bin et al.37 ✓ ✓ ✓ ✓ ×
Ours ✓ ✓ ✓ ✓ ✓

Table 1. A comparison of related work.
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 Gi = (xi, yi,Wi,Θi, Qi) (2)

where (xi, yi) is these grasping poses include an image of the grasping target’s optimal center coordinates, and 
Wi is the target width required for grasping, which ranges between [Wmin,Wmax] pixels. Basically, Qi represents 
the grasping quality of each target center in the image, with values closer to 1 meaning a higher likelihood of 
success grasping. Θi is the rotation angle represents the relative rotation angle concerning the image’s x-axis and 
ranges between [−π

2 ,
π
2 ] radians. Therefore, a pose transformation is required to convert the grasping poses of the 

image to the grasping poses in the robot framework.

Approach
The complex environment of the emulsion explosive grasping and filling robot operation is unique, with 
variations in the position of the blast holes and the morphology of the channels, and the working environment 
is in a confined space tunnel. These filling characteristics determine that the structure of the explosive filling 
robot is targeted42. Before the explosive filling, it is necessary to detect the position of the blast holes and the 
grasping pose of the explosive43,44, and generate labels corresponding to each blast holes and emulsion explosive 
based on the results of the front and rear detection, and then plan the motion control route of the robot, and 
finally execute the mechanical arm to complete the grasping and filling. The proposed YOLO-SimAM-GRCNN 
system is used for the grasping and filling of emulsion explosives of the robot. The model consists of three 
main components: the grasping and filling system, the SimAM-GRCNN, and the motion control system. The 
effectiveness of explosive grasping depends on the accuracy of both the SimAM-GRCNN detection algorithm 
and the YOLOv8 blast holes detection in the grasping and filling system. The position accuracy of robot motion 
control affects the success rate of explosive filling.

Grasping and filling system
The grasping and filling system mainly consists of an inference module and a control module, which are used to 
achieve perception, planning, and decision-making to complete the tasks of blast holes detection and explosive 
grasping. There are two main parts to the inference module. One component detects blast holes within the 
camera’s field of view, while the other predicts suitable grasping poses for objects within the same field of view. 
The control module then plans and executes the robot’s motion control based on the position of the blast holes 
and the grasping poses of the emulsion explosive, to achieve symmetric grasping and filling operations.

Inference module
The inference module is comprised of two key components: the blast holes detection network and the emulsion 
explosive grasping network, as illustrated in Fig. 1. The RGB-D camera captures the scene’s image, which is 
then preprocessed to align with the network’s input requirements. The blast holes detection network is the first 

Fig. 1. System inference module. The inference part of the system consists of two components: the blast hole 
detection model and the grasping detection model. Both models rely on RGB-D images captured by the D435i 
camera after the UR3 robotic arm moves to specified positions. The output of the upper blast hole detection 
model is a series of blast hole filling locations, while the output of the lower grasping detection model is a series 
of explosive grasping positions.
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component of the inference module. By normalizing and encoding the feature images, it preprocesses RGB-D 
four-channel images. A YOLOv8 network inference is then performed on the RGB image to obtain the blast 
hole centers. An estimate of the hole depth is obtained by averaging the depth information of the four corners 
of the YOLOv8 detection bounding boxes, with the holes surface depth obtained from the average depth value 
and the compensation depth representing the simulated holes depth45,46. The depth of the blast hole center 
position is calculated based on the compensation depth. According to the YOLOv8 blast holes detection 
network, the blast hole numbers and their corresponding three-dimensional positions are listed in Fig. S1 in the 
supplementary section. Finally, the compensatory depth calculated above is converted into the final fill position 
for the target hole. The other component is the emulsion explosive grasping module, It consists of three parts: 
(1) Input data is preprocessed, including cropping, resizing, and normalization. The processed image is fed into 
SimAM-GRCNN. SimAM-GRCNN can use inputs of any channel number, not limited to specific types of input 
modalities, making it versatile for any type of input modality. (2) The SimAM-GRCNN network extracts features 
from the preprocessed image and generates three feature maps as outputs: one for the grasping angle, another for 
the grasping width, and a third for the grasping quality score. (3) The grasping pose is inferred based on these 
three output images. By combining the detection results from both components, we can generate one-to-one 
labels that match the blast holes filling positions with the emulsion explosive grasping positions. This completes 
the end-to-end position matching of the robot. Additionally, we need to implement robot motion control to plan 
and execute the motion control routes of the mechanical arm for grasping and filling, ensuring the successful 
completion of the matched actions.

Control module
There is mainly a task controller in the control module, which uses the inference module to generate the starting 
point grasping pose and the endpoint filling position of Robot’s end-effector determines the system’s motion 
tasks. The control tasks of the system are implemented in an orderly manner through the Python interface of the 
trajectory controller and planner, as shown in Fig. 2.

The task controller carries out operations such as grasping, filling, and calibrating the control module. It 
requests grasping poses from the inference module, which then delivers them in descending order of quality. By 
matching them one by one with the previously obtained blast holes information, multiple sets of robot starting 
positions can be obtained. Furthermore, the Python interface is used to perform inverse kinematics trajectory 
planning for the robot’s end-effector actions. 7-DOF robot enables the trajectory controller based on the starting 
point and executes the planned trajectory to perform the corresponding grasping and filling tasks. Due to the 
adoption of a modular design approach and integration with Python, this system is suitable for most robots 
available on the market.

SimAM-GRCNN
SimAM-GRCNN is a model that generates pixel-level grasp results from an input image with 4-channels as 
shown in Fig. 3. Three convolutional layers and a channel attention SimAM module are applied to the 4-channel 
image in the first step. Then, it goes through five residual layers and another channel attention SimAM module. 
Next, three convolutional layers are applied. There are four tensors included in this set: grasp quality score, 
trigonometric function of angle sin 2Θ& cos 2Θ with plane, and end-effector width. The grasp angle is obtained 
by Angle = arctan sin 2Θ

cos 2Θ/2 calculating the angle relative to the X-axis47, and finally, the optimal grasp box is 
generated.

