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Genomic and transcriptomic analyses
identify distinctive features of triple-
negative inflammatory breast cancer
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Triple-negative inflammatory breast cancer (TN-IBC) is themost aggressive type of breast cancer, yet
its defining genomic,molecular, and immunological features remain largely unknown. In this study, we
performed the largest and most comprehensive genomic and transcriptomic analyses of
prospectively collected TN-IBC patient samples from a phase II clinical trial (ClinicalTrials.gov,
NCT02876107, registered on August 22, 2016) and compared them to similarly analyzed stage III TN-
non-IBC patient samples (ClinicalTrials.gov, NCT02276443, registered on October 21, 2014). We
found that TN-IBC tumors have distinctive genomic, molecular, and immunological characteristics,
including a lower tumor mutation load than TN-non-IBC, and an association of immunosuppressive
tumor-infiltrating immune components with an unfavorable response to neoadjuvant chemotherapy.
To our knowledge, this is the only study in which TN-IBC and TN-non-IBC samples were collected
prospectively. Our analysis improves the understanding of the molecular landscape of the most
aggressive subtype of breast cancer. Further studies are needed to discover novel prognostic
biomarkers and druggable targets for TN-IBC.

Inflammatory breast cancer (IBC) is the most lethal and aggressive form
of breast cancer1, with over 40% of patients presenting with stage IV
disease at diagnosis. IBC accounts for 2–4% of breast cancer cases but
causes 8% to 10% of breast cancer deaths. The diagnosis of IBC is based
on clinical characteristics, including erythema, edema, and/or “orange
peel” appearance of the breast with rapid onset of symptoms. Although
trimodality therapy consisting of chemotherapy, surgery, and radiation
therapy has significantly improved patient survival, the 5-year survival
rate for IBC patients is an abysmal 40% (compared to 90% for non-IBC
patients)2–4. Like non-IBC, IBC is composed of different subtypes based
on the expression status of estrogen receptor (ER), progesterone

receptor (PR), and HER2. The triple-negative subtype of IBC (TN-IBC)
lacks expression of ER, PR, andHER2, representing about 20% to 40% of
IBC cases. It is associated with worse overall survival (OS) and disease-
free survival than IBC that is positive for ER, PR, and/or HER25.

An immune checkpoint inhibitor, the anti-PD-1 antibody
pembrolizumab, plus neoadjuvant chemotherapy (NAC) has become
a frontline treatment for patients with early-stage triple-negative
breast cancer (TNBC), including TN-IBC6. However, TN-IBC
patients often have a suboptimal response to this regimen likely
due in part to the immunosuppressive tumor microenvironment
(TME). There is a critical need to develop novel therapeutic
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approaches by identifying targetable molecules in both tumor cells
and TME components for patients with TN-IBC.

Over thepast 2decades, there have been extensive efforts to identify the
genomic and molecular signatures of IBC. Genomic profiling of IBC,
including targeted next-generation sequencing, whole-exome sequencing
(WES)7, and whole-genome sequencing8, has identified several genomic
alterations, including alterations in TP539–14, PIK3CA7,12–15, ERBB2/
HER211,13–15, MYC14,15, BRCA212,14,15, NOTCH115, NOTCH212, and
NOTCH412. Somemolecular changes in IBC patient samples are associated
with the aggressiveness of IBC, including overexpression of NF-κB target
genes16–18, activation of the JAK/STAT pathway19, attenuation of TGF-β
signaling20, and up-regulation of transcription factors (JUN, EGR1, JUNB,
etc.)21, growth factors (VEGF, IL6, EREG, CCL3, CCL5, etc.)21, and growth
factor receptors (TBXA2R, TNFRSF10A/TRAILR1, and ROBO2)21. In
addition, a 109-gene expression signature and a 79-gene signature were
reported to distinguish IBC from non-IBC samples9,20. Yet despite these
extensive efforts, very few geneswere identified and validated across studies,
and we are aware of no published genomic and molecular profiling studies
focused on TN-IBC samples.

In addition to genomic and molecular signatures, TME components
may distinguish IBC from non-IBC. Specifically, T cells, tumor-associated
macrophages, fibroblasts, mast cells, and mesenchymal stem cells have
emerged as critical drivers of the IBC clinical phenotype and
aggressiveness22–24. We also demonstrated that tumor-infiltrating lympho-
cytes (TILs) are increased in tumors of patients with pathologic complete
responses (pCR) to NAC25. These findings suggest that tumor immune
signatures may distinguish IBC from non-IBC cases. However, such
information is not available yet for patients with TN-IBC.

To identify distinctive genomic andmolecular features of TN-IBC, we
performedcomprehensive genomic and transcriptomic analyzes ofTN-IBC
patient samples collected from a phase II clinical trial (NCT02876107) in
which patients were treated with NAC alone or the anti-EGFR antibody
panitumumab (PmAb) combinedwithNAC(PmAb/NAC). Specifically,we
(i) examined germline and somatic alterations, gene expressionprofiles, and
tumor-infiltrating immune cells in the TN-IBC samples, (ii) identified
distinctive features of TN-IBC by comparing TN-IBC patient samples with
similarly analyzed stage III TN-non-IBC patient samples, and (iii) explored
the genomic, molecular, and immune features that may be associated with
response of TN-IBC to NAC and PmAb/NAC.

Methods
Study design and patients
The design of the study (ClinicalTrials.gov Identifier: NCT02876107,
registered on August 22, 2016) is shown in Supplementary Fig. 1. This is a
randomizedphase II trial todetermine thepCRrate inpatientswithprimary
TN-IBC treated with PmAb, carboplatin, and paclitaxel followed by
standard-of-care doxorubicin and cyclophosphamide (AC), termed PmAb/
NAC, or carboplatin and paclitaxel followed by AC, termed NAC, as
neoadjuvant therapy. The study was approved by the Institutional Review
Board (IRB) of The University of TexasMDAnderson Cancer Center (IRB
reference number: PA12-0305), in accordance with the ethical standards of
the 1964 Declaration of Helsinki and its subsequent amendments. Written
informed consent, including consent for data publication, was obtained
from all participants prior to their inclusion in the study. Seventy-two
patients with primary TN-IBC were planned to be recruited and rando-
mized into the PmAb/NAC and NAC arms. As of this writing, 42 patients
with primaryTN-IBChave enrolled in the study.Written informed consent
was obtained from all patients.

IBC specialists reviewed all cases in a prospective manner. Patient
inclusion criteria include: (1) Patients must have histological confirmation
of breast carcinoma. (2) Patients must have IBC confirmed according to
international consensus criteria including (i) Onset: Rapid onset of breast
erythema, edema, and/or peau d’orange, and/or warm breast, with or
without anunderlying breastmass (ii)Duration:History of suchfindings no
more than 6 months (iii) Extent: Erythema occupying at least 1/3 of whole

breast (iv) Pathology: Pathologic confirmation of invasive carcinoma. (3)
Patients must have an Eastern Cooperative Oncology Group (ECOG)
performance status of 0–1. (4)PatientsmusthavenegativeHER2expression
on immunohistochemistry (IHC) or fluorescence in situ hybridization
(FISH) analysis; ER and PR expression should be less than 10%.

