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Circulating blood circular RNA in
Parkinson’s Disease; from involvement in
pathology to diagnostic tools in at-risk
individuals

Check for updates

Aleksandra Beric 1,2, Yichen Sun1,2,3, Santiago Sanchez1,2, Charissa Martin1,2, Tyler Powell1,2,
Ravindra Kumar1,2, Jose Adrian Pardo4, Gauri Darekar1,2, Jessie Sanford1,2, Devin Dikec1,2,
Bridget Phillips 1,2, Juan A. Botia 4,5, Carlos Cruchaga1,2,6,7,8,9 & Laura Ibanez1,2,6

To identify circRNAsassociatedwith Parkinson’s disease (PD)we leveraged twoof the largest publicly
available studies with longitudinal clinical and blood transcriptomic data. We performed a cross-
sectional study utilizing the last visit of each participant (N = 1848), and a longitudinal analysis that
included 1166 participants with at least two time points. We identified 192 differentially expressed
circRNAs, with effects that were sustained during disease, in mutation carriers, and diverse ancestry.
The192 circRNAswere leveraged todistinguish betweenPDandhealthy participantswith aROCAUC
of 0.797. Further, 71 circRNAs were sufficient to distinguish between genetic PD (AUC71 = 0.954) and,
at-risk participants (AUC71 = 0.929) and healthy controls, supporting that circRNAs have the potential
to aid the diagnosis of PD. Finally, we identified five circRNAs highly correlatedwith symptom severity.
Overall, we demonstrated that circRNAs play an important role in PD and can be clinically relevant to
improve diagnostic and monitoring.

Parkinson’s disease (PD) affects more than six million people worldwide,
with a prevalence projected to double in the next decades1. It is a neuro-
degenerative disease clinically defined by resting tremor, rigidity, bradyki-
nesia, and postural instability2. Pathologically, it is characterized by Lewy
bodies (LB) and neurites that are composed by aggregated and phos-
phorylated alpha-synuclein (α-Syn) and the degeneration of substantia
nigra. Its cause is not fully understood yet. It is known that there are both
genetic and environmental risk factors, but the complete causal pathway, or
pathways, still remain elusive.

Circular RNAs (circRNAs) are non-coding RNAs that are the result of
backsplicing events that take place during thematuration of linear RNAand
lead to the creation of a covalently closed loop and an increase in their
stability3–6. They are highly expressed in the nervous system, especially in
synapses7 andhave a role inneuronal development, aging5, anddisease3,4,7–13.

Among their many functions, they act as miRNA sponges to regulate gene
expression, interact with proteins, and to generate protein products among
many others3,4,7–12. Studies in PD have demonstrated that the substantia
nigra accumulates circRNA in an age-related manner, event that is lost in
PD, with a reduction in the overall number of circRNAs11. In blood, a study
comparing four PD cases and four controls described 129 circRNAs up-
regulated, and 282 down-regulated14 in PD participants compared to con-
trols with an enrichment of PD terms. A study analyzing targeted circRNAs
from PBMCs identified six circRNAs downregulated in PD10. They used
four of them to build a classifier that showed an AreaUnder the ROC curve
(AUC) of 0.86, evidencing the potential of circRNAs as biomarkers. To date,
there is one high-throughput screening of circRNAs in blood of PD indi-
viduals, which focused on early-stage PD15. While they found three cir-
cRNAs downregulated in PD blood they were unable to replicate the results
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in an independent cohort15. Outside of the high-throughput realm, there are
targeted analyses using Peripheral BloodMononuclear Cells (PBMCs) with
promising results10.

To better understand and describe the landscape of circRNAs in blood
of PD participants compared to controls and evaluate their value as diag-
nostic and prognostic biomarkers we have quantified circRNAs in blood
from the two largest longitudinal studies, the national Institute of Neuro-
logical Disorders and Parkinson’s Disease Biomarkers Program (PDBP)16,
and the Parkinson’s Progression Markers Initiative (PPMI)17.

Material & methods
Study design
Weanalyzed the largest PDbloodRNAseqdatasets publicly available todate
by combining the PDBP and PPMI studies. After raw data processing and
stringent quality control, we compared the circular transcriptome between
European Ancestry PD participants and controls to identify differentially
abundant circRNAs. We leveraged the PDBP dataset (N = 1177) for dis-
covery and PPMI (N = 671) for replication, followed by meta-analyses. We
used gene-collapsed circRNA counts in the analyses and corrected all
p-values using Benjamini-Hochberg (FDR) correction. Then, we investi-
gated if the identified circRNAs were also associated with disease progres-
sion by performing longitudinal analyses of the RNAseq data collected
across five visits. To confirm that the findings were not due to differences in
cell proportions, or originated from the linear transcriptome, analyses were
adjusted by digitally deconvoluted cell proportion and linear RNA quan-
tification. Given the extensive information collected in PDBP andPPMI, we
were able to perform several sensitivity analyses. We investigated if (i) the
same circRNAs were differentially abundant in the African Ancestry indi-
viduals available in PDBP and PPMI, (ii) the changes in circRNA accu-
mulation can be observed prior to symptom onset (PD-related mutation
carriers and participants with REM sleep Behavior Disorder (RBD) or
hyposmia), (iii) medication had effect on the circRNA landscape; and (iv)
circRNA abundance associated with disease severity measured by the
Unified Parkinson’s Disease Rating Scale (UPDRS) Part III or motor
examination (UPDRS-III), and cognitive status measured by TheMontreal
Cognitive Assessment (MoCA). We then sought to understand the biology
of the identified circRNAs and performed data integration with microRNA
quantification (miRNA) and in-silico functional analyses. Finally, we
assessed the diagnostic capacity of cirRNAs using machine learning
approaches (Fig. 1). This research was conducted in accordance with the
recommended protocols and written informed consent was obtained from
all participants or their family members. The study was approved by the
Washington University in Saint Louis Institutional Review Board (IRB ID
201701124 and 202004010).

Dataset description
The present study includes two independent and publicly available datasets
with longitudinal clinical and blood transcriptomic data available: PDBP16

and PPMI17. Both are observational multi-center studies aimed at identi-
fying biomarkers of PD progression and improving the understanding of
PD pathobiology. Participants (N = 1848; Table 1) are followed long-
itudinally with clinical assessments and biospecimen collection every six
months, while blood RNAseq data is generated every six months in PDBP,
and every sixmonths during thefirst year and every 12months thereafter in
PPMI. To maximize the clinical differences between cases and controls
when assessing the accumulation of circRNAs, we selected the last assess-
ment of each participant instead of using baseline as previous
publications15,18 for the cross-sectional analysis. We included a total of 717
cases and 460 control participants of European descent from the PDBP
study (Table 1) as discovery, and 528 cases and 143 control participants of
European descent form the PPMI study (Table 1) as replication. The two
populations are comparable in age (p = 0.37), with mean age of 64.67
(±10.14) in PDBP and 64.24 (±9.59) in PPMI. Given the higher prevalence
of PD in males19,20, both datasets had slightly higher proportion of male
participants (>60%), with the exception of healthy control participants in