Network structure
Firstly, the SimAM-GRCNN grasping network utilizes three convolutional layers to extract initial features 
from the input RGB-D image. The first improvement made in the SimAM-GRCNN grasping network is the 
incorporation of the Mish activation function to replace the traditional ReLU activation function in the first 
Conv2D + BatchNorm + Activation (CBA1) module. It improves training stability due to the slight negative 
values allowed by the Mish function, which facilitate better gradient flow compared to the hard zero boundary 
of ReLU. Furthermore, a plug-in SimAM11 module incorporating a 3D attention mechanism is integrated before 
and after the Residual Block module. Compared to existing channel and spatial attention modules, SimAM can 
infer 3-D attention weights for feature maps within a layer without adding parameters to the original network. 
Another advantage of this module is that most operators are chosen as solutions to a defined energy function, 
which avoids too much structural adjustment work. The features refined by the SimAM module are better 

Fig. 2. System control module.
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able to concentrate on the target object for grasping. When the number of convolutional layers in a network 
structure exceeds a certain threshold, accuracy no longer improves and issues such as gradient vanishing and 
dimensionality errors may arise. Thus, the grasp network utilizing 5 residual layers with skip connections 
enhances the learning of RGB-D features more efficiently. After processing through these convolutional and 
residual layers, the image size is reduced to 75× 75. To facilitate interpretation and to retain spatial features 
of the image after convolutional operations, the grasp network utilizes transposed convolutional operations to 
upsample the image, aligning it with the original input size to obtain an output image of the same dimensions. 
The SimAM-GRCNN grasp network has a total of 1.9 MB of parameters, which is equivalent to the parameter 
size of the original GRCNN grasp network. The SimAM-GRCNN grasp network proposed in this study has 
fewer parameters and a lower computational cost compared to other grasp networks. This model is suitable for 
robot closed-loop grasp motion control at up to 50 Hz.

Training methodology
In the training process of the grasping network, we employ the conventional backpropagation algorithm as 
our training strategy. The network architecture integrates both Adam and SGD optimizers to explore their 
distinct effects on model training. The learning rate is set to 10−3, and dropout regularization is systematically 
applied to enhance the model’s generalization capabilities. The grasping network training utilizes a small batch 
size of 8, with each epoch consisting of 1,000 such batch iterations. All experiments are consistently executed 
under a fixed random seed of 123 to ensure the reproducibility of the results. Comparative analyses reveal that 
Adam optimizer demonstrates superior robustness compared to SGD during training, rapidly and efficiently 
converging to favorable model parameter configurations, thereby hastening the progression toward the optimal 
solution.

Fig. 3. SimAM-GRCNN network structure. The SimAM Generative Residual Convolutional Neural Network 
(SimAM-GRCNN) comprises three main components: the input stage, the backbone network, and the output 
stage. First, the input data undergo preprocessing, which includes cropping, resizing, and normalizing the 
images to 300× 300 pixels with 4 channels (RGB-D). Second, the backbone network extracts grasp features 
from the preprocessed images. Finally, the output stage infers the grasp pose data for the target object in the 
image, including quality, angle, and width.
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Loss function
Loss functions of L1, L2, and Smooth L1 were analyzed. Following the training of the SimAM-GRCNN grasping 
network, it was observed that the former two loss functions encountered issues with gradient explosion in 
later stages of training, whereas the Smooth L1 Loss did not exhibit such explosions, demonstrating enhanced 
robustness in handling outliers. We found that Smooth L1 Loss has less fluctuations when handling outliers in 
the SimAM-GRCNN grasping network. L(Gi, Ĝi) is the loss function, which quantifies the difference between 
the predicted grasp results Gi and the actual grasp results Ĝi :

 
L(Gi, Ĝi) =

1

N

N−1∑
i=0

SmoothL1(yi − ŷi) (3)

where i indicates the index of the i-th grasp bounding box, and N is the total number of grasp predictions being 
evaluated. yi represents the grasp results generated by the network, while ŷi represents the actual grasp results. 
where SmoothL1 is given by:

 
SmoothL1(x) =

{
1
2(x)

2 if |x| < 1

|x| − 1
2 otherwise  (4)

The overall loss function L represented in Eq.  (3) encompasses the losses of the image outputs. A model’s 
combined loss of quality Lquality, desired width Lwidth,sine angle Lsin and cosine angle Lcos is calculated as 
follows:

 L = Lquality + Lwidth + Lsin + Lcos (5)

Pose transformation
To achieve coordinated control between the camera and the robot for grasp poses, hand-eye calibration is 
necessary. Hand-eye calibration is the procedure used to establish the correlation between the camera coordinate 
system and either the end-effector coordinate system or the robot base coordinate system48,49. When modeling 
the working environment of a mobile robot, Xiao et al.50 recommends the “eye-in-hand” method, where both the 
camera and the tool are installed on the robot’s end-effector. As a consequence of this situation, the manipulator 
and target object are getting closer, which requires higher stability of the visual camera. As a result, the absolute 
error of the measured target position parameters decreases. “Eye-to-hand” refers to the visual camera installed in 
a fixed position outside the robot arm, which has a relatively stationary perspective. The disadvantage is that the 
details in front of the manipulator are difficult to capture when the manipulator is in motion. Compared with the 
above two calibration methods, this system needs to transform the camera’s position to perform holes detection 
and emulsion explosive grasping pose recognition separately. Therefore, the “eye-in-hand” hand-eye calibration 
method is adopted, and one camera can meet the above requirements, reducing the number of cameras and 
system operation costs. Eye-in-hand camera calibration schematic in Fig. S2 in the supplementary section. 
Accordingly, the grasping pose from the image to the robot can be defined as follows:

 Gr = TBase
Tool ∗ TTool

Camera ∗ TCamera
Image ∗Gi (6)

One of the transformations TCamera
Image  involves converting the image space to 3D space of the camera based on its 

intrinsic parameters. Then, the transformations TTool
Camera involves converting the camera space is transformed into 

the tool space using the camera pose calibration values. Finally, the transformations TBase
Tool  involves converting 

the tool space pose is transformed into the robot space. By using the eye-in-hand calibration method, the grasp 
pose (xi, yi,Wi,Θi, Qi) in the image is transformed into the grasp pose (xr, yr,Wr,Θr, Qr) in the robot’s space. 
Then, aligning the depth and color images allows us to obtain the axial depth zr information of the target object 
for grasping, thus obtaining the complete grasp pose (Pr,Wr,Θr, Qr) for the robot. This method can be used for 
multi-object grasping in images. As a result, we can represent the collection of all grasps as follows:

 G = (W,Θ, Q) ∈ Rp×h×w (7)

An image’s grasping width, angle, and quality score are calculated per pixel as W/Θ/Q. The complete set of 
grasps that map the 3D environment is represented by R, p represents the three-dimensional position of the 
center point of the grasping box, The grasp is formed by the combined height h and width w of the grasp box.

Motion control system
Building upon the key technologies outlined in the Approach section, the system leverages the YOLOv8 model 
for blast holes detection and employs the SimAM-GRCNN model to detect the grasp points of emulsion 
explosives. These two detection models jointly facilitate the generation of target positional information for the 
robot end-effector, thereby enabling the execution of both grasping and filling operations by the UR3 robot. 
The experimental system is designed to perform end-to-end operations, commencing with the explosives on 
the charging platform and culminating at the blast holes located on the tunnel face. All the points of robot 
movement are autonomous and controllable, which ensures the safety and stability of the system’s motion 
control. Combining the end-to-end position information set transmitted by the two models mentioned above, 
the next step is to interact with the motion control system for execution. This motion control system consists 
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of systems such as visual detection, grasping, and filling, and the entire simplified motion process is shown in 
Fig. 4.

Visual detection system
First, the robot is powered on and initialized at the Phome point. And then it’s started at position P1 in front of the 
blast holes51. Afterward, the robot tool proceeds to the blast holes and captures RGB-D image data. The YOLOv8 
visual detection network for blast holes reveals the quantity and positioning of blast holes on a blast hole surface. 
Next, the robot tool moves to position P2 above the emulsion explosive to be grasped. The SimAM-GRCNN 
grasping network is used to recognize the optimal grasping pose for the explosive. This completes the blast holes 
detection and emulsion explosive grasping detection process.

Grasping system
End-effector of robot moves above grasping point (Ppick_i, 0, 0, 0.2), opens the gripper, and then moves in a 
straight line to the optimal grasping position Ppick_i. As soon as the gripper closes, the robot returns to the 
position 20 cm above the grasping point(Ppick_i, 0, 0, 0.2) to capture the emulsion explosive head. This strategy 
ensures a smooth linear extraction of the emulsion explosive.

Filling system
After passing through waypoint P3, which effectively avoids obstacles, the robot reaches a position 20cm in front 
of the blast holes (Pfill_i, 0,−0.2, 0). At this point, the filling process can begin. Based on the matched emulsion 
explosive and blast holes positions, the robot moves slowly in a straight line to the corresponding depth position 
of the blast holes Pfill_i. This process represents one complete cycle from blast holes detection to grasping and 
filling. To fill other blast holes, the robot returns to point P1 and repeats the process of grasping and filling 
emulsion explosives. Finally, when all tasks are completed, the robot returns to the Phome position.

Experimental verification
Firstly, we need to collect four types of datasets for this experiment. Next, we will set up the experimental 
environment and connect the relevant hardware to ensure their proper interaction. Finally, we will conduct 
experimental evaluations of the YOLOv8 blast holes detection model and the SimAM-GRCNN grasping model.

Datasets
We provide an overview of four datasets used in this study Table 2. The YOLOv8 object detection model is 
evaluated using the first blast holes dataset, whereas our grasping model is trained and evaluated using the last 
three datasets. The first blast holes dataset is used for training the detection of blast holes center positions, which 

Dataset Data type Size Objects Images  Grasps Boxes

Blast holes RGB 640× 480 3 1215 – 1.2k

Cornell RGBD 640× 480 240 1035 8k –

Jacquard RGBD 1024× 1024 11619 54485 1.1M –

Explosives RGBD 640× 480 5 3589 32k –

Table 2. Summary of four datasets. Boxes represent bounding box.

 

Fig. 4. UR3 robot motion process.
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differs from the grasping dataset used to train the generation of grasping positions. The second dataset is the 
Cornell Grasping dataset, which is commonly used as a benchmark for grasping results. Another dataset is the 
Jacquard Grasping dataset, which is more than 50 times bigger than the Cornell dataset52. Thirdly, we present a 
self-built emulsion explosives grasping dataset that is formatted based on Cornell Grasping dataset.

Blast holes dataset
The data utilized in this research includes images of blast holes obtained from the front of a simulated tunnel 
project. During the process of collecting image data, the working face was photographed from different angles 
and under different lighting conditions. The system used three different types of rock masses to extract the blast 
holes, as shown in Fig. 5.

The ABC rows represent three different blast hole surface features. Individual blast holes images have been 
enhanced using enhancement techniques such as cropping, rotation, and brightness adjustment. By employing 
these techniques, we obtained more localized blast hole images improves the robustness of the blast holes 
detection model as well as enriches the diversity of blast hole dataset.