In the PmAb/NAC arm, patients received an initial dose of PmAb,
followed by weekly PmAb and paclitaxel and triweekly carboplatin for 4
cycles. Tissue biopsy was performed before and after the initial dose of
PmAb. In the NAC arm, patients received the same chemotherapy without
PmAb.Tissuebiopsywasperformedonly at baseline. Eachcyclewasdefined
as 21 days. Standard-of-care chemotherapy (doxorubicin and cyclopho-
sphamide)was administered after completion of PmAb/NACorNAC.The
doxorubicin and cyclophosphamide regimen consisted of 4 cycles repeated
at 2- to 3-week intervals at the physician’s discretion, assuming bone
marrow recovery. Dose modification of doxorubicin and cyclopho-
sphamide was based on standard practice guidelines.

Modified radical mastectomy was performed after systemic therapy,
and board-certified breast pathologists determined the residual cancer
burden. pCR was defined as no invasive carcinoma in the breast, skin, and
axillary lymph nodes and no tumor emboli within the surgical pathology
specimen26.

From August 2016 through July 2022, 42 patients with primary TN-
IBC were enrolled and randomized 1:1 into the PmAb/NAC or NAC arm.
Baseline tumor samples of 19 patients, 8 in the PmAb/NAC arm and 11 in
the NAC arm, were collected for molecular profiling.

Whole-exome sequencing
Genomic DNA from 19 tumor tissues and matched blood samples was
extracted with the Biospecimen Extraction Resource of MD Anderson
Cancer Center. Genomic DNA from matched blood samples were used as
germline controls. 500 ng of DNA per sample was proceeded to library
preparation using Roche KAPA library prep kit (KAPA) following manu-
facturer’s “with beads” protocol (KAPA Biosystems, Wilmington, MA).
Exome capture was performed using whole exome biotin labeled probes
from Agilent SureSelect Human All Exon V4 by following manufacture’s
protocol. WES was performed on the Illumina HiSeq 2500 sequencing
platform. Pair-end sequencing reads in FASTQ formatwere generated from
BCL raw data using Illumina CASAVA 1.8.2. The reads were aligned to the
hg19human reference genomeusingBWA0.7.327. The duplicate readswere
removed using Picard 2.1.1 (unpublished, http://broadinstitute.github.io/
picard/), and local realignments were performed using the GATK 4.0.128.
The BAM files were then used for downstream analysis.

Variant calling and CNV identification
Platypus29 was used to call germline variants on breast cancer susceptibility
genes and TGF-β genes. MuTect30 was used to identify somatic point var-
iants, and Pindel31 was used to identify somatic insertions and deletions. A
series of post-calling filters was applied for somatic mutations, including (a)
total read count in tumor sample ≥20, (b) total read count in germline
sample≥10, (c) variant allele frequency≥0.02 in tumor sample and≤0.02 in
matched normal sample, and (d) population frequency of <1% in the
databases of dbSNP12932, 1000 Genomes Project26, Exome Aggregation
Consortium33, and ESP650034, used to filter out common variants. To
understand the potential functional consequences of detected variants, we
annotated them using Annovar35 and dbNSFP36 and compared them with
the dbSNP37, ClinVar38, COSMIC39, and TCGA databases.

Copy number variations (CNVs) were identified using an in-house
algorithm,ExomeCN.The copynumber log2 tumor versusmatchednormal
ratioswere calculated across the entire capture regions and then subjected to
segmentation using CBS40. A cutoff of log2 ratio ≤−0.4 was applied to
identify copy losses, and log2 ratio ≥0.4 was applied to identify copy gains.

RNA sequencing
Total RNA from tumor tissues from the 19 patients was extracted and
prepared using Agilent SureSelect probes following the manufacturer’s
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protocol. RNA sequencing was conducted on the Illumina NovaSeq 6000
platform. Raw sequencing data were converted to FASTQ files and aligned
to the reference genome (hg19) using the SplicedTranscriptsAlignment to a
Reference algorithm field41. HTSeq-count was then utilized to generate the
raw read counts for each gene42.DESeq21.38.3was used for data processing,
normalization, and differential expression analysis following standard
procedures43. The differentially expressed genes were selected by the
log2(fold change) (Log2FC) criteria ≤−1 or ≥1, and the cutoff of adjusted p-
value (adj-p) was 0.05. Gene Set Variation Analysis (GSEA 1.46.0)33,44 was
used to estimate the variation of gene set enrichment across TN-IBC
samples, and the normalized enrichment score (NES) was used to quantify
the enrichment. The Molecular Signatures Database hallmark gene set
collection34,45 was used in pathway analysis. CIBERSORT46 was used to
perform deconvolution analysis to estimate the composition of tumor
infiltrating immune cells.

Comparison between pCR and non-pCR groups
Patientswere classified into 2 groups according to their pathologic response:
pCR and non-pCR. The pCR and non-pCR groups were compared in the
NAC and PmAb/NAC arms separately. To enrich sample size, we also
compared patients who achieved a pCR from the NAC arm only with
patientswhodidnot achieve apCRfrombotharms.Patientswhoachieveda
pCR from the PmAb/NAC arm were excluded to eliminate the potential
effect of PmAb on patient response.

TN-non-IBC cohort
A pretreatment TN-non-IBC cohort was selected from the ARTEMIS
clinical trial (ClinicalTrials.gov Identifier: NCT02276443, registered on
October 21, 2014), an ongoing clinical trial evaluating targeted NAC in
chemotherapy-insensitive TNBC. The ARTEMIS study protocol was
reviewed by TheUniversity of TexasMDAndersonCancer Center IRB and
all patients provided informed consent. All study procedures performed
were in accordance with ethical standards of the IRB and with the 1964
Helsinki declaration and its later amendments or comparable ethical stan-
dards. In brief, treatment-naïve patients with operable TNBC planned for
NAC with an anthracycline/taxane-based regimen were enrolled. All
patients underwent a pretreatment biopsy of the breast tumor. The results of
the molecular characterization from the pretreatment biopsy were used in
combination with response assessment after 4 cycles of doxorubicin and
cyclophosphamide to identify chemotherapy-insensitive disease. Patients
with chemotherapy-sensitive disease were recommended to continue dox-
orubicin and cyclophosphamide for the second phase of treatment. Patients
with chemotherapy-insensitive diseasewere offered therapyonclinical trials
using targeted therapy based on specific molecular characteristics in com-
bination with chemotherapy. Upon completion of the second phase of
treatment, patients underwent surgical resection, and residual cancer bur-
den was determined.