PDBP, with more than 50% of females. Further, there was no significant
difference between symptomatic PDBP and PPMI participants in terms of
symptom severity as measured by UPDRS-III and MoCA (p = 0.22 and
p = 0.73, respectively) (Table 1). UPDRS-III scores of PD participants were
on average 25.88 (±13.35) and 24.95 (±13.06) in PDBP and PPMI,
respectively, while healthy control participants presentedmean UPDRS-III
scores of 2.13 ( ± 5.07) and 1.46 (±2.61) in PDBP and PPMI, respectively.
Regarding MoCA scores, they present narrow ranges in all groups, with
means between 25 and 27 (Table 1). This might be explained by the
enrolment of recently diagnosed individuals in both studies, in other words,
the PDparticipants were in the early stages of the diseases and no cases have
developed severe dementia.Wehave also includedparticipantswithAfrican
descent (N = 68) from the PDBP (N = 50) and PPMI (N = 18) studies to
investigate if the findings are ancestry independent (Supplementary Table
1). There was no significant difference between mean ages of PDBP and
PPMI (59.60 ± 9.48 vs 55.83 ± 14.35; p = 0.14) participants of African
ancestry. PDBPAfrican ancestry participantswere evenlydistributedby sex,
with 53.33% of female participants, while PPMI had 33.33% female parti-
cipants (p = 0.42). Similar to participants of European ancestry, no sig-
nificant difference was observed in UPDRS-III and MoCA measured
symptom severity (p = 0.73 and p = 0.21, respectively) between PDBP and
PPMI participants of African ancestry. On average, PDBP participants
scored 14.60 (±16.10) and PPMI participants 12.67 (±16.06) on UPDRSIII
scale, while average values on MoCA scale were 23.13 (±4.29) and 25.18
(±4.85) in PDBP and PPMI, respectively.

PPMI is a comprehensive study that includes PD participants carriers
of PD-causalmutations, andparticipantswithout diagnosis of PD, but at risk
ofdeveloping it.More specifically,we included symptomaticPDparticipants
with LRRK2 (N = 125),GBA (N = 38) and SNCA (N = 11)mutations, aswell
as non-symptomatic at-risk participants with LRRK2 (N = 150), GBA
(N = 87), and SNCA (N = 3)mutations, and PD-associated syndromes RBD
(N = 25) and hyposmia (N = 18; Supplementary Table 2). Detailedmutation
information was available for majority of the participants. The most com-
monmutation in the symptomaticLRRK2participantswasG2019S (n = 92),
followed by R1441G (n = 14). Most of the symptomatic GBA1 participants
were carriers of N409S (n = 30), while all of the symptomatic SNCA parti-
cipants (n = 11) carried A53Tmutation. The samemutations were themost
common among the at-risk mutation carriers. Specifically, our study
included at-risk LRRK2 participants with G2019S (n = 119) and R1441G
(n = 14) mutations, GBA1 participants with N409S (n = 65) mutation and
SNCA participants with A53T (n = 3) mutation. Mean age of symptomatic
mutation carriers was significantly higher than that of at-risk mutation
carriers (64.89 ± 9.13 vs 61.89 ± 9.07; p = 1.00 ×10−03). This was also true
when broken down by gene, except in SNCAmutation carriers where there
was no significant difference in mean age of symptomatic compared to at-
risk participants (5.45 ± 11.10 vs 49.33 ± 7.50; p = 0.49) (Supplementary
Table 2). Overall, symptomatic and at-risk mutation carriers had compar-
able proportion of females (50.57% and 56.43%, respectively, p = 0.23), but
when broken down by mutation GBA+ symptomatic carriers had sig-
nificantly lower proportion of female participants than at-riskGBA+ carriers
(39.47% vs 62.07%, p = 0.02) (Supplementary Table 2).

Longitudinal blood transcriptomic data was available for 1,166 unique
participants across five visits in both PDBP and PPMI studies (Table 2).
Visits in PDBP were six months apart, while PPMI participants were fol-
lowed every 6 months during the first year, and every twelve months
thereafter. PDBP participants with more than one visit were significantly
older than PPMI participants at first visit (64.58 ± 9.67 vs 61.59 ± 9.65,
p = 1.52 ×10−7). Similar to the cross-sectional demographics, PDBP cohort
ismore evenly distributed between sexes, with 40–50%of female participant
across visits, compared to PPMI that consists of 30-40% female partici-
pants (p = 0.11).

Data processing and quality control
We accessed raw transcriptomic data (fastq files) from a total of 6362
ribodepleted blood RNA samples from 1848 unique participants from the
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Table 1 | Demographic characteristics corresponding to the European descent individuals included in the cross-sectional
analyses

Parkinson’s Disease Biomarker Program (PDBP) Parkinson’s Progression Markers Initiative (PPMI)

Healthy controls Parkinson’s disease Healthy controls Parkinson’s disease

Participants (N) 460 717 143 528

Mean age (IQR) 62.83 (56.00–71.00) 65.85 (60.00–72.00) 63.93 (59.00–71.00) 64.33 (57.75–71.00)

Female (N, %) 251 (54.56%) 269 (37.52%) 52 (36.36%) 203 (38.45%)

Mean UPDRS-III (IQR) 2.13 (0.00–2.00) 25.88 (16.00–33.00) 1.46 (0.00–2.00) 24.95 (15.75–33.25)

Mean MOCA (IQR) 26.61 (25.00–28.50) 25.15 (23.00–28.00) 27.34 (26.00–29.00) 26.32 (25.00–29.00)

N Sample Size, IQR Interquartile Range, UPDRS-III Unified Parkinson’s Disease Rating Scale Part III, MoCA Montreal Cognitive Assessment.

Fig. 1 | Study design summary.We have followed a
two-stage cross-sectional analysis with discovery
(PDBP) and replication (PPMI) phases. Then we
have performed sensitivity analysis stratifying by
mutation, exploring individuals from African
Ancestry, and those at risk due to being a carrier of a
PD-causing mutation, or suffering from RBD or
hyposmia. We also repeated the same analyses in a
longitudinal manner using mixed models and
leveraged the repeated measures available for each
individual. Finally, we have functionally annotated
the findings via circRNA-miRNA integration and
leveraged circRNAs to build predictive models. The
sample size (n) for each subgroup correspond to
number of unique individuals except for the long-
itudinal comparison that correspond to total num-
ber of samples per group.
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PDBP and PPMI studies. Data generation, processing, and quality control
for these datasets have been described elsewhere18,21,22. Due to the lack of
availability of circular counts in the AMP-PD database, we re-processed the
raw files using our in-house pipelines to obtain linear and circular counts7,23.
For linear counts, we followed the TOPMed pipeline using the GRCh38
genome reference and the GENCODE 33 annotation7,24 (https://github.
com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_
pipeline.md). Briefly, the raw reads were aligned to the human reference
genome using STAR (v.2.7.1a)25 and alignment quality was evaluated using
sequencingmetrics calculatedusingPicard tools (v.2.8.2)26.Gene expression
was quantified using Salmon (v.1.2.0)27. All transcripts were collapsed to
gene level prior to analysis. All samples with less than 50% ofmapped reads
in STAR or Salmon, samples that were outliers in Principal Component
Analysis (PCA), or that had failed FastQC check in more than four cate-
gorieswere removed fromdownstreamanalyses. Linear transcriptswith less
than ten reads in more than 90% of the individuals (N = 42,092) were
removed from the analyses. Counts were normalized using DESeq228 to
adjust for library complexity and variance stabilizing transformation (vst) to
obtain the final count matrix.

Circular RNAdetection, annotation and quantificationwas performed
using Detect CircRNA from Chimeric Reads (DCC v.0.4.8)29 using the
software developer guidelines and as described previously23. Shortly, the raw
readswere aligned a second time to the human reference genome (GRCh38)
usingSTAR25 in chimeric alignmentmode. Similar to linearRNA, circRNAs
were collapsed by gene of origin prior to analyses. CircRNAs with missing
counts in more than 75% of samples were removed from the analyses. To
optimize the data processing time, we processed the samples from each visit
separately, followed by integration of all visits for each study separately
(Supplementary Fig. 1A, B). Then we calculated PCA using the 500 most
variable circular transcripts for each dataset independently and removed
samples that were more than three-standard deviations from the mean of
PC1 or PC2 (Supplementary Fig. 1C, D). To normalize the counts, we used
DESeq228 to adjust for library complexity and vst to obtain the final count
matrix. As an additional QC step, we calculated count ratios between cir-
cRNAs and linear RNAs and kept only those circRNAs that had cir-
cRNA:linear RNA ratio of at least 0.1 in three or more samples7. Only
circular transcripts that passed QC in both PDBP and PPMI datasets were
included in the analyses. A total of 1789 circRNAs from five visits corre-
sponding to 1848 individual participants were included in the downstream
analyses.