Emulsion explosives dataset
The emulsion explosives dataset belongs to the grasping dataset. Taking into account the input parameter 
characteristics of the SimAM-GRCNN grasping model, three types of target grasping information were extracted 
during the training of the Jacquard grasping dataset: RGB.png, perfect_depth.tiff, and grasps.txt. RGB.png is 
a PNG image rendered using Blender. perfect_depth.tiff is a float32 tiff depth image obtained by overlaying 
the PNG image. Grasps.txt is a text file containing target grasping information, with each line containing five 
parameters that match the parameters in Formula 2. The above parameters can represent a capture rectangle. 
Once the robot gripper is selected, the grasp rectangle’s width is determined. The dataset samples are shown 
in Fig. 6. To increase the diversity of the dataset, data augmentation was performed by varying the placement 
angle, and radius size, adjusting brightness, and adding noise, thereby enriching the breadth of information in 
the emulsion explosive grasping dataset.

Experimental setup
The entire system consists of four components: UR3 robotic arm, robotic arm controller, computer, and binocular 
vision sensor. The hardware connections of this system are shown in Fig. 7. The binocular vision sensor is used 
to capture scene image information and transmit it to the computer. In the binocular vision sensor’s coordinate 
system, pose information can be obtained by processing images using image processing algorithms. Through 
coordinate transformation, the target’s pose in the robotic arm’s base coordinate system can be determined. 
Controllers for robotic arms utilize this data to guide the arm in completing the grasping task. During the 
experimental setup, the scene image was captured using a RealSense D435i binocular depth camera. This camera 
can generate high-precision RGB-D images in real time and provide low-latency 3D perception capabilities. It 
also has a wide field of view, allowing for coverage of larger scenes, and supports long-range depth perception. 
A 7-DOF UR3 with a Robotiq 2F-85 gripper is used. Two fingers are used to grasp the emulsion explosive 
using a parallel gripper mounted on the robot’s tool end. The UR3 controller communicates with controllers 
A and B via TCP/IP to the host machine. For more details, please refer to the Supplementary Experimental 
Setup. The controller A is equipped with an Intel Core i5-13400 processor and an NVIDIA GeForce GTX 3060 

Fig. 5. Visualization of the blast holes part dataset. Row A represents the blast hole surface model in yellow, 
Row B is the blast hole surface model in reddish-brown, and Row C is the blast hole surface model in silver-
gray. Column 1: Original image. Column 2: Image rotated 90 degrees counterclockwise. Column 3: Annotated 
blast hole image with exposure adjustment.
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Fig. 7. System hardware connection.

 

Fig. 6. Visualization of emulsion explosive labeling. Row A consists of the emulsion explosive model in yellow, 
Row B features the emulsion explosive model in off-white, and Row C is a model with a blank background. 
Column 123 shows images of emulsion explosives in different positions.
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graphics card with CUDA 10 and Python 3.8. Controller B is the Jetson Xavier NX development board, which 
integrates the Jetpack 5.0.2 system and provides the pytorch environment for fast deployment and experimental 
verification of this system.

Performance evaluation of models on different datasets
The YOLOv8 model is first evaluated on blast holes dataset, thereafter SimAM-GRCNN is evaluated on 
Cornell, Jacquard and everyday life tools dataset. As shown in Fig. 8, to convert the grasp representation from 
image-based to rectangular, it is essential to match the values assigned to each pixel in the output image to its 
corresponding rectangular coordinates. A. Cornell testing dataset images; B. Jacquard testing dataset images; C. 
Single-object images in daily life; D. Multi-object images in daily life. According to this paper’s rectangle metric, 
a grasp is valid if it meets the following two criteria: An Intersection over Union (IoU) intersection value greater 
than 25% and a grasp direction deviation less than 30◦. For objects not involved in the training process in the 
Cornell and Jacquard datasets, our grasping network can reliably generate grasp poses for different types of 
objects. Furthermore, we demonstrate that the SimAM-GRCNN model can generate multiple grasp poses for 
multiple objects in complex environments, not only for isolated objects. Finally, we separately evaluate the self-
built emulsion explosives dataset.

Evaluation on blast holes dataset
Training and test sets were randomly divided 8:2 during the experimentation with the YOLOv8 blast holes 
detection model. Blast holes detection is considered valid when the IoU intersection value exceeds 45% and the 
confidence is 0.6. We evaluated the YOLOv8 detection model using the blast holes dataset from Section 4.1, with 
the detection results shown in Table 3.

Model parameters are defined by the corresponding row of parameter sizes, and average detection accuracy is 
derived from the blast holedataset test set. Detection speed is evaluated using the frame rate (fps). By comparing 
the average detection accuracy and detection speed, we found that YOLOv8 achieves an average precision of 
97.42% in blast holes detection, with a detection speed of 76.92 fps. YOLOv8 strikes a balance between detection 
speed and accuracy, as demonstrated by experimental results. Therefore, we choose to adopt YOLOv8 as the 
blast holes detection model and use it as the final filling position reference for the robot end, for subsequent 
grasp model evaluation.

Authors Algorithm Params (M) Accuracy (%) Speed (fps)

Zhang et al.18 VGG -16 102.8 88.99 4.17

Zhang et al.19 Faster R- CNN 54.3 97.30 5.34

Yue et al.20 MCIW-2 2.8 96.18 58.72

Ours YOLOv8 3.2 97.42 76.92

Table 3. Comparison of blast holes detection models. Bold marking indicates the optimal value under the 
evaluation criterion

 

Fig. 8. The performance of the SimAM-GRCNN model on Cornell, Jacquard test sets and everyday life 
capture images.
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In this study, during the evaluation on blast holes dataset, the center of the tunnel face is considered as the 
origin, and the angle between the camera and the plane perpendicular to the tunnel face is adjusted to 0◦, 15◦, 
30◦, and 45◦ for comparative experiments shown in Fig. 9.