For comparison with the TN-IBC cohort, we selected patients with
TN-non-IBC from theARTEMIS trial according to the following criteria: (i)
Only patients with TN-non-IBC were included. (ii) As TN-IBC is very
aggressive, at the time of diagnosis, TN-IBC is either stage III or stage IV.
Therefore, to make a fair comparison with TN-non-IBC, only patients with
stage III or IV TN-non-BC were included. Stage IV refers to those spread
beyond the breast and nearby lymph nodes to other distant organs. (iii)
Patientswho received targeted therapy in the secondphase of treatment and
achievedapCRwere excluded. (iv)Tominimize the sequencingbatch effect,
only patients who had sequencing using the same protocol and same plat-
form as the TN-IBC cohort were included.With these criteria, from among
the patients with TN-non-IBC in ARTEMIS, we selected 60 patients with
WES data and 19 patients with RNA-seq data for comparison with the TN-
IBC cohort.

Statistical analysis
To evaluate statistical significance, a Student t-test was used if the datafit the
normaldistribution.Otherwise, theWilcoxon rank-sumtestwasused to test

thedifferences betweengroups.TheBenjamini–Hochbergmethodwasused
to control the false discovery rate. In transcriptomic analysis, the differential
expressionwas evaluatedusing anegative binomial generalized linearmodel
described in DESeq243, and logarithmic fold change and adjusted p-values
(adj-p) were used for differentially expressed gene assessment.

Results
Characteristics of the patients with TN-IBC
The baseline clinical characteristics of the 19 patientswithTN-IBC included
in this analysis are shown in Table 1. The mean age was 52.7 years (range,
31–72). Eight patients (42%) were premenopausal, and 11 (58%) had
reached menopause. The mean body mass index (BMI) at the time of
diagnosis was 33.9 kg/m2 (range, 20.4–59.6). The self-reported race was
White or Caucasian for 13 patients, Black or African American for 3, Asian
for 2, andAmerican Indian or AlaskaNative for 1. Eight patients (42%) had
stage IIIB disease, 9 (47%) had stage IIIC disease, and 2 (11%) had stage IV
metastatic disease. ThemeanTILpercentagewas 35.7%(range, 1–80%).We
also compared the clinical characteristics of 19 TN-IBC patients with 60
TN-non-IBCpatients (SupplementaryTable 1).WeobservedhigherBMI in
TN-IBC compared to TN-non-IBC (mean: 33.9 kg/m2 vs 28.9 kg/
m2, p = 0.05).

Germline and somatic mutations in TN-IBC
Wefirst isolated germlineDNAfromTN-IBCperipheral blood samples and
sequenced the DNA to assess the germline variants. Themean coverage for
germlineWES data was 155×.We identified amean of 90 nonsynonymous
germline variants per patient, including 63missense variants, 20 truncating
variants, and 7 inframe indels. Next, we analyzed oncogenic pathways

Table 1 | Baseline characteristics of 19 patients with TN-IBC

Characteristic Value

Age, mean (SD) range, y 52.7 (13.0) 31–72

BMI, mean (SD) range, kg/m2 33.9 (10.1) 20.4–59.6

TILs, mean (SD) range, % 35.7 (30.2) 1–80

Menopausal status, n (%)

Premenopausal 8 (42)

Postmenopausal 11 (58)

Race, n (%)

American Indian or Alaska Native 1 (5)

Asian 2 (11)

Black or African American 3 (16)

White or Caucasian 13 (68)

Ethnicity, n (%)

Hispanic or Latino 2 (11)

Not Hispanic or Latino 17 (90)

Clinical stage

IIIB 8 (42)

IIIC 9 (47)

IV 2 (11)

N category at diagnosis

N0 1 (5)

N1 6 (32)

N2a 2 (11)

N3a 4 (21)

N3b 2 (11)

N3c 4 (21)

BMI body mass index, SD standard deviation, TILs tumor-infiltrating lymphocytes.
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affected by these germline variants and found that theRTK-RASpathway (6
patients, 32%), Hippo pathway (6, 32%), and NOTCH pathway (5, 26%)
were the most frequently altered pathways (Fig. 1A).We further found that
5 of 19 patients (26%)hadputative deleteriousmutations in 40breast cancer
susceptibility genes, including PMS1 (2 patients, 11%), BRCA1 (1, 5%),
CYP1A1 (1, 5%), FGFR2 (1, 5%) and RAD51C (1, 5%) (Fig. 1B).

Next, we analyzed the somatic mutations in these TN-IBC tumor
samples by comparing the tumor samples to the matched blood samples.
We identified a mean of 96 nonsynonymous somatic mutations and 37
CNVs per sample.We plotted the somatic alteration landscape based on a
known list of breast cancer driver genes and cancer hallmark genes
(https://cancer.sanger.ac.uk/census). As shown in Fig. 2A, 34 breast-
cancer-associated genes were altered in 17 of 19 TN-IBC patients. Most
alterations in these 34 genes were deletion mutations (present in 15
patients, 79%) and the most frequently altered genes were TP53 (8
patients, 42%), GATA3 (7, 37%), PIK3CA (5, 26%), CCND1 (4, 21%),
MAP3K1 (4, 21%), and NOTCH1 (4, 21%). Among these frequently
altered genes, GATA3 was mainly changed by amplification (6 of 7
patients). Among 50 cancer hallmark genes, the genes most frequently
altered by amplification were ARNT (11 patients, 58%), BCL9 (11, 58%),
DDR2 (11, 58%),FCGR2B (11, 58%), LMNA (11, 57%), andMYC (9, 47%)

(Supplementary Fig. 2A). We further analyzed the oncogenic pathways
affected by somatic mutations. As shown in Fig. 2B, the most frequently
altered pathways were the NOTCH pathway (17 patients, 89%), RTK-
RAS pathway (15, 79%),WNTpathway (15, 79%), and PI3K pathway (15,
79%). The altered genes in these pathways are shown in Supplementary
Figs. 2B–E).