Cross-sectional differential abundance analysis
We performed cross-sectional differential abundance analyses using
DESeq228. To maximize the detection of differentially abundant circular
transcripts due to PD and taking into consideration the longitudinal nature
of PDBP and PPMI, we included one sample per individual, corresponding
to the most recent visit. Only individuals with a diagnosis of PD (regardless
of mutation status) and healthy controls were included in this analysis. A
minimally adjusted model (sex and age at draw) was applied for discovery
(PDBP) and replication (PPMI) followed by a meta-analysis using the R
package metaRNAseq30. Only circRNAs with same direction of effect in
both PDBP and PPMI datasets were considered for meta-analyses. We
didn’t employ a log2 fold change cutoff, as it is not known how large of how
small a change in circRNA abundance would be biologically or clinically
relevant. Multiple test correction was performed using the FDR correction.
FDR p-values below 0.05 in the meta-analysis were considered significant.
Additionally, and to account for differences between PDBP and PPMI and
ensure that the results from the meta-analyses were not driven by one
population only, we considered two more stringent p-value thresholds: (i)
circRNA that that were nominally significant in both datasets and FDR
significant in the meta-analyses, and (ii) circRNA that passed multiple test
correction in the discovery (PDBP), and the replication (PPMI).

To ensure the robustness of the results, we performed several com-
prehensive analyses to verify that the identified statistical differences were
not driven by confounding factors. One of themain confounders in blood
transcriptomics are differences in cellular composition. EPIC31 was used
to obtain the cell proportions, and those included in the model. Similarly,
to evaluate if thefindings could be driven by changes on the linear forms of
the host genes, we performed the same analyses described above including
the linear counts as a covariate in the model. Medication can be another
confounding factor.Wewanted to assess if the presence of PDmedication
(L-Dopa or Dopamine Agonist) had any impact on the differential
accumulation. In consequence, we evaluated if the identified circRNAs
were significant when comparing the PD participants that were being
medicated at the time of blood draw compared to those that were not.
Medication information is challenging to gather and harmonize due to its
complexity and sparsity. Fortunately, we had access to individual data for
the PPMI study, which wemanually curated for each participant and visit
prior to inclusion in the analysis. Medication status was simplified to yes
(N = 443) or no (N = 85) to maximize the sample size of this sensitivity
analysis.

Table 2 | Demographic characteristics of the European descent participants included in the longitudinal analysis by time of
sample collection

Parkinson’s Disease Biomarker Program (PDBP) Parkinson’s Progression Markers Initiative (PPMI)

Sampling time Group Samples (N) Mean age Female Samples (N) Mean age Female
(IQR) (N, %) (IQR) (N, %)

Baseline HC 166 63.95 (56.00–71.00) 80 (48.19) 143 61.12 (56.00–68.00) 52 (36.36)

PD 362 64.77 (59.00–71.00) 147 (40.60) 474 61.54 (55.00–69.00) 183 (38.60)

Month 6 HC 139 64.59 (56.50–71.00) 66 (47.48) 129 61.64 (57.00–69.00) 48 (37.21)

PD 337 65.45 (59.50–71.50) 140 (41.54) 341 62.41 (55.00–69.00) 139 (40.76)

Month 12 HC 146 64.89 (57.00–71.75) 68 (46.57) 130 62.19 (57.00–69.00) 45 (34.61)

PD 333 65.94 (60.00–72.00) 135 (40.54) 388 62.34 (56.00–69.00) 150 (38.66)

Month 18 HC 128 64.48 (57.50–70.50) 64 (50.00) – – –

PD 299 66.43 (60.50–72.50) 124 (41.47) – – –

Month 24 HC 122 66.01 (59.00–72.00) 60 (49.18) 129 62.88 (58.00–70.00) 49 (37.98)

PD 280 67.17 (61.00–73.00) 124 (44.28) 381 63.74 (57.00–71.00) 142 (37.27)

Month 36 PD – – – 127 63.88 (59.00–71.50) 48 (37.79)

HC – – – 279 64.54 (58.00–72.00) 94 (33.69)

Each participant must have available data in at least two time-points.
N Sample Size, IQR Interquartile Range, HC Healthy Control, PD Parkinson’s Disease.

https://doi.org/10.1038/s41531-024-00839-3 Article

npj Parkinson’s Disease |          (2024) 10:222 4

https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
https://github.com/broadinstitute/gtex-pipeline/blob/master/TOPMed_RNAseq_pipeline.md
www.nature.com/npjparkd


Cross-sectional sensitivity analyses
To better understand the role of the differentially accumulated circRNAs in
the context of PD, we assessed whether the counts of the circular transcripts
identified in the cross-sectional analyseswere correlated withUPDRS-III or
MoCA for those participants (regardless of disease status) with the data
available. Given the sample size and the limited time of follow-up, we
considered correlations significant if p-value was lower than 0.05. Finally, to
investigate if there was any difference between sporadic PD and mutation
carriers in regard to circRNA abundance, we performed sensitivity analyses
by comparing LRRK2,GBA, or SNCAmutation carriers to those of healthy
controls or idiopathic PD. Additionally, we leveraged data from at risk
participants (PPMI participants that carry a known PD mutation or suffer
fromRBD or hyposmia but have not been diagnosedwith PD) to test if any
of the differentially accumulated circRNAs could be used as early biomarker
of PD.We compared if the counts in at-risk participantswere different from
those observed in healthy controls.

Finally,we took advantage of thediversity that these datasets provide to
perform circRNA differential expression analyses in participants from
African ancestry. Given the limited sample size, we combined participants
from PDBM and PPMI studies (N = 26 PD participants andN = 42 healthy
controls) and limited our analyses to the significant findings from the cross-
sectional differential abundance analysis.

Longitudinal differential abundance analysis
Toharness the longitudinal characteristics of the two studies included in this
manuscript we used mixed models to perform differential abundance
analyses. We included participants from PDBP (N = 547) and PPMI
(N = 619) datasets with at least two clinical visits and blood transcriptomic
data available after QC regardless of mutation status. All analyses were
adjusted by circular transcript counts at first visit, sex, and age at draw.
Participant IDwas used as randomeffect.Wemodeled the trajectories using
linear mixed model with status×time as the interaction term. The overall
approach was similar to the one described for the cross-sectional analyses,
but focusing on the circular transcripts that were found significant in the
meta-analyses. Briefly, PDBP and PPMIwere tested separately to perform a
subsequent meta-analysis using only European ancestry cases and controls.
Then,we explored if the linear transcripts, the cell proportion, ormedication
had an influence on the results.We investigated if the longitudinal circRNA
counts for each of the transcripts was correlated with disease severity pro-
gression measured by UPDRS III and MoCA. The number of African
ancestry individualswith at least twovisitswas very limited (N = 16), thusno
testing on diverse ancestry was performed.