Utilizing the YOLOv8 blast hole detection model, the system captures images from various perspectives to 
conduct experiments with three types of blast hole surface. A recognition threshold of 0.7 is set to accommodate 
the presence of inclination angles. The blast hole models inclined up to 30◦ are generally identifiable, with 
confidence scores surpassing 0.8. When the inclination angle is approximately 45◦, the detection model 
successfully captures blast holes with excellent formation quality. However, for the blast hole surface in reddish-
brown with challenging recognition, the lower quality in detecting these blast holes leads to recognition 
difficulty. It is evident that under conditions of significant angle inclination, most of the unidentified blast holes 
are largely obstructed by surrounding protrusions. The comparative results from these experiments illustrate the 
robustness of the blast holes detection model in handling different inclination angles and colors.

Evaluation on Cornell dataset
The Cornell grasping dataset is a RGB-D based dataset for grasp point detection. The dataset has been randomly 
divided into training and validating sets in a ratio of 9:1. The dataset consists of RGB images, depth information, 
positive sample labels, and negative sample labels. The image size is 640× 480. The depth information is recorded 
in a txt format and needs to be converted to aligned tiff format with RGB before being input into the SimAM-
GRCNN grasping network. With RGB-D input, grasp rectangles and recognition time are generated, and 
accuracy is evaluated using a validation set. The comparative evaluation results with other previous models are 
shown in Table 4. On the Cornell dataset, SimAM-GRCNN grasping model obtained state-of-the-art accuracy 
of 98.8% on image split and 97.7% on object split with a generation speed of 19 ms per image. Therefore, the 
SimAM-GRCNN grasping network is suitable for grasping tasks of common objects in daily life.

Evaluation on Jacquard dataset
The Jacquard dataset consists of RGB images, binary segmentation masks of object scenes, two depth images, 
and annotated grasp boxes. The dataset has been randomly divided into training and validating sets in a ratio of 
9:1. For the research work on Jacquard grasping, previous experimental data was collected as shown in Table 4. 
Due to the large size of the original Jacquard images and the requirement for complete input feature coordination 
in the SimAM-GRCNN grasping model, we used RGB-D and annotated grasp box data as inputs. According to 
Table 5, the grasp accuracy of the SimAM-GRCNN grasping model reached 95.2%, outperforming other models.

Evaluation on emulsion explosives dataset
This study randomly divides the self-built grasp dataset into two sets, a training set and a validating set, using a 
9:1 ratio. To validate the functionality of attention mechanisms in accelerating model convergence, we plot the 

Fig. 9. The test results of YOLOv8 on the face of the biological blast hole at different inclination angles and 
colors. Row A represents the blast hole surface model in silver-gray, Row B is the blast hole surface model in 
yellow, and Row C is the blast hole surface model in reddish-brown.
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changes in inference accuracy over time during the training process. On the emulsion explosive dataset, Fig. 10 
shows the grasping detection accuracy and loss for the three grasping models in the supplementary experimental 
evaluation section(Table S1).

GRCNN is a general grasping model proposed by Kumra, and the other two models incorporate CBAM 
and SimAM attention mechanism modules into this grasping model, respectively. During the first 7 epochs 
of training, the two models with attention mechanism modules show a noticeable improvement in training 
speed, with CBAM being more pronounced. However, at approximately 22 epochs, the SimAM-GRCNN model 
has already approached the highest accuracy. Introducing the attention mechanism around the 25th epoch 
accelerates the model’s convergence, and a negative correlation is observed between the loss curve on the test 
set and the accuracy curve on the training set. Therefore, SimAM-GRCNN demonstrates improved accuracy 
and convergence speed under the same training conditions, indicating that the SimAM attention mechanism 
improves performance.

In this study, the performance of the trained grasping models is evaluated using common evaluation metrics 
such as accuracy, precision, recall, and F1 score. The calculation equations for these metrics are as follows:

Accuracy: Measures the proportion of all correctly classified instances (both grasping poses and backgrounds).

Fig. 10. Three grasping models in emulsion explosive training set accuracy and loss iteration results.A. The 
variation in accuracy over 50 epochs for three grasping models on the training set; B. The variation of loss rates 
over 50 epochs for three grasping models on the test set.

 

Authors Algorithm Accuracy (%)

Depierre et al.52 AlexNet 74.2

Morrison et al.40 GG-CNN2 84.0

Zhou et al.39 ResNet-101 92.8

Kumra et al.35 GRCNN v2 95.1

Ours SimAM-GRCNN 95.2

Table 5. Jacquard dataset detection model evaluation. Bold marking indicates the optimal value under the 
evaluation criterion

 

Authors Algorithm Image split accuracy (%) Object split accuracy (%) Speed (ms)

Jiang et al.53 Fast Search 60.5 58.3 5000

Redmon et al.38 AlexNet 88.0 87.1 75

Kumra et al.54 ResNet-50x2 89.2 88.9 103

Zhou et al.39 ResNet-101 97.7 96.6 117

Asif et al.55 GraspNet 90.2 90.6 24

Morrison et al.40 GG-CNN2 84.0 82.0 20

Yu et al.41 SE-ResUNet 98.2 97.1 25

Kumra et al.35 GRCNN v2 98.8 97.7 20

Ours SimAM-GRCNN 98.8 97.7 19

Table 4. Cornell dataset detection model evaluation. Bold marking indicates the optimal value under the 
evaluation criterion
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Accuracy =

TP + TN
TP + FP + FN + TN

 (8)

Precision: Measures the proportion of correctly detected grasping poses among all detected grasping poses.

 
Precision =

TP
TP + FP

 (9)

Recall: Measures the proportion of correctly detected grasping poses among all actual grasping poses.