Comparison of genomic alterations between TN-IBC and TN-
non-IBC
To identify TN-IBC-specific genomic alterations, we compared the germ-
line and somatic variants between the 19 TN-IBC patients and the 60 stage
III and IV TN-non-IBC patients. As shown in Fig. 1C, the number of
germline missense variants was significantly lower in TN-IBC than in TN-
non-IBC (mean: 63 vs. 277, p < 0.0001). However, there were no significant
differencesbetweenTN-IBCandTN-non-IBC in thenumbers of truncating
and inframe germline variants. TN-IBC also had a significantly lower
somatic mutation load than TN-non-IBC (mean: 96 vs. 236, p < 0.0001),
including significantly lower loads of missense (mean: 86 vs. 157,
p = 0.0026), truncating (mean: 9 vs. 58, p < 0.0001), and inframe mutations
(mean: 2 vs. 21, p < 0.0001) (Fig. 2C). Similarly, TN-IBC had significantly
lower loads of CNVs than TN-non-IBC (mean: 37 vs. 114, p < 0.0001),
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Fig. 2 | Somatic alterations identified in TN-IBC and comparison with TN-non-
IBC. A Somatic alterations identified in breast cancer driver genes in TN-IBC. Gene
names and relative frequency of mutations are reported in the double y-axis. Top:
bar graph defining the total number of different types of somatic alterations in each
patient; bottom: annotation for PmAb treatment, pathologic response, stage at
diagnosis, and overall clinical staging. B Altered oncogenic pathways affected by
somatic alterations in TN-IBC. C,D Number of somatic variants, including mis-
sense, truncating, and inframe variants (C), and CNV load, including copy number

gains, losses, and both (D), in TN-IBC and TN-non-IBC. E,F Enrichment of somatic
alterations in breast-cancer-associated genes (E) and cancer hallmark genes (F) in
TN-IBC compared to TN-non-IBC. *P < 0.05; **P < 0.01; ***P < 0.001; NS, not
significant. InC andD, the center line represents themedian of the data. The edges of
the box correspond to the 75th percentile and the 25th percentile respectively,
showing the interquartile range (IQR). The whiskers extend to the largest and
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defined as data points beyond the whiskers, are plotted individually as dots.
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including significantly lower loads of CN gains (mean: 21 vs. 67, p < 0.0001)
and CN losses (mean: 16 vs. 47, p < 0.0001) (Fig. 2D).

Next, we compared the enrichment of somatic genomic alterations
between TN-IBC and TN-non-IBC. As shown in Fig. 2E and S3A, TN-IBC
had significantly enriched alterations in 4 breast-cancer-associated genes,
GATA3 (p = 0.0001, adj-p = 0.001), KEAP1 (p = 0.01, adj-p = 0.05),
CDKN1B (p = 0.01, adj-p = 0.05), and PIK3CA (p = 0.03, adj-p = 0.1),
compared to TN-non-IBC. Among these genes,GATA3was amplified in 6
of 19 TN-IBC samples but not in TN-non-IBC. As shown in Figs. 2F
and S3B, we found that TN-IBC had significantly enriched alterations in 36
cancer hallmark genes, the most significant of which were LMNA
(p < 0.0001, adj-p < 0.0001), FCGR2B (p < 0.0001, adj-p < 0.0001), BCL9
(p < 0.0001, adj-p < 0.0001), DDR2 (p < 0.0001, adj-p < 0.0001), and ARNT
(p < 0.0001, adj-p < 0.0001). The majority of the alterations were amplifi-
cations. In contrast, TN-non-IBC had enriched alterations in 4 cancer
hallmark genes, PTK6 (p = 0.0009, adj-p = 0.01), CANT1 (p = 0.01, adj-
p = 0.05), ASPSCR1 (p = 0.01, adj-p = 0.05), and RNF213 (p = 0.01, adj-
p = 0.05), compared to TN-IBC (Figs. 2F and S2B).

Taken together, our data showed that TN-IBC had a lower germline
and somaticmutation burden than TN-non-IBC.We also identified several
genes enriched for genomic alterations in TN-IBC compared to TN-
non-IBC.

Transcriptomic expression profiles in TN-IBC
To identify genes specifically expressed in patients with TN-IBC, we
conducted RNA-seq analyses of the 19 TN-IBC patient samples. The
sample-to-sample distance was calculated, and the patient samples
were clustered (Fig. 3A). We observed 2 main clusters but did not find
any association between the cluster patterns and the clinical char-
acteristics, including clinical stage and pathologic response. Samples in
cluster I had a relatively higher TIL percentage than those in cluster II
(49% vs. 28%), but the difference was not statistically significant
(p = 0.11). We further investigated the enriched hallmark pathways in
TN-IBC samples. We observed 2 main clusters consistent with the
sample similarity clusters (Fig. 3B). Overall, the most enriched path-
ways across all TN-IBC samples were genes up-regulated associated
with angiogenesis (median NES = 0.22), genes in the hedgehog sig-
naling pathway (median NES = 0.20), and genes involved in response
to interferon-α proteins (median NES = 0.19). The most enriched
pathways in cluster I were the protein secretion pathway (median
NES = 0.31) and genes involved in response to interferon-α and -γ
(median NES = 0.23). In contrast, the most enriched pathways in
cluster II were the Notch signaling pathway (median NES = 0.33) and
genes regulated by MYC (median NES = 0.31).

Comparison of gene expression between TN-IBC and TN-
non-IBC
To identify genes specifically expressed in TN-IBC, we compared gene
expression between the 19 patients with TN-IBC and 19 patients with
TN-non-IBC. Sample distance was calculated, and unsupervised hier-
archical clustering was performed based on the 5000 most variable
genes. Three main clusters were found across groups, including 1 cluster
of TN-non-IBC and 2 clusters of TN-IBC (Supplementary Fig. 4A,B).
The principal component analysis explained 66% and 5% of the total
variance and showed a remarkable separation between TN-IBC andTN-
non-IBC (Supplementary Fig. 4C). By conducting differential gene
expression analysis, we identified 10,588 differentially expressed genes
(absolute Log2FC ≥ 1, adj-p < 0.05), among which 4083 genes were
significantly upregulated and 6505 genes were significantly down-
regulated in TN-IBC relative to TN-non-IBC tumors. The top 50 up-
regulated and down-regulated genes in TN-IBC relative to TN-non-IBC
tumors are shown in Fig. 3C and Supplementary Fig. 4D. The most up-
regulated protein-coding genes in TN-IBC were PNLIP, OR1A2,
C5orf17, and FGA. The most down-regulated protein-coding genes in
TN-IBCwereUBE2Q2P6, RGPD5,NSFP1, RGPD1, RP11-645C24.2, and

RPS17L. Strikingly, we observed up-regulation of many microRNAs
(miRNAs) in TN-IBC (Supplementary Fig. 4D).

We further compared the expression of breast-cancer-associated genes
in TN-IBC and TN-non-IBC. As shown in Fig. 3D, 15 breast-cancer-
associated genes were significantly overexpressed in TN-IBC compared to
TN-non-IBC, including BRCA1 (Log2FC = 2.02, adj-p < 0.0001), BRCA2
(Log2FC = 2.21, adj-p < 0.0001), PIK3CA (Log2FC = 1.73, adj-p < 0.0001),
PALB2 (Log2FC = 1.85, adj-p < 0.0001), and RB1 (Log2FC = 1.11, adj-
p < 0.0001). The expression of 9 breast-cancer-associated genes was sig-
nificantly downregulated in TN-IBC compared to TN-non-IBC, including
TP53 (Log2FC = -1.06, adj-p = 0.005), CHEK2 (Log2FC = -2.45, adj-
p < 0.0001), CDKN1B (Log2FC = -1.46, adj-p < 0.0001), NOTCH1
(Log2FC = -1.31, adj-p < 0.0001), and CCND1 (Log2FC = -1.31, adj-
p = 0.004).We also performedGSEA to evaluate the pathways differentially
enriched between TN-IBC and TN-non-IBC. As shown in Figs. 3E, 4
hallmark gene sets were significantly enriched in TN-IBC, includingmitotic
spindle (NES = 2.18, adj-p < 0.0001), protein secretion (NES = 1.87, adj-
p = 0.0005), UV response (NES = 1.84, adj-p < 0.0001), and spermatogen-
esis (NES = 1.55, adj-p = 0.01). Only 1 hallmark gene set, MYC targets V1,
was significantly enriched in TN-non-IBC (NES = -1.74, adj-p < 0.0001).