In-silico functional study
We explored the biological implications of the high confident circRNA
identified in the cross-sectional analyses to minimize the number of pre-
dictedmiRNAs andmaximize the biological significance.We leveraged the
Circular RNA Interactome website32 (accessed July 2023, last database
update January 30th 2020) to predict whichmiRNAs have the potential to be
targeted by each of the circRNA species identified in the present study. To
reduce the number ofmiRNAs, and sincemiRNA sequence data is available
for the PPMI dataset, we explored if the counts of any of the predicted
miRNAs were correlated with the circRNA counts to identify the ones that
aremore likely tohavebiological consequences.After accessing the available
miRNAcount data from thePPMI study andfiltering the lowcountmiRNA
data (standard quality control parameter of at least five counts in 90% of the
sample). The miRNA counts were normalized using DESeq228 and the vst
function (similar to what was described for the circular and the linear
RNAs).We used Pearson correlation to assess which of the predictions hold
true at the biological level.With the list of all miRNAs nominally significant
(p < 0.05) for their correlation with each circRNA, we performed pathway
analyses, grouped by circRNA, using the microT-CDS algorithm and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) form the DIANA
mirPath software version333, to identify pathways regulated by thepredicted
miRNAs and, consequently, the circRNAs targeting them.

Predictive model development and evaluation
To assess the predictive power of the identified circRNAs, we evaluated
the ability to use circRNAs to differentiate between symptomatic par-
ticipants and healthy controls, as well as at-risk individuals and healthy
controls. First, we scaled the transcript counts between the PDBP and
the PPMI datasets by computing the z-score. Then, we fit three gen-
eralized linear model using different combinations of the normalized
circRNA counts and the glm function from the R stats package,
adjusting by participants’ age and sex. We tested the predictive cap-
abilities of the circRNAs that were significantly differentially accu-
mulated in the cross-sectional meta-analyses, those circRNA that were
nominally significant in both populations, and those that were sig-
nificant after multiple test correction in both populations. Model per-
formance was further evaluated in publicly available data from 28
dementia with Lewy bodies (DLB), 16 frontotemporal dementia (FTD)
and 567 Alzheimer’s disease (AD) participants34. Data was processed
the same way as described for PDBP and PPMI datasets and transcript
counts were scaled using z-score. Risk score for each participant was
calculated using the models previously defined using the combined
PDBP and PPMI data. Predicted values above 0.50 were considered
cases. We computed the ROC curves by comparing the predicted to the
true disease status.

Additionally, we also examined whether circRNA levels can be used
to differentiate between PD and healthy controls using supervised sta-
tistical and machine learning (ML) approaches. Since the goal is to detect
PD associated signatures as soon as possible, we have used samples from
the first visit in PDBP (N = 528) and PPMI (N = 617) datasets, and the
2849 circRNAs shared in this first visit (Supplementary Fig. 1). We scaled
the vst-normalized counts from both datasets using z-scores. Then, PDBP
was used as training data, and PPMI for testing.We adopted a hypothesis
free approach by using all the common circRNAs into the modeling
problem, resulting in a high dimensional modeling task. In consequence,
the selected linear and non-linear approaches are well-suited to resolve
this type of modeling scenarios and successfully select the most relevant
features to build the best possiblemodel.We used L1 LASSO and L2 ridge
regularization statistical linear models as implemented in the glmnet R
package35,36. The lambda hyperparameter was optimized with 10-fold
cross-validation. Then predictionmodels were evaluated by 10-fold cross-
validation and repeated ten times. We employed two ML non-linear
bagged decision trees based approaches: random forests (RF) from the
Ranger R package37, and the MiniPatch learning algorithm38. Model
hyperparameter optimization was performed with a grid based search.
Particularly for RF,we tested 30 values equally spaced fromfive up to three
times the squared root of the number of circRNAs used as input by the
number of predictors to use in each tree split. As feature selection criteria
for each split, we tested at the hyperparameter Gini, Extratrees and Hel-
linger criteria. All forests have the same size, 300 trees and the tree
branches are grownuntil the corresponding leave node for that branchhas
under 64 examples in size. Regarding theMiniPatch’s model selection, we
tested five values equally spaced from 3% and 49% for the percentage of
features to select for each patch. The percentage of samples to selected for
each patch was configured across five values equally spaced from 60 and
100%. The selection criteria within each split that we tested were Gini and
Entropy. Theunionof all circRNAs selected by LASSO,RF andMiniPatch
were used as features to build the ridge regularization logistic regression
model. Particularly, the most relevant features as determined by RF were
those with an importance greater than a cut-off obtained by looking for a
plateau at the curve formed all features used within the forest, ordered by
importance at the y-axis. The regularization lambda parameter for the
LASSO and ridge models was optimized by 10-fold cross-validation. We
used balanced accuracy from 10-fold cross-validation of experiments
repeated 10 times to select the best model for each technique. The cir-
cRNAs identified by the best model out of all four techniques were then
functionally annotated with terms from the Gene Ontology as identified
by the clusterProfiler R Package.
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Results
CircRNAs are differentially accumulated in blood of PD cases
compared to controls
To identify circRNAs differentially accumulated in the blood of PD cases
compared to controls, we used a cross-sectional approach, selecting the
most recent blood sample available per individual.We included 1177 PDBP
participants as discovery (Ncases = 717; Ncontrols = 460) and 671 from PPMI
as replication (Ncases = 528; Ncontrols = 143; Table 1, Fig. 1). Meta-analyses
revealed 192 circRNAs to be differentially accumulated when comparing
cases and controls aftermultiple test correction, 141 of those downregulated
and 51 upregulated (Fig. 2A, Supplementary Table 3). CircRHBDD1 was
downregulated in blood from PD cases consistent with what has been
previously reported15. Additionally, we identified three circRNA dysregu-
lated in blood but previously described to be dysregulated in brain (cir-
cCSE1L, circRNF13, and circSHOC2) (Fig. 2, SupplementaryTable 3)13,15.Of
the 192 circRNAs, 71 were nominally significant in both the discovery and
the replication dataset and nine after multiple test correction in both PDBP
(circAFF2, log2FC = 0.172, p = 1.46× 10−5; circETFA, log2FC =−0.210,
p = 2.63 ×10−6; circFAM13B, log2FC =−0.212, p = 3.02 ×10−5; circSPI1,
log2FC = 0.192, p = 4.05 ×10−5; circSUZ12, log2FC =−0.212, p = 0.002) and
PPMI (circAFF2, log2FC = 0.326, p = 1.28 ×10−7; circETFA,
log2FC =−0.160, p = 0.006; circFAM13B, log2FC =−0.267, p = 3.97 ×10−4;
circSPI1, log2FC = 0.333, p = 4.88 ×10−7; circSUZ12, log2FC =−0.280,
p = 0.003) (Table 3).

Since we are repurposing linear RNA sequencing to call circRNAs, we
verified that linear RNA counts were not driving our results by evaluating
their differential accumulation using the same model. We found linear
forms of 57 of the 192 and 25 of the 71 circRNAs to be differentially
accumulated (Supplementary Table 4). When adjusting the model for cir-
cRNA differential abundance analyses by linear counts, 71 circRNAs
remained significant (Supplementary Table 5). If we focus on the nine
circRNAs that passed FDR correction in both datasets, none of their linear
forms were significant, except for FAM13B (Table 3). We observed
decreased levels of circFAM13B in PD (log2FC =−0.212, p = 3.97 ×10−4), as

previously described14, along with increased levels of the linear form of
FAM13B (log2FC = 0.036, p = 3.99 ×10−5). To understand if the signal was
driven by the linear form of FAM13B, we included in the analyses both the
linear and the circular RNA counts in addition to other covariates. Both
forms of FAM13B, linear (log2FC = 0.043, p = 5.73 ×10−6) and circular
(log2FC =−0.201, p = 4.35 ×10−7), remained significant with consistent
effect sizes, suggesting that both participate in the association.