 
Recall =

TP
TP + FN

 (10)

F1 Score: Provides a balanced measure of precision and recall.

 
F1 Score = 2× Precision × Recall

Precision + Recall
 (11)

where: TP (True Positives) means the number of correctly detected emulsion explosive grasping poses. FP (False 
Positives) represents the number of misdetected background items as emulsion explosive grasping poses. FN 
(False Negatives) means the number of undetected emulsion explosive grasping poses. TN (True Negatives) 
represents the number of correctly detected background items.

Table 6 summarizes the evaluation results for all three grasp models mentioned above. The SimAM-GRCNN 
model outperforms the GRCNN and CBAM-GRCNN models in terms of F1 Score. The F1 Score for the 
SimAM-GRCNN is the highest at 97.8%, which is 0.5% higher than the CBAM-GRCNN and 1.0% higher than 
the GRCNN. This indicates that the SimAM-GRCNN model achieves a better balance between precision and 
recall, making it more effective at detecting emulsion explosive grasping poses. Notably, the SimAM-GRCNN 
also excels in accuracy (96.4%), precision (99.0%), and recall (96.7%) while maintaining a competitive model 
size (1,901 kilobytes) and processing speed (19 ms). These results suggest that the SimAM-GRCNN model is a 
superior choice for grasping detection tasks in mining operations, offering a combination of high performance 
and efficiency. Therefore, the use of the SimAM-GRCNN grasp model enables effective emulsion explosive 
grasping detection, providing the starting and ending positions for robot end-effector grasping. This, combined 
with the blast hole dataset section, forms the basis for end-to-end grasping and filling experiments on the robot.

Using our self-built emulsion explosive dataset, we evaluate the SimAM-GRCNN grasping network. As 
shown in Fig.  11, the study compares the generation of grasp boxes and detection inference based on three 
grasping networks. In the context of emulsion explosive grasping experiments, “1” following the letters ABC 
indicates a single emulsion explosive grasping experiment, while “2” signifies multiple emulsion explosive 
grasping experiments. The experimental evaluation assessed the GRCNN, CBAM-GRCNN, and SimAM-
GRCNN models for detecting single and multiple emulsion explosives. The latter two models, which incorporate 
attention mechanisms, represent enhancements over the first. Models with attention mechanisms, specifically 
Groups B and C, demonstrate greater sensitivity to the quality and width of the emulsion explosives. The average 
accuracy of the SimAM-GRCNN grasping network is 1.7% higher than that of the original GRCNN model, and 
0.8% higher than that of the CBAM-GRCNN model, while the model’s parameter and detection speed are on 
par with the original GRCNN. In conclusion, the SimAM-GRCNN grasping network can generate stable and 
accurate grasping postures for both single and multiple emulsion explosives.

Grasping and filling experiment
Based on the key technologies and model deployments mentioned earlier, we successfully established a grasping 
and filling experiment system. This system utilizes the YOLOv8 model to detect blast holes and the SimAM-
GRCNN model to detect the grasp of emulsion explosives. With these models, we can generate position 
information for the robot gripper to enable grasping and filling operations on the UR3 robot. This experimental 
system allows for end-to-end operations, covering the entire process from grasping to filling.

Experimental procedure
A dual approach is employed, which includes Grasping detection-based explosive grasping strategy and Object 
detection-based blast holes filling strategy, both of which are executed in a sequential manner. Subsequently, the 
primary parameters that affect both explosive grasping and blast hole filling are investigated individually. After 

Algorithm Accuracy (%) Precision (%) Recall (%) F1 score (%) Params (Kb) Speed (ms)

GRCNN 94.7 98.3 95.3 96.8 1901 20

CBAM-GRCNN 95.6 98.6 96.0 97.3 1905 21

SimAM-GRCNN 96.4 99.0 96.7 97.8 1901 19

Table 6. Comparison of three types of grasping model training. Bold marking indicates the optimal value 
under the evaluation criterion
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optimizing these critical parameters, comprehensive experiments are conducted to identify the environments 
most favorable for the robotic execution of explosive grasping and filling tasks.

Grasping detection-based explosive grasping strategy
The study conducts the emulsion explosive grasping experiment using SimAM-GRCNN grasping network, as 
depicted in Fig. 12. The robotic arm, equipped with a camera, positions itself approximately 30cm above the 
emulsion explosive to prepare for grasping. It captures an RGB-D image from this viewpoint, which serves 
as input for the grasping detection process. The SimAM-GRCNN grasping detection system is then invoked, 
providing detection outcomes. The grasp box with the highest quality score Q is selected and fed into the robot’s 
grasping model, which determines the grasp location in the robot’s coordinate system. The robotic arm initiates 
the grasping maneuver, moving to the designated position, and the gripper closes to seize the explosive. The 
robot then lifts its end-effector to grasp the explosive and moves it away from the initial placement site, thereby 
completing the grasping action.

In this section, the study attempts to grasp four explosives of varying colors and sizes, each 20 times, resulting 
in a total of 80 grasping trials. The outcomes are summarized in Table 7. A grasp is deemed successful when 
the center line of the emulsion explosive is within ±5 mm of the gripper’s central axis. Across all four types of 
emulsion explosives, the success rate for the 80 grasps is 87.5%. Unsuccessful grasps can be attributed to errors 
in grasping detection or measurement. Grasping detection errors stem from inaccuracies in the grasp point 
location or the shape of the grasp bounding box, while grasp measurement errors arise from imprecise distance 
transformations in the robot’s grasping model. On average, each grasping attempt, including SimAM-GRCNN 
grasping detection and data transmission delays, takes 35 s. The robotic grasping strategy based on grasping 
detection performs exceptionally well in successfully grasping emulsion explosives of different sizes and colors.