Taken together, our data identified several genes with significantly
higher expression in TN-IBC than in TN-non-IBC. Further studies are
needed to determine whether these genes specifically contribute to the
aggressiveness and the distinctive biology of TN-IBC.

Estimationof immunecell fractions inTN-IBCandTN-non-IBCby
deconvolution analysis
It has been reported that the TME is a driving force of IBC aggressiveness.
To understand the immune microenvironment of TN-IBC tumors, we
deconvoluted 22 types of immune cells from the RNA-seq data of TN-IBC.
Supplementary Fig. 4E shows the relative percentages of immune cells in
each TN-IBC patient. The most abundant immune cells were M2 macro-
phages, resting CD4+ memory T cells, and M1 macrophages. Next, we
examined whether TN-IBC and TN-non-IBC have distinct immune land-
scapes. We deconvoluted 22 types of immune cells from the RNA-seq data
of 19 TN-non-IBC patient samples and compared the percentages of dif-
ferent immune cells to those in the TN-IBC patient samples. As shown in
Fig. 3F, TN-IBC had significantly higher relative fractions of gamma-delta
(γδ) T cells (p = 0.004), M1 macrophages (p = 0.01), and eosinophils
(p = 0.02) than TN-non-IBC. In contrast, TN-non-IBC had significantly
higher relative fractions of CD8 T cells (p = 0.01) and resting dendritic cells
(p = 0.01) than TN-IBC. These results suggest that the TN-IBC immune
microenvironment is more immunosuppressive than the TN-non-IBC
immune microenvironment.

Comparison of genomic alterations between pCR and non-pCR
groups in TN-IBC
As shown in Supplementary Fig. 1, TN-IBC samples analyzed in this study
were collected from a randomized phase II trial (NCT02876107). Data on
pCR were available for 10 patients in the NAC arm, including 6 with pCR
and 4 with non-pCR, and 7 patients in the PmAb/NAC arm, including 4
with pCR and 3 with non-pCR. To understand the relationship of genomic
alterations to treatment response, we assessed the associations of somatic
mutation load andCNV loadwith pCR status in theNAC and PmAb/NAC
arms, respectively. As shown in Fig. 4A, in the NAC arm, patients who
achieved a pCRhad a significantly highermutation load than those who did
not (mean: 119 vs. 58,p = 0.04). In thePmAb/NACarm, themeanmutation
load was higher in the patients who achieved a pCR than in those who did
not, but the difference was not statistically significant (mean: 111 vs. 76,
p = 1). CNV load did not differ between the pCR and non-pCR groups in
either the NAC arm or the PmAb/NAC arm (Fig. 4B).

We further analyzed the alterations of breast-cancer-associated genes
in each arm. Themost frequently altered gene in the NAC armwasGATA3
(4 patients, 40%) (Figs. 4C and S5A), and themost frequently altered gene in
the PmAb/NAC arm was TP53 (5 patients, 71%) (Figs. 4D and S5B). We
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Fig. 3 | Transcriptomic profiles of TN-IBC and comparison with TN-non-IBC.
A Heatmap of sample-to-sample distances calculated from the RNA expression
profiles of TN-IBC. B Heatmap of the enrichment scores of cancer hallmark path-
ways inTN-IBC.CVolcanoplot of differentially expressed geneswith Log2FC ≥ 1 or
≤−1 and adj-p < 0.05 in TN-IBC compared to TN-non-IBC. D Heatmap of the
differentially expressed breast-cancer-associated genes in TN-IBC compared to TN-
non-IBC. E GSEA of the significantly enriched hallmark pathways in TN-IBC
compared to TN-non-IBC. F Relative immune cell fractions in TN-IBC and TN-

non-IBC analyzed by CIBERSORT. *P < 0.05; **P < 0.01; NS, not significant. In
A,B,D Top: annotation for stage at diagnosis, overall clinical stage, pathologic
response, and TIL. In F, the center line represents the median of the data. The edges
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showing the interquartile range (IQR). The whiskers extend to the largest and
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defined as data points beyond the whiskers, are plotted individually as dots.
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also compared the genomic alterations between the pCR and non-pCR
groups in each arm. However, we did not find any statistically significant
differences likely due to the small sample size. These results suggest that
patients with higher mutation load achieved better responses to NAC. The
association of genomic alterationswith response to PmAb/NACneeds to be
further studied in a larger sample size.

As shown in Supplementary Fig. 5C, in the analysis comparing the 6
patients with a pCR in theNACgroupwith all 7 patients with a non-PCR in
both groups, the somatic mutation load in the pCR group was significantly
higher than that in the non-pCR group (mean: 119 vs. 66, p = 0.03). There
was also a trend toward a higher CNV load in the pCR group, as well as
trends towards higher loads of CN gains and CN losses. However, the
differences were not statistically significant (Supplementary Fig. 5D). We
further compared the enrichment of genomic alterations in the pCR and
non-pCR groups but did not find any significant enrichment of genes or
oncogenic pathways in either group (Supplementary Fig. 5E).

Comparisonofgeneexpressionandenrichedpathwaysbetween
pCR and non-pCR groups in TN-IBC
Next, we compared gene expression between the pCR and non-pCR groups
of TN-IBC patients in the NAC and PmAb/NAC arms. In the NAC arm, a
total of 112 differentially expressed genes were identified with an adj-

p < 0.05 and absolute Log2FC ≥ 1, including 63 genes up-regulated in the
pCR group and 49 genes up-regulated in the non-pCR group (Figs. 5A and
S6A). The most up-regulated genes in the pCR group relative to non-pCR
group were KRT36 (Log2FC = 23.07, adj-p < 0.0001), KRT43P (Log2FC =
22.58, adj-p < 0.0001), and OR6K3 (Log2FC = 22.04, adj-p < 0.0001) (Figs.
5A and S6B). The most down-regulated genes in the pCR group relative to
non-pCR group wereANKRD1 (Log2FC =−5.67, adj-p = 0.0004),ADH1C
(Log2FC =−5.16, adj-p = 0.001), and SERPINA11 (Log2FC =−3.96, adj-
p = 0.03) (Figs. 5A and S6B). GSEAshowed 4 pathways enriched in the pCR
group (Fig. 5C), including pancreas beta cells (NES = 1.89, adj-p = 0.007),
MTORC1 signaling (NES = 1.76, adj-p < 0.0001), E2F targets (NES = 1.71,
adj-p = 0.0002), and spermatogenesis (NES = 1.50, adj-p = 0.02). Eleven
pathways were significantly enriched in the non-pCR group, and the most
significant ones were estrogen response early (NES =−2.27, adj-
p < 0.0001), myogenesis (NES =−1.98, adj-p < 0.0001), and p53 pathway
(NES =−1.88, adj-p < 0.0001).