Cellular composition and medication affect circRNA
accumulation
Since we are analyzing whole blood transcriptome, we repeated the analysis
including cell proportions. We found 71 of the 192 (16 of the 71 if we only
consider significance in both datasets) circRNAs identified in the cross-
sectional DE analyses whose association seem to be driven by cellular
composition (Supplementary Table 6). Of the nine circRNAs that remained
significant after multiple test correction in both datasets, only circCCDC91
levels (log2FC = 0.263, p = 0.253; Table 3), were affected by cell proportions.
CircCCDC91 was associated with neutrophils’ (p < 2 ×10−16), CD4+T-
cells’ (1.76 ×10−10) andmonocytes’ (p = 9.54×10−7) cell proportions, a trend
observed in most of the circRNA affected by cellular composition
(Supplementary Table 7).

Medication is another key component that might be affecting the
transcriptomic landscape. Even though medication is collected in both
datasets, detailed and comprehensive medication information was only
available for PPMI.We identified 15 of the 192 (5 of the 71) circRNAs that
were associatedwithmedicationusage (SupplementaryTable 6).Of thenine
circRNAs, accumulation of two circRNAs, circITGAX (log2FC = 0.164,
p = 0.042), and circCCDC91 (log2FC = 0.190, p = 0.025) seems to be affected
by the presence of medication (Supplementary Fig. 2; Table 3).

CircRNA accumulation correlates with symptom severity
We evaluated if any of the nine high confidence circRNAs, were correlated
with PD severity measured by UPDRS-III, or neurocognitive decline
measured by MoCA (Supplementary Table 8). CircSPI1 (p = 1.45 ×10−7;

Fig. 2 | Volcano plot showing the cross-sectional differential expression analysis (PDBP).Highlighted in dark gray are those circRNA that replicated in the PPMI cohort,
in orange and blue those already described to be differentially accumulated in previous publications in blood and brain tissue respectively.
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r2 = 0.015), circAFF2 (p = 1.14 ×10−6; r2 = 0.013), circNCF1 (p = 3.53 ×10−9;
r2 = 0.019) and circPADI4 (p = 1.14 ×10−8; r2 = 0.018) showed a significant
correlation with UPDRS-III. Additionally, circITGAX (p = 2.81 ×10−8;
r2 = 0.017) found to be associated with the presence of PD medication was
also significantly correlated with UPDRS-III. Regarding cognitive mea-
surements, we found that circAFF2was significantly correlated withMoCA
(r2 = 0.003; p = 0.031).

Genetic ancestry influences the circRNA landscape
We explored the effect that diverse ancestry has on the identified circRNAs.
We observed that 99 circRNAs were in the same direction of effect when
comparing the findings between European and African ancestry, ten of
which were also nominally significant (Supplementary Figure 3, Supple-
mentary Table 6). Further, we looked into the nine high confidence cir-
cRNAs, none of themwere significant in the comparison (Table 3). Despite
that, the direction of effect for seven of the nine circRNAs was consistent
with that identified in the European ancestry individuals (circAFF2,
log2FC = 0.203; circETFA, log2FC =−0.021; circFAM13B, log2FC = 0.352;
circNCF1, log2FC = 0.124; circPADI4, log2FC = 0.012; circSPI1,
log2FC = 0.030; circSUZ12, log2FC =−0.954).

The presence of PD related mutations exacerbates circRNA
differences
For the overall analyses, and to maximize statistical power, we included all
PD cases regardless of mutation status. Thus, we assessed if there were
differences between mutation carriers and idiopathic PD cases, in other
words, if mutations were contributing to or driving the association. We
observed that mutations in each the LRRK2, the GBA1 and the SNCA
affected circRNA landscape in PD participants. We first investigated the
overlap between the cross-sectional analysis and the comparison of muta-
tion carriers to healthy controls. We observed a greater overlap with the
cross-sectional analysis in the LRRK2+ (138/192) and theGBA1+ (131/192)
carriers, than in the SNCA+ (32/192) carriers (Supplementary Fig. 3,
Supplementary Table 6). Whenwe focused on the findings of the nine high
confidence circRNAs identified in the cross-sectional analysis, we found
that five of the nine circRNAs, circAFF2, circITGAX, circNCF1, circSUZ12,
and circSPI1, were differentially accumulated in both idiopathic PD and
mutation carriers with stronger associations in mutation carriers (circAFF2
log2FC = 0.286, p = 1.752 ×10−6; circNCF1 log2FC = 0.375, p = 1.518 ×10−7;
circSUZ12 log2FC =−0.258, p = 0.007; circSPI1 log2FC = 0.309,
p = 6.699 ×10−7; Supplementary Table 6). In contrast, circFAM13B and
circCCDC91 were differentially accumulated in mutation carriers (cir-
cFAM13B log2FC =−0.577, p = 6.238 ×10−11; circCCDC91
log2FC =−0.278, p = 3.887 ×10−4) but not in idiopathic PD, suggesting that
the signal identified in our previous analysis was driven by the genetic form
of the disease. The opposite was true for circETFA and circPADI4 which
were significant in idiopathic PD (circETFA log2FC =−0.190, p = 0.002;
circPADI4 log2FC = 0.365, p = 0.001) but not in mutation carriers. When
broken down by gene, circFAM13B, circCCDC91, circSPI1 and circSUZ12
were differentially accumulated in both the LRRK2+ (circFAM13B
log2FC = 0.252, p = 0.003; circCCDC91 log2FC =−0.251, p = 0.004; cir-
cSPI1 log2FC = 0.526, p = 2.43 ×10−9; circSUZ12 log2FC =−0.374,
p = 0.003) and the GBA1+ (circFAM13B log2FC =−0.749, p = 4.370 ×10–8

circCCDC91 log2FC =−0.44, p = 1.80 ×10−4; circSPI1 log2FC = 0.584,
p = 6.08 ×10−6; circSUZ12 log2FC =−0.795, p = 5.26 ×10−5), whereas cir-
cPADI4 (log2FC = 0.884, p = 0.013) was differentially accumulated in the
SNCA+ carriers only (Table 3). Altogether, suggesting the presence of het-
erogeneity in the circular transcriptome in relation to PD genetic
background.

CircRNA accumulation reflects disease-associated changes
over time in individuals with Parkinson’s Disease
To leverage the longitudinal design of both the PDBP and PPMI studies, we
also explored accumulation of circRNAs using mixed models to identify
circular transcripts that change over time. We included 547 PDBP

participants (Ncasses = 376, Ncontrols = 171) and 617 PPMI participants
(Ncasses = 474, Ncontrols = 143) with at least two visits available for each
participant (Table 2) and then performed the meta-analysis. When evalu-
ating the intercepts of the mixed model, they were correlated with what we
identified in the cross-sectional analysis (Supplementary Fig. 4, Supple-
mentaryTable 9), supportingourfindings that there are changes in circRNA
landscape associated with the presence of the disease. In the meta-analysis,
we identified 114 circRNAs with significantly different trajectories between
PD and healthy controls, 14 of which were nominally significant in both
PDBP and PPMI populations. The three most significant findings for the
interaction term were circGPBP1L1 (beta = 0.059, p = 1.351 ×10−4), cir-
cC1GALT1 (beta =−0.099, p = 6.859 ×10−4) and circVRK1 (beta =−0.111,
p = 6.861 ×10−4) (Supplementary Table 9). When evaluating the nine high
confidence circRNAs all directions of effect were consistent with those
identified in the cross-sectional results (Table 3), except circPADI4 that had
different directions of effect between PDBP and PPMI population in the
longitudinal analysis (Table 3).We found that the rate of change in circRNA
abundance (measured as slope)of twoof theninehigh confidence circRNAs
differed significantly between PD cases and controls (circCCDC91,
p = 0.018; circITGAX, p = 0.027; Fig. 3A).