Fig. 11. Single-target and multi-target grasping frame detection results of emulsion explosives. The grasping 
network takes RGB and Depth images as its inputs, while Quality (ranging from [0, 1]), Angle (ranging from 
[π2 ,

π
2 ]), Width (ranging from [0, 100]), and Grasp are the output generated through inference. GRCNN is 

utilized for A1 and A2, CBAM-GRCNN for B1 and B2, and SimAM-GRCNN for C1 and C2.
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Object detection-based blast holes filling strategy
The study conducts an experiment on blast hole filling, which is based on object detection, to validate the reliability 
of the YOLOv8 blast holes detection model for explosive filling. This experiment is performed on the emulsion 
explosive grasping and filling test platform. Combining the Evaluation on blast holes dataset for assessment, all 
subsequent experiments employ the blast holes surface model in silver-gray. The strategy for target detection-
based blast holes filling is depicted in Fig. 13. Initially, the robotic arm, equipped with a camera, positions itself 
approximately 30cm in front of the blast holes at the working face, preparing for the filling process. The camera 
captures an RGB image of the blast hole surface, which serves as input for the blast holes detection process. The 
YOLOv8 object detection model is invoked by the robot system, providing the detection results. The location 
with the highest confidence score is chosen and fed into the robot’s grasping model, which determines the filling 
position in the robot’s coordinate system. Subsequently, the robotic arm proceeds to execute the filling process 
upon receiving the filling coordinates, moving to the designated grasping position. The robot then opens its 
gripper to deposit the explosive to the specified depth. Finally, the robot retracts its end-effector, completing the 
explosive filling action, thereby realizing the target detection-based blast holes filling strategy.

The study conducts 20 filling attempts for each of two distinct blast hole sizes, with the outcomes detailed 
in Table 8. A filling is considered successful when the emulsion explosive reaches a depth within ±5 mm of the 
target and is centered within ±5 mm of the blast hole center. Specifically, 9 mm radius emulsion explosives are 
filled into 14 mm diameter blast holes, and 7 mm radius explosives are used for 12 mm diameter holes. Before 
filling, the gripper’s center is aligned to precisely grasp the emulsion explosive. For the 40 filling attempts across 
both blast hole sizes, an 85% success rate is achieved. Failures in blast holes detection and filling measurement 
lead to unsuccessful grasps. Misidentified grasp points lead to blast holes detection errors, and inaccuracies in 
the robot’s grasping model transformation distance result in filling measurement mistakes. On average, each 
filling attempt takes 30 s, including time for YOLOv8 blast holes detection and data transmission for the robot’s 
grasping model transformations. The target detection-based blast hole filling strategy implemented in the 
robotic filling system demonstrates satisfactory performance across different blast hole sizes.

Having validated the efficacy of the robotic grasping model through cross-validation of the proposed 
emulsion explosive grasping strategy based on grasping detection and blast hole filling strategy based on object 
detection, we can directly transplant the robotic framework from the emulsion explosive grasping and filling test 

Color Radius (mm) Number of successful grasping Number of grasping detection errors Number of gripping measurement errors

Yellow 9 19 0 1

Yellow 7 18 1 1

Off-white 9 17 1 2

Off-white 7 16 2 2

Table 7. Emulsion explosives grasping strategy results.

 

Fig. 12. Explosives grasping strategy based on grasping detection.

 

Scientific Reports |        (2024) 14:28425 16| https://doi.org/10.1038/s41598-024-77034-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


platform to a simulated tunnel environment setup for emulsion explosive grasping and filling. This enables us to 
proceed with experiments based on integrated robotic grasping and filling operations. Figure 14 shows how the 
UR3 robot grasps multiple emulsion explosives presented in Fig.  4, which can also be referred to as the motion 
process of the UR3.

The A1 robot system is initialized at the Phome position with the gripper in an open state. Position 
information for the blast hole is obtained by moving the robot A2 to the front of the blast hole at position P1. 
The A3 robot moves to the top of the emulsion explosive at position P2 to obtain information about the emulsion 
explosive below. The B1 robot moves to the top of the first emulsion explosive at position (Ppick_i, 0, 0, 0.2) and 
opens the gripper to an appropriate size. The B2 robot moves to the optimal grasping position Ppick_i, closes 
the gripper to grasp the emulsion explosive. The B3 robot vertically retrieves the emulsion explosive at position 
(Ppick_i, 0, 0, 0.2). The C1 robot reaches the front of the matching blast hole at position (Pfill_i, 0,−0.2, 0). The 
C2 robot horizontally fills the emulsion explosive to position Pfill_i and opens the gripper. The C3 robot returns 
to the front of the blast hole at position P1. To view the complete experimental demonstration of explosive 
grasping and borehole filling, please click the video link  h t t p s : / / w w w . b i l i b i l i . c o m / v i d e o / B V 1 8 w 4 1 1 Y 7 X F     to 
proceed.

Result analysis
In this study, the UR3 robot arm is utilized for experimental verification. The distributed deployment of the 
YOLOv8 blast holes detection network and SimAM-GRCNN grasping network is integrated with the robot arm 
motion control mode. Furthermore, these models are deployed on the Jetson Xavier NX embedded development 
board. A variety of emulsified explosives with different radii, colors, and lighting conditions are selected for 
grasping and filling experiments. The experimental results obtained at room temperature of 25◦ are presented 
in Table 7. Hand-eye calibration is positively correlated with the success rate of grasping; when the center line 
of the emulsified explosives is judged to be within 5 mm of the gripper’s center line, it is considered a successful 
grasping. The filling accuracy is also positively correlated with the detection network and gripper control; 
successful filling is determined by meeting the target depth within ± 2 mm and a range of ± 5 mm from the 
center of the blast holes.