In the PmAb/NAC arm, 76 differentially expressed genes were iden-
tified with an adj-p < 0.05 and absolute Log2FC ≥ 1, including 24 genes up-
regulated in the pCR group and 52 genes up-regulated in the non-pCR
group (Figs. 5B and S6C). The most up-regulated genes in the pCR group
were SERPINA9 (Log2FC = 22.09, adj-p < 0.0001), OR52N5 (Log2FC =
7.96, adj-p = 0.01), and CLEC3A (Log2FC = 7.52, adj-p = 0.008) (Figs. 5B
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andS6D).Themost up-regulatedgenes in thenon-pCRgroupwereCDH19
(Log2FC =−10.22, adj-p < 0.0001), UNC13C (Log2FC =−8.22, adj-
p < 0.0001), andVWC2 (Log2FC =−8.0, adj-p = 0.003) (Figs. 5B and S6D).
GSEA showed 4 pathways enriched in the pCR group (Fig. 5D), including
interferon-alpha response (NES = 2.37, adj-p < 0.0001), interferon-γ
response (NES = 1.79, adj-p < 0.0001), spermatogenesis (NES = 1.60, adj-
p = 0.02), and estrogen response late (NES = 1.40, adj-p = 0.02). Five
pathways were significantly enriched in the non-pCR group, including
coagulation (NES =−2.43, adj-p < 0.0001), bile acid metabolism
(NES =−2.05, adj-p < 0.0001), xenobiotic metabolism (NES =−2.0, adj-
p < 0.0001), fatty acid metabolism (NES =−1.75, adj-p = 0.001), and adi-
pogenesis (NES =−1.42, adj-p = 0.04).

We also compared gene expression between the pCRgroup in theNAC
arm (N = 6) and the non-pCR groups in both the NAC and PmAb/NAC
arms (N = 7). A total of 133 differentially expressed genes were identified
(Supplementary Fig. 7A,B). Among these, 41 genes were up-regulated in the
pCR group, and 92 genes were up-regulated in the non-pCR group (Sup-
plementary Fig. 7B). The most up-regulated genes in the pCR group were
COL9A1 (Log2FC = 22.59, adj-p < 0.0001), OR10K2 (Log2FC = 21.47, adj-
p < 0.0001), and TPD52L3 (Log2FC = 7.53, adj-p < 0.0001) (Supplementary
Fig. 7C).Themostup-regulatedgenes in thenon-pCRgroupwereGPR15LG
(Log2FC =−22.54, adj-p < 0.0001), UGT2B15 (Log2FC =−6.23, adj-
p = 0.003), and DDX3Y (Log2FC =−5.54, adj-p = 0.001) (Supplementary
Fig. 7C). The GSEA results are shown in Supplementary Fig. 7D. Four
hallmark gene sets were significantly enriched in the pCR group, including
pancreas beta cells (NES = 2.03, adj-p = 0.0008), spermatogenesis
(NES = 2.04, adj-p < 0.0001), E2F targets (NES = 1.90, adj-p < 0.0001), and
G2M checkpoint (NES = 1.63, adj-p = 0.0007). Fourteen gene sets were
significantly enriched in the non-pCR group, including estrogen response
early (NES =−2.24, adj-p < 0.0001), myogenesis (NES =−2.0, adj-
p < 0.0001), xenobiotic metabolism (NES =−1.89, adj-p < 0.0001), p53
pathway (NES =−1.88, adj-p < 0.0001), and adipogenesis (NES =−1.47,
adj-p < 0.0001).

In summary, we identified differentially expressed genes between TN-
IBCpatientswho achieved a pCRandwhodid not achieve a pCR toNACor
PmAb/NAC.These genesmaybe candidates that canbe targeted to enhance
the response of TN-IBC to NAC or PmAb/NAC.

Comparison of immune cell composition between pCR and non-
pCR groups in TN-IBC
We further compared the immune cell composition between the pCR and
non-pCR groups of TN-IBC patients in the NAC and PmAb/NAC arms
using deconvolution analysis (Supplementary Fig. 8A). In theNACarm, the
percentage of M2 macrophages was significantly higher in the non-pCR
group (p = 0.038) (Fig. 5E). In the PmAb/NAC arm, the percentages of
monocytes (p = 0.032) and M0 macrophages (p = 0.05) were significantly
higher in the non-pCR group (Fig. 5F). These results suggest that the pre-
sence of immunosuppressive macrophages in the tumor may contribute to
the worse response of TN-IBC to NAC or PmAb/NAC.

As the sample sizes of the NAC and PmAb/NAC arms were small, we
combined the data from the 2 arms and compared the immune cell com-
position between the pCR and non-pCR groups. As shown in Supple-
mentary Fig. 8B, the percentage of activated memory CD4+ T cells was
significantly higher in the pCRgroup (p = 0.02). In contrast, the percentages
of activated NK cells (p = 0.02) and monocytes (p = 0.04) were significantly
higher in the non-pCR group.

Taken together, our data indicated that TN-IBC and TN-non-IBC
have distinct TMEs, and the presence of more immunosuppressive mac-
rophages may be associated with the worse response of TN-IBC to NAC or
PmAb/NAC. These results suggest that targeting macrophages may
improve the treatment of patients with TN-IBC.

Discussion
Toourknowledge, ourpresentwork is thefirstmulti-omics characterization
of clinically annotated TN-IBC specimens and the first comprehensive

comparison of TN-IBC specimens with stage III TN-non-IBC specimens
selected on the basis of patient stage and sequencing protocol and platform.
We identified germline and somatic alterations and transcriptomic and
immunological features that distinguish TN-IBC from TN-non-IBC. Fur-
ther, we identified genomic and transcriptomic features that may be asso-
ciated with the pathological response of TN-IBC to NAC and PmAb/NAC,
the treatment regimen with the historically highest pCR in patients with
TN-IBC.