Similar to the approach followed for the cross-sectional analyses,
several sensitivity analyses were performed (Supplementary Table 10). We
found that trajectories of 91 of the 114 circRNAs were affected by cellular
composition, and 41 of the 114 were impacted by medication usage. We
further evaluated symptomatic participants with PD-associated genetic
mutations and observed that 24/114 and 9/114 circRNAs have significantly
different trajectories in the LRRK2+ and the GBA1+ carriers compared to
healthy control participants, respectively. The top three circRNAs whose
trajectories differed significantly between PD and healthy controls,
circGPBP1L1, circC1GALT1 and circVRK1 were significant in idiopathic
participants (circGPBP1L1 beta = 0.004, p = 0.007; circC1GALT1 beta =
−0.007, p = 0.003; circVRK1 beta =−0.052, p = 0.037). Taking a closer look
at the nine high-confidence circRNAs, we observed that cirAFF2 (beta =
0.085, p = 0.007) and circNCF1 (beta = 0.149, p = 1.273 ×10−4) were sig-
nificant in mutation carriers, while circCCDC91 (beta =−0.007, p = 0.006)
was significant in idiopathic participants only (Supplementary Table 10).
Despite not reaching statistical significance, all but circETFA (beta = 0.030,
p = 0.411), had direction of effect largely consistent with previous obser-
vations in both idiopathic and genetic cases. However, broken down by
gene, three out of nine circRNAs, circAFF2 (beta = 0.072, p = 0.036), cir-
cFAM13B (beta =−0.106, p = 0.028), and circNCF1 (beta = 0.152,
p = 3.097 ×10−4) had significantly different trajectories in LRRK2+mutation
carriers, and circAFF2 (beta = 0.341, p = 0.015) and circNCF1 (beta = 0.518,
p = 0.003) in the GBA1+ carriers, suggesting that the circAFF2 association
might be driven by the GBA1+ carriers. Longitudinal analyses were not
possible for the SNCA+ carriers due to very limited sample size (N = 8).

CircRNA accumulation starts before symptom onset
We examined whether changes in circRNA accumulation can be observed
in participants who are at high risk of developing PD, namely carriers of
known PD-related mutations that have not been diagnosed, or those who
show known the PD associated syndromes, RBD or hyposmia. None of the
at-risk participants were included in the cross-sectional or longitudinal
analyses described above. The analyses of individuals at-risk were done in
the PPMI dataset exclusively due participant availability, and included 150
LRRK2+, 87 GBA1+, and three SNCA+ mutation carriers, along with 25
participants exhibiting RBD, and 18 participants with hyposmia. Given the
reduced number of at-risk SNCA+ carriers, no analyses were performed in
that sub-group.

Out of the 192 circRNAs that were significant after multiple test cor-
rection in the cross-sectional meta-analysis and 71 circRNA that were sig-
nificant in the meta-analysis and also nominally significant in both PDBP
and PPMI populations, most of them were already accumulating in indivi-
duals at-risk. The greatest overlapwas observed in theLRRK2+ (123/192 and
52/71) and theGBA1+ (130/192 and 60/71) carriers, followed byparticipants
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with RBD (71/192 and 32/71) (Supplementary Table 11). However, a
moderate number of circRNAs seem to accumulate before symptomonset in
participants with hyposmia (35/192 and 12/71) (Supplementary Table 11).
Similar to symptomatic participants, when focusing on the nine high con-
fidence circRNAs (Table 3), we found that circAFF2 (log2FC = 0.294,
p = 1.42 ×10−4), circCCDC91 (log2FC =−0.250, p = 0.004), circFAM13B
(log2FC =−0.389, p = 3.80 ×10−5), circITGAX (log2FC = 0.251, p = 0.003),
circNCF1 (log2FC = 0.461, p = 1.231 ×10−6), circSUZ12 (log2FC =−0.476,
p = 7.09 ×10−5) and circSPI1 (log2FC = 0.348, p = 5.01 ×10−5), were differ-
entially accumulated in the LRRK2+ and the GBA1+ (circAFF2,
log2FC = 0.270, p = 0.002; circCCDC91 log2FC =−0.440, p = 1.802 ×10−4;
circFAM13B, log2FC =−0.548, p = 4.38 ×10−7; circITGAX log2FC = 0.415,
p = 0.002; circNCF1 (log2FC = 0.713, p = 1.373 ×10−6; circSUZ12,
log2FC =−0.714,p = 1.73×10−6; circSPI1, log2FC = 0.321,p = 0.001) carriers
compared to healthy controls.When comparing the LRRK2 to theGBA1 at-
riskparticipants,we found23of the192DEcircRNAs to alsobedifferentially
expressed between the two groups of at-risk participants (Supplementary
Table 12). Additionally, we identified 185 circRNAs that were not DE in
comparison of PD to healthy controls, that were DE in comparison of the
LRRK2 to the GBA1 at-risk participants (Supplementary Table 12). Addi-
tionally, circETFA (log2FC =−0.177, p = 0.045) was associated with the
GBA1+ carriers. Further,we found four circRNAs, circAFF2 (log2FC = 0.507,
p = 4.030 ×10−4), circFAM13B (log2FC =−0.477, p = 0.006), circSPI1
(log2FC = 0.562, p = 5.260 ×10−4) and circSUZ12 (log2FC =−0.469,
p = 0.048), differentially accumulated in participants with RBD, and three
circRNAs, circAFF2 (log2FC = 0.317, p = 0.046), circFAM13B
(log2FC =−0.406, p = 0.026) and circSPI1 (log2FC = 0.428, p = 0.023), dif-
ferentially accumulated in participants with hyposmia.

Targeted miRNAs analysis suggests involvement of circRNA in
known PD related pathways
To better understand the biological implications of the nine high confidence
circRNAs identified in the previous analysis,we listed their predictedmiRNA
targetsusingCircInteractomeweb tool32. Bydoing so,weobtaineda list of 282
miRNA targets for circAFF2, 271 for circCCDC91, 96 for circETFA, 178 for
circFAM13B, 285 for circITGAX, 32 for circNCF1, 26 for circSPI1, 313 for
circSUZ12 and none for circPADI4. To ensure the biological relevance of the
analyses and reduce thenumberofmiRNAs,we leveraged themiRNAcounts
available in the PPMI dataset. We performed correlation analyses between
normalized circRNA and normalized miRNA counts to retain the miRNA
binding sites with biological evidence (p < 0.05 for the correlation between
circRNA and miRNA) for downstream analyses. We reduced the miRNA
targets to 27miRNAs for circAFF2, 37 miRNAs for circCCDC91, 7 miRNAs
for circETFA, 20 miRNAs for circFAM13B, 32 miRNAs for circITGAX, two
miRNAs for circNCF1, two miRNAs for circSPI1, and 30 miRNAs for cir-
cSUZ12 (Supplementary Table 13). AllmiRNAs significantly correlated with
circAFF2, circETFA, circFAM13B, and circSPI1 overlapped with the 30
miRNAs significantly correlated with circSUZ12. We then performed path-
way analyses with DIANA mirPath using the 61 miRNAs as input. We
observed enrichment in several KEGG terms such as dopaminergic
synapse39–41 (p = 5.411 ×10−4) and long-term depression42 (p = 6.20 ×10−5),
both of them previously associated with PD, and enriched with miRNAs
associated with seven of the nine circRNAs (Supplementary Table 14).
Another term that we found enriched in miRNAs correlated with all nine
circRNAs is the Hippo signaling pathway (p = 7.680 ×10−8) (Supplementary
Table 14), which has previously been described to play a role in ischemia-
associated CNS diseases and PD43,44. Ubiquitin mediated proteolysis,

Fig. 3 | circRNAs change over the course of the disease and can be leveraged
diagnostic biomarkers. A Line plots showing trajectories of circRNA abundances
for the top three significant circRNAs in longitudinal analysis, as well as the nine
high-confidence circRNAs from cross-sectional analysis; BWhisker plot showing

ROC AUC values with 90% confidence interval evaluating the ability of three
combination of circRNAs to distinguish between PD participants and healthy
controls or at-risk participants and healthy controls.
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suspected tobe impaired inPDandcontributing toLewybody formation45–47,
was also found enriched (p = 0.006) for miRNAs targeted by five of the nine
circRNAs (Supplementary Table 14). Together, these findings add evidence
to the potentially role of circRNAs in PD pathogenesis.