The consolidated results in Table  9 indicate that yellow emulsion explosives exhibit higher tractability in 
detection and grasping compared to their off-white counterparts. Concerning dimensions, emulsion explosives 
with a 7 mm diameter prove more facile to grasp than those measuring 9 mm. Optimal conditions for both 
grasping and filling of emulsion explosives are observed when ambient illumination intensity ranges between 

Radius (mm) Number of successful filling Number of filling detection errors Number of filling measurement errors

14 18 0 1

12 16 2 2

Table 8. Blast holes filling strategy results.

 

Fig. 13. Blast holes filling strategy based on object detection.
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90 and 120 Lux. Statistically, the mean success rate for grasping emulsion explosives stands at 87.1%, whereas 
the combined grasping and filling success rate reaches 79.2%. The aggregate duration for the complete cycle 
of grasping and filling averages 119.67 s. In actual filling operations, manual or rudimentary equipment 
typically requires a filling success rate exceeding 75%, despite lacking a standardized benchmark for total time 
consumption. Our study has achieved the required accuracy in filling. However, the overall time consumption 
indicates room for improvement. Future refinements in robot motion control can decrease time costs during the 
grasping and filling phases. The YOLO-SimAM-GRCNN system, with its high portability, seamlessly integrates 
into various robotic systems, providing an end-to-end solution for target grasping and filling tasks in robotics. 
This innovation expands the scope of robots’ applicability in real-world scenarios.

Color Radius (mm) Light intensity Number Pick success (%) Fill success (%) Average time (s)

Yellow 9 60 ∼ 90 40 90.0 85.0 117.32

Yellow 9 90 ∼ 120 40 92.5 87.5 118.63

Yellow 9 120 ∼ 150 40 87.5 85.0 118.26

Yellow 7 60 ∼ 90 40 90.0 82.5 117.17

Yellow 7 90 ∼ 120 40 90.0 85.0 118.85

Yellow 7 120 ∼ 150 40 87.5 82.5 118.37

Off-white 9 60 ∼ 90 40 87.5 77.5 120.24

Off-white 9 90 ∼ 120 40 87.5 80.0 121.57

Off-white 9 120 ∼ 150 40 85.0 75.0 120.92

Off-white 7 60 ∼ 90 40 85.0 70.0 120.45

Off-white 7 90 ∼ 120 40 82.5 72.5 122.72

Off-white 7 120 ∼ 150 40 80.0 67.5 121.52

Average 8 90 ∼ 120 40 87.1 79.2 119.67

Table 9. Summary of the grasping effect of different types of emulsion explosives.

 

Fig. 14. Schematic diagram of UR3 emulsion explosive grasping.
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For real-world application, (1) To improve safety in mining operations, the system utilizes an enhanced 
grasping model, i.e., the SimAM-GRCNN, trained on an actual grasping and filling dataset. This ensures that 
the model can accurately detect and grasp the emulsion explosive charges, minimizing the risk of mishandling. 
By selecting robots with high repeatable positioning accuracy, the system can ensure that the cumulative errors 
during movement do not interfere with the precise placement of the explosives. Additionally, setting fixed points 
for the robot’s movements and implementing obstacle avoidance functionalities can help restrict the operational 
range, further enhancing the safety of the filling process. (2) To boost efficiency, the system takes various factors 
into account that optimize the filling process. For example, choosing emulsion explosives with a radius that 
matches the size of the robot’s gripper ensures a secure and quick grasp. Maintaining an optimal lighting level 
between 90 and 120 Lux ensures good visibility, facilitating faster and more accurate handling. Furthermore, 
increasing the speed of the robot’s movements, while maintaining control precision, can significantly reduce the 
time required for each filling operation, thereby increasing overall productivity.

Conclusions and discussions
We have developed a YOLO-SimAM-GRCNN system designed for robots to intelligently grasp and fill emulsion 
explosives in tunnel blasting scenarios. The system consists of two modules: an inference module and a control 
module. The inference module incorporates a YOLOv8-based blast hole position detection network and a 
SimAM-GRCNN-based explosive grasping network. The control module plans and executes the robot’s motion 
control based on the detected blast hole positions and emulsion explosive grasping poses to achieve symmetrical 
grasping and filling operations. We have designed an improved SimAM-GRCNN grasping model, integrated 
with an eye-in-hand calibration method to meet the robot’s end-to-end grasping requirements. The model 
has been evaluated on three grasping datasets and a self-built emulsion explosive dataset, showing superior 
performance in single-object and multi-object grasping compared to another advanced model. By combining 
the UR3 robotic arm with the Jetson Xavier NX development board, we have successfully deployed the emulsion 
explosive grasp-and-fill system. The system achieves blast holes detection, emulsion explosive grasping, and 
filling tasks with an average time of 119.67 s for a complete process. The success rates for grasping emulsion 
explosives and filling are 87.1% and 79.2%, respectively.

In three-dimensional space, the position and orientation of an object are commonly represented using six 
degrees of freedom. However, the study employs a four-dimensional representation for robotic grasping, which 
encompasses planar coordinates and an Euler angle about the z-axis. This approach does not fully capture the 
complete three-dimensional pose of the object, thereby presenting limitations such as the inability to achieve 
three-dimensional grasps on the side of objects or to grasp stacked items effectively.

This study has developed a YOLO-SimAM-GRCNN system that enables robotic emulsion explosives grasping 
and blast holes filling tasks within simulated tunnel environments. To enhance the robot’s adaptability in real-
world mobile applications, the system can be expanded into a mobile platform, incorporating odometry, LiDAR, 
and interfacing with the ROS platform. By performing SLAM (Simultaneous Localization and Mapping) within 
the operational environment, in conjunction with the end-to-end grasping and filling functionalities presented 
in this work, the system will be well-prepared for practical robotic applications in actual tunnel conditions.
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