The distinctive features of TN-IBC revealed by our study include the
lower baseline tumor mutation load and CNV load and the association of
immunosuppressive tumor-infiltrating immune components with an
unfavorable response to NAC. Previous studies have shown higher tumor
mutational burden in IBC than in non-IBC with mixed subtypes or HER2-
positive subtype10,15,47. One study involving targeted next-generation
sequencing of 91 “breast cancer-specific” genes in 156 cases of IBC,
including 51 cases of TN-IBC, and 197 invasive breast carcinomas from the
TCGA, the non-IBC dataset, showed that gene mutation frequencies were
not significantly different in the TN-IBC and TN-non-IBC subgroups. In
our study,we compared thegenomic alterationsofTN-IBCsamples to those
of TN-non-IBC samples that were sequenced using the same protocol and
platform. We showed that TN-IBC had a significantly lower number of
germline missense variants; lower somatic mutation load, including mis-
sense, truncating, and inframe mutations; and lower loads of copy number
gains and losses. This is the first report of lower mutation load in TN-IBC
compared to TN-non-IBC. It has been reported that tumors with higher
mutation load express more mutation-associated neoantigens that can be
recognized by the immune system, and tumors with lower mutation load
could be less likely to trigger a robust immune response48,49. Indeed, we
observed a lower fraction of CD8 T cells in TN-IBC samples than in TN-
non-IBC samples as revealed by deconvolution analysis, indicating the
“cold” immunemicroenvironment in TN-IBC tumors. Consistent with this
finding,we observed thatTN-IBCpatientswho achieved apCR toNAChad
a significantly higher mutation load than those who did not. Patients who
achieved a pCR toNACalso had lower fractions of immunosuppressiveM2
macrophages compared to patients who did not achieve a pCR to NAC.
These results support the potential connection between lower mutation
loads and aweaker antitumor immune response. It is important to note that
factors such as sample size, patient selection, and technical differences in
sequencing methods used in other studies may have collectively influenced
theobservedmutational burden, leading to thediscrepancy. Inour study,we
sequenced all patients using the same protocol and platform and processed
the data with a consistent bioinformatics pipeline to minimize variability.

One of the significantfindings of our study is the identification of higher
fractions of M1 macrophages, γδ T cells, and eosinophils in TN-IBC than
TN-non-IBC. The enriched M1 macrophages and γδ T cells in TN-IBC are
consistent with the deconvolution analysis data reported by Bertucci et al.50.
However, their data showed more immune differences between hormone-
receptor-positive, HER2-negative IBC and non-IBC than between TN-IBC
andTN-non-IBC50. γδT cells are T cells that have a γδT-cell receptor on the
surface, participate in various immune responses, and have functions in both
promoting and inhibiting antitumor responses. Eosinophils are a variety of
white blood cells and one of the immune components combating multi-
cellular parasites and certain infections51. There is conflicting evidence sug-
gesting that eosinophils in the TMEhave antitumor activities52–54 and tumor-
promoting effects55,56. In a TGIRT-seq study to identify IBC distinctive genes
(unpublished data), we also observed a higher fraction of eosinophils in TN-
IBC tumor tissues than in TN-non-IBC tumor tissues. The role of γδ T cells
and eosinophils in the progression of IBC is worth further investigation.

Our study also demonstrated the potential role of theTME inmediating
response of TN-IBC to NAC or PmAb/NAC. In both the NAC and PmAb/
NAC arms, patients with a non-pCR had higher fractions of immunosup-
pressive macrophages, suggesting that macrophages are a potential target to
improve the therapeutic efficacy of NAC or PmAb/NAC for TN-IBC
patients. The enriched interferon-α and -γ response in the group with a pCR
to PmAb/NAC and the higher fraction of immunosuppressive macrophages
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in the groups with a non-pCR to NAC and PmAb/NAC suggest that an
immunoactive TME is the key to better response to NAC or PmAb/NAC.
This is consistent with our recent finding that a pCR to PmAb/NAC in
patients with IBCmay be associatedwith an immunoactive TME induced by
PmAb, including an increase in CD8+ T cells and a decrease in regulatory
T cells and M2 macrophages after PmAb treatment57. We can potentially
reprogram the tumor-associated macrophages to a tumoricidal phenotype,
inhibiting their recruitment to the tumor site. Understanding the specific
roles and mechanisms of macrophages in TN-IBC will be crucial for devel-
oping effective macrophage-targeted interventions.

Our study identified several novel genomic alterations in TN-IBC. The
12 most frequently altered genes in TN-IBC were ARNT, BCL9, DDR2,
FCGR2B, LMNA, MYC, TP53, GATA3, PIK3CA, CCND1, MAP3K1, and
NOTCH1. The somatic alterations ofMYC,TP53,GATA3,PIK3CA,CCND1,
andNOTCH1 in TN-IBC are consistent with previous reports in IBCwith all
subtypes47. However, only GATA3, PIK3CA, ARNT, DDR2, BCL9, FCGR2B,
and LMNA had significantly enriched alterations in TN-IBC compared to
TN-non-IBC (Fig. 2E,F). Among these genes,ARNT,DDR2,BCL9, FCGR2B,
and LMNA in TN-IBCwere identified for the first time (Fig. 2F).ARNT, also
designated as hypoxia-inducible factor-1β, encodes a protein that promotes
the expression of genes involved in xenobiotic metabolism and functions as a
co-factor for transcriptional regulationbyhypoxia-inducible factor 158.ARNT
isespecially requiredduringearly stagesof tumorgrowth58.DDR2 isa receptor
tyrosine kinase that regulates collagen-cell interactions59. The overexpression,
amplification, and mutations of DDR2 can drive aggressive phenotype of
several types of cancer60,61. BCL9 plays a critical role in the progression of
colorectal cancer, multiple myeloma, and ductal carcinoma in situ by acti-
vating Wnt signaling62,63. FCGR2B can inhibit the functions of activating
FcγRs, such as phagocytosis and proinflammatory cytokine release64. It also
has a negative regulatory role in BCR-induced or CD40- and IL-4-mediated
B-cell activation65. LMNA plays an important role in maintaining genome
integrity. Altered LMNA levels can impact the ability of cells to repair DNA
damage, potentially acceleratingmutagenesis and promoting tumor initiation
and progression66. How amplification alterations of these genes affect the
tumorigenesis and progression of TN-IBC needs to be further investigated.