CircRNAs are informative as biomarkers of Parkinson’s disease
to potentially aid diagnosis
We investigated the predictive power of our findings to differentiate
between PD and healthy controls, as well as at-risk and healthy control
participants, in themost recent samples fromPDBPandPPMIdatasets.We
analyzed three circRNAsets: 1)with 192circRNAswhichwere significant in
the cross-sectional meta-analysis after multiple test correction, 2) with 71
circRNAs that were significant in the meta-analysis and nominally sig-
nificant in both PBDP and PPMI populations, and 3) nine circRNAs that
passed multiple test correction in meta-analysis, as well as in PDBP and
PPMIdatasets separately, and adjusted all analysesby age and sex.We tested
the performance in PDBP and PPMI separately and also combined the two
datasets. We found that the set with 192 circRNAs had the best predictive
value of the three, with a ROCAUC value of 0.797 in the combined dataset
and 0.814 in PDBP and 0.936 in PPMI datasets (Supplementary Table 15,
Fig. 3B). The two smaller circRNA sets had amoderate ability to predict PD
with AUC values of 0.721 (AUCPDBP = 0.728; AUCPPMI = 0.782) and 0.659
(AUCPDBP = 0.679; AUCPPMI = 0.656) in the sets with 71 and nine cir-
cRNAs, respectively (Supplementary Table 15, Fig. 3B). When we split the
PPMI participants into those with idiopathic and genetic forms of PD, we
observed that the set with 192 circRNAs had a high predictive value for both
idiopathic and genetic PD (0.932 and 1.00, respectively) (Supplementary
Table 15, Fig. 3B).However, the two smaller setsmaintained high predictive
value only in genetic PD (AUC9 = 0.807, AUC71 = 0.954), with only mod-
erate ability to differentiate between idiopathic PD and healthy controls
(AUC9 = 0.620, AUC71 = 0.748) (Supplementary Table 15, Fig. 3B). This is
also reflected in at-risk individuals, where the 192 circRNAs set was able to
differentiate between at-risk and healthy individuals with an AUC of 1.000,
while some power lost in the sets with 71 (AUC71 = 0.929) and nine cir-
cRNAs (AUC9 = 0.738) (Supplementary Table 15, Fig. 3B).

Next, we evaluated the power of the three circRNA sets to differentiate
between healthy controls and dementia with Lewy bodies (DLB, n = 28),
frontotemporal dementia (FTD, n = 16) and Alzheimer’s disease (AD,
n = 567). As counts were not available for all 192 DE circRNAs, the three
circRNA sets had to be sized down to 1) 169/192 circRNAs which were
significant in the cross-sectionalmeta-analysis aftermultiple test correction,
2) 63/71 circRNAs that were significant in themeta-analysis and nominally
significant in both PBDP and PPMI populations, and 3) eight/nine cir-
cRNAs that passed multiple test correction in meta-analysis, as well as in
PDBP and PPMI datasets separately. We observed that the smallest set of
eight circRNAs had a moderate ability to differentiate controls from DLB
(AUC8 = 0.741) and AD (AUC8 = 667), but not FTD (AUC8 = 0.595),
(Supplementary Fig. 5, Supplementary Table 16). Further, the predictive
ability of themodels progressively decreasedwith the addition of circRNAs.
As such,modelswith 63 and169 circRNAswerenot able to distinguishFTD
(AUC63 = 0.554, AUC169 = 0.418) or AD (AUC63 = 0.581, AUC169 = 0.563)
from healthy controls, while they still had amoderate ability to predict DLB
(AUC63 = 0.692, AUC169 = 0.686) (Supplementary Fig. 5, Supplementary
Table 16).

We have also attempted an unbiased and hypothesis free approach to
select themost informative circRNAs to predict PDparticipants atfirst visit.
We evaluated two statistical linear approaches, logistic regression with
LASSO and ridge regularization, and two nonlinear ML approaches: ran-
dom forests andMiniPatch, for binary classificationmodels.We obtained a
149 circRNA model with MiniPatch, which was the best performing
(AUC149 = 0.825; Supplementary Fig. 6A, B), followed by the ridge model
with 227 circRNA (AUC227 = 0.784; Supplementary Fig. 6A, B). Functional
annotation on the linear gene versions of the 149 circRNAs detected by
MiniPatch generated no significant GO annotation after multiple test cor-
rection but some nominally identified suggestive terms like organic acid

transmembrane transport (p = 0.001), chromatin organization (p = 0.002)
and neuron to neuron synapse (p = 0.007) (Supplementary Fig. 6C, Sup-
plementary Table 17). MiniPatch is a nonlinear approach, which suggest
that the software is going beyond the simple but restrictive paradigm of
transcripts acting independently in an additivemanner.Non-assumption of
this paradigm might help discover new patterns of transcript cluster
interactions.We found 78%overlap between the twonon-linear algorithms,
RF and MiniPatch, but only 10% overlap between MiniPatch and LASSO
linear approach. This evidence contributes to this idea that non-linear ML
models might be more informative to predict complex diseases.

Discussion
In this study we leveraged the largest to date publicly available longitudinal
blood RNAseq data from two of the largest active PD studies, PDBP and
PPMI, to identify circRNAs that were differentially accumulated in relation
to PD. Its design attempted to maximize differences between cases and
controls by including the last visit of each individual instead of baseline as
previous reports48. By including the last visit, the disease is more advanced,
and thus the differences are potentially more pronounced. Finally, and for
thefirst time inPD,wehave taken intoconsideration the longitudinal design
of the study and included multiple observations per participant to not only
identify circRNAthat are potentially differentially accumulated but alsofind
those that change with time and have the potential to be leveraged to follow
the progression of the disease.

Overall, we identified 192 circRNA transcripts that were associatedwith
PDat the timeof the last visit, and114whose trajectories differed significantly
between cases and controls. Even though the exact functionof circRNA is still
to be deciphered, many functions have been already attributed. They have
been found to act as miRNA sponges to regulate gene expression, interact
with proteins, and to generate protein products among many others3,4,7–12.
When biologically contextualizing our findings predicting miRNA binding
sites, we observed an enrichment in dopaminergic synapse term. It is well
established that PD is caused by the death of dopaminergic neurons39–41, thus,
it is plausible to think that circRNAs might be participating as regulatory
molecules. Strikingly, we seem to be capturing neuronal death in blood,
suggesting that those changes are being captured as the result of blood-brain
barrier disruption49. Additionally, we found Hippo pathway43,44, which has
already been linked with PD, to be enriched in conjunction to all our cir-
cRNAs. Together with enrichment in other PD-associated pathways such as
long-term depression and ubiquitin-mediated proteolysis, these results show
that blood circRNAs may reflect changes related to PD pathobiology,
potentially leaking from the brain. As further support to the relevance of
circRNAs in PD, we found that genes giving yield to 18 of the identified 192
DE circRNAs, including ITGAX, have previously been nominated as
potentially PD-causal genes, with varying levels of support50. Several of the
geneshavebeen recorded inassociationwithneurodegenerativediseases such
as AD (ZGRF151), amyotrophic lateral sclerosis (NUP5452, NEK153) and
frontotemporal dementia (NUP5452), and other nervous system and move-
ment disorders (MED1354, CDKN355, TLK256,57, REV3L58).

We further evaluated our findings in diverse genetic backgrounds,
finding that both ancestry and mutation carrier status contributed to PD
circRNA landscape. Our results point to some differences in circRNA
expression patterns between participants of African and those of European
ancestry, supporting the urgency to increase the diversity of the cohorts to
not only validate and universalize scientific findings, but also to understand
better the pathobiology underlying PD and provide personalized medicine.

Among the nine strongest candidates from our analyses, some of them
have already been associated with PD, especially the linear form of those
transcripts. FAM13B was found to be differentially expressed in PD brains
but not in blood59. Interestingly, another study including eight participants
did report the dysregulation of the FAM13B in blood14. In the present study
with more than 1,800 subjects, we observed changes in the linear forms of
FAM13B in blood of PD participants, confirming that FAM13B is indeed
differentially accumulated in the blood. Additionally, we also report that the
circular form of the FAM13B is differentially accumulated in blood of PD
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participants compared to controls. Overall, these findings suggest that
FAM13Bmight be a key player in PDpathogenesis. The presence of circular
forms suggests that there are tightly regulated processes associated with this
gene. Looking at longitudinal data, circFAM13B levels change over time in
the LRRK2+ carriers, but not in other participants with the genetic forms of
PD. This could indicate that while circFAM13B does correlate with PD
diagnosis in all mutation carriers, it does so via a different process in the
LRRK2+whichmore closely reflects the advancement of the disease. SPI1, a
transcription factor involved in myeloid cell development and function, is
known for its role in Alzheimer’s disease (AD)60. Given its association with
AD, and our findings, circSPI1 was found to be associated with PD inde-
pendently of medication and cell counts, we investigated if the association
with PD status might be driven by cognitive function measured by MoCA.
Unfortunately, the correlation was not significant. Despite the negative
results and given the close to normal values of MoCA in the population
included in this study, it is plausible to think that this correlation might
become significant once the disease advances. Alternatively, circSPI1might
influence PDdifferently thanAD, or even have a different function than the
linear form, thus explaining the lack of association.

Among the novel circRNA associations described in this paper, several
of the host genes have not been previously linked to PD. For example, the
AFF2 has not been previously reported in PD, but it has been reported to
contribute to axonal degeneration and TDP-43 pathology in frontotemporal
dementia (FTD) and amyotrophic lateral sclerosis (ALS)61. Given the invol-
vement of the AFF2 in neurodevelopment62,63 and neurodegeneration61, and
the presence of co-pathology and overlap across neurodegenerative diseases,
it would be reasonable to postulate that circAFF2 is integral to proper func-
tioningof the nervous systemaswell. This is further supported by ourfinding
of circAFF2 being significantly differentially expressed, including across dif-
ferent genetic backgrounds, with consistent direction of effect.

When diving into the mutation carriers only, this study included par-
ticipants with mutations in the LRRK2, theGBA1 and the SNCA genes, with
highly heterogenous results. It is known that the most common LRRK2
mutation, Gly2019Ser, leads to constitutive activation of the LRRK2, which
leads to activation of neuronal death pathway, and possibly upregulation of
the SNCA64,65. On the other hand, the most common SNCA mutations are
copy-numbermutation, more specifically duplications66. Altogether, it is not
surprising to observe such variability in circRNA landscape, as regulatory
pathways that are triggered by theLRRK2mutation to bring about PD,might
not be affected in the SNCA mutation carriers, given that the SNCA is
downstream from theLRRK2. Ourfindings regarding circFAM13B, circSPI1,
and circSUZ12 that are significantly associated with the LRRK2 mutation
carriers, but not the SNCA seem to support this hypothesis. Differences in
pathway regulation between the LRRK2 and the SNCAmutation carriers are
further emphasized by opposing directions of effect of circETFA in the two.
Mutations in the GBA1 gene lead to decrease in GCase enzyme activity,
resulting in lysosome malfunctioning67,68. GCAse impairment has been
suggested to promote alpha-synuclein accumulation in PD. This points to
possible overlap between regulatory pathways, that involve circFAM13B,
circSPI1, and circSUZ12, that are differentially accumulated in the GBA1
compared to the LRRK2 mutation carriers, potentially leading to increased
alpha-synuclein pathology in both. Further analyses in a larger sample sizes
are required to verify these findings given the limited sample size and
variability of the results.

We demonstrated that circRNA not only capture relevant biological
events but have some ability to differentiate between PD cases and controls,
despite having moderate accuracy. Currently, PD is diagnosed based on
clinical and neuroimaging criteria, and then monitored using clinical tests
that assess the motor and non-motor symptoms of the disease. However,
there are nomolecular diagnostic or prognostic biomarkers available for PD,
or ingeneral, formost of theneurodegenerativediseases69.CircularRNAhave
already been demonstrated to be informative for PD, with intrinsic qualities
that are highly desired in a biomarker. They are highly stable and very
abundant in the brain, which means they can potentially leak to the CSF or
blood via blood brain barrier breakdown and can bemeasured in biofluids49,

they can be measured by real-time PCR, and are stable due to being
circular6,69.We tested different sets of circRNA, showing that 71 circRNA are
sufficient to distinguish participants at-risk of PD from healthy participants
with a high accuracy, pointing to their potential utility for PD diagnosis. On
top of that, we identified five circRNA that were correlated with UPDRS-III,
suggesting their potential clinical use to monitor drug response. Given the
lack ofmedically usefulmolecular tools tomonitor or diagnose disease, these
findings have the potential to be relevant clinically, if validated. The identified
circRNA are promising measurements to expedite diagnosis and facilitate
motor symptom monitoring by providing much needed non-invasive
molecular tests for PD care.

This study had several limitations. While we had access to the two
largest longitudinal datasets (4833 samples, 1789 circRNAs), longitudinal
analyses are underpowered, and larger sample sizes are needed to appro-
priately power these analyses. Likewise, the number of African American
participants, at-risk individuals, or mutation carriers was very limited, thus
we did not perform de novo discovery in these groups, but rather leveraged
them to validate the main findings. Further efforts are needed to actively
recruit participants from diverse backgrounds. Furthermore, mutation and
medication data were absent from the PDBP dataset, along with the
recruitment of “at risk” individuals, which did not allow for a straight
comparison of the two populations. Finally, we are repurposing traditional
RNAseq data to identify and quantify circRNAs, rather than purifying and
subsequently sequencing circRNAs. Despite the need for some additional
analysis and validation in the future,wehave successfully replicatedfindings
from other groups, supporting the validity of this approach.

In conclusion, this is the largest study to date describing and biologi-
cally contextualizing the circRNA landscape in blood in relation to PD.We
identified and replicated nine circRNAs differentially accumulated in PD
compared to healthy controls and linked to biologically pathways relevant
for the disease. More importantly, we have demonstrated that circRNA not
only have a biological role in PD but can also be leveraged as biomarkers
with the potentially aid the diagnosis and facilitate the monitoring of PD
with minimally invasive molecular measurements.

Data availability
CircRNAcountmatrices are available fromAMP-PD(https://amp-pd.org/).
Summary results for all circRNAs and linear RNAs quantified in both
PDBP and PPMI can be found in our transcript level browser
(pdbloodtranscriptomics.wustl.edu).

Code availability
All original code has been deposited at GitHub (https://github.com/Ibanez-
Lab/BloodCircularRNA-ParkinsonsDisease) and is publicly available as of
the date of publication.
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