Alterations of GATA3 and PIK3CA in IBC have been reported
previously47. GATA3 belongs to the GATA family of transcription factors
and is one of themost frequentlymutated genes in breast cancer, which is an
essential regulator ofT-cell development67–69. The present study showed that
37% of TN-IBC samples had GATA3 copy gains and GATA3 deletion
mutation, mostly amplification (6 of the 7 TN-IBC samples with GATA3
alterations). Although GATA3 alterations were significantly enriched in
TN-IBC compared to TN-non-IBC, we did not observe significant differ-
ences in the expression of GATA3 between TN-IBC and TN-non-IBC on
RNA-seq analysis. It has been reported thatGATA3 copy number gains are
more frequently found in invasion-prone breast tumors and this pattern is
likely due to epigenetic regulations70. It is possible that GATA3 alterations
affect IBC progression via epigenetic regulation instead of gene expression
regulation, which needs to be further investigated. Alterations in the PI3K
pathway are among the most frequent oncogenic aberrations in TNBC71.
PIK3CA is an oncogene in the PI3K pathway and is the second most fre-
quently mutated gene in TNBC, following TP53. In the TN-IBC cohort in
our present study, 22 of 29 fractions of PI3K pathwaywere affected, 15 of 19
patients had PI3K pathway alterations (Fig. 2B), and PIK3CA was mutated
in 5 of 19 patients (26%), mirroring previously reported data for metastatic
IBC13 and TN-IBC14. PIK3CA mutations identified in our study included
amplifications, deletions, andmissensemutations in 3, 1, and 1 of the 5 TN-
IBC patients with PIK3CA alterations, respectively. We also showed that
PIK3CA gene expression in TN-IBC was 3.3-fold higher than that in TN-
non-IBC (adj-p = 3.72E-11). PIK3CAmutation has been reported to confer
resistance to chemotherapy in TNBC by inhibiting apoptosis and activating
the PI3K/AKT/mTOR signaling pathway72. Given that PIK3CAmutations
and gene expression were enriched in TN-IBC compared to TN-non-IBC,
PIK3CAmay represent a unique targetable oncogene for TN-IBC. Specific
inhibitors of PI3K, such asApelisib, have shownefficacy inPIK3CA-mutant

cancers. Given the enrichment of PIK3CA mutations in TN-IBC, these
inhibitors could be useful for this aggressive cancer type. Additionally,
combining PI3K inhibitors with treatments such as chemotherapy,
immunotherapy, or other targeted therapies might improve outcomes for
TN-IBC patients with PIK3CA alterations. Further research is needed to
fully understand the potential of targeting PIK3CA in TN-IBC. Under-
standing themolecularmechanisms driving PIK3CA-related cancer in TN-
IBCwill alsohelp identify biomarkers for treatment response and resistance,
leading to more precise and effective therapies.

In addition to the genomic alterations and immunological features that
distinguish TN-IBC tumors fromTN-non-IBC tumors, we identified several
transcriptomic characteristics of TN-IBC that may function as potential
drivers of TN-IBC aggressiveness and serve as prognostic markers for TN-
IBC. Among the up-regulated protein-coding genes in TN-IBC, FGA, FGB,
andFGG encode theα,β, andγpolypeptide chainsoffibrinogen, respectively.
Fibrinogen is an extracellular matrix protein involved in the formation of
blood clots and is a key biological factor involved in tumor angiogenesis,
development73, and a series of inflammatory diseases possibly mediated by
cell-specific integrin and non-integrin receptors on different cell types,
including cancer cells, macrophages, monocytes, mast cells, and vascular
endothelial cells74,75. Theblood level offibrinogen rises in response to systemic
inflammation and is elevated in various cancers. It has been reported that
plasma fibrinogen level is a potential predictive biomarker of response to
neoadjuvant chemotherapy for breast cancer76,77. Studies showed that FGG
can promote the migration and invasion of hepatocellular cancer cells by
activating epithelial to mesenchymal transition78. The high expression of
genes encoding fibrinogen chains revealed in our study suggests that fibri-
nogen and 3 chains composed offibrinogenmay contribute to tumorigenesis
andprogressionofTN-IBC,whichneeds tobe further studied. It is alsoworth
investigating whether plasma fibrinogen could be a prognostic or predictive
biomarker forTN-IBC. In addition,we observedup-regulationofmiRNAs in
TN-IBC compared to TN-non-IBC. Among the top 60 up-regulated genes
with Log2FC > 5, adj-p < 0.00001, the majority were miRNAs (Supplemen-
tary Fig. 4D). miRNAs play critical roles in breast cancer cell proliferation,
metastasis, angiogenesis, migration, and survival. Van der Auwera et al.
identified 13 miRNAs whose expression differed between IBC and non-
IBC79. In our study, we also identified significant up-regulation ofmiRNAs in
TN-IBC. However, the function of most of these miRNAs in breast cancer
and IBC is largely unknown and needs to be further investigated.

PmAb/NAC has produced the highest pCR rate achieved in patients
withTN-IBC80. Identifying predictive biomarkers is critical to select patients
for this treatment regimen. Our study is the first attempt to identify the
association of genetic, transcriptomic, and immunological characteristics of
TN-IBC patients with the pCR outcome ofNAC or PmAb/NAC. ForNAC,
TN-IBC patients who achieved a pCR had a significantly higher mutation
load, up-regulated expressionofKRT36,KRT43P, andOR6K3, and enriched
MTORC1 signaling and E2F targets compared to patients who did not
achieve a pCR. Although the small sample size limits the identification of
genetic alterations associated with a pCR to PmAb/NAC, we identified the
up-regulation of SERPINA9, OR52N5, and CLEC3A gene expression and
enriched interferon-α and -γ response in the pCR group. In addition, non-
pCR patients in both the NAC and PmAb/NAC arms had higher fractions
of immunosuppressive macrophages, suggesting that macrophages are a
potential target to improve the therapeutic efficacy of NAC or PmAb/NAC
for TN-IBC patients.

Our study has several limitations. First, the small sample size limits the
analysis. IBC is a sporadic disease without know risk factors, and the overall
incidence of IBC from 1973 to 2015 was 2.76 cases per 100,000 people2.
Among IBC cases, only approximately 20% to 40% are TN-IBC81. In
addition, IBC tumors are dispersed and do not always form amass, making
it difficult to obtain high-quality core biopsy specimens for sequencing,
which limited thenumber of baseline core biopsy specimens collected in this
trial. Second, we compared TN-IBC WES and RNA-seq data to those of
stage III TN-non-IBC patient samples from the MD Anderson Cancer
Center Moon Shots Program to identify TN-IBC-distinctive genomic and
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transcriptomic features. However, the Moon Shots Program did not con-
duct multiplexed immunofluorescence staining for TN-non-IBC patient
samples. This limits the validation of findings from deconvolution analysis
and the identification of other novel immune components that are differ-
entially expressed in TN-IBC patients. MD Anderson Cancer Center has
opened a prospective trial to profile more patients with rare tumors,
including IBC, which may lead to future sequencing and immune profiling
of more IBC tumors. Third, the comparison of genomic changes under
neoadjuvant systemic therapy is underpowered; these data should be con-
sidered hypothesis-generating at this stage.

In summary, herewepresent an in-depthmolecular characterizationof
clinically annotated primary TN-IBC, a comprehensive comparison of TN-
IBC with stage III TN-non-IBC, and comparisons between pCR and non-
pCR groups in TN-IBC patients. Our study has identified significant dif-
ferences in genomic alterations, gene expression, pathway enrichment, and
immune cell levels between TN-IBC and TN-non-IBC. Our findings have
the potential to elucidate the etiology of TN-IBC and advance the discovery
of novel prognostic biomarkers.

Data availability
The WES and RNA-seq data from this study have been deposited in the
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