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The discrepancy between model predictions and actual processes, known as process-model mismatch 
(PMM), remains a substantial challenge in bioprocess optimization. We previously introduced a 
hybrid in silico/in-cell controller (HISICC) that combines model-based optimization with cell-based 
feedback to address this problem. Here, we extended this approach to regulate a key enzyme level 
using intracellular biosensing. The extended HISICC was implemented using an Escherichia coli strain 
engineered for fatty acid production (FA3). This strain contains a genetically encoded feedback 
controller that decelerates the expression of acetyl-CoA carboxylase (ACC) in response to malonyl-
CoA synthesized through the enzymatic reaction. We modeled FA3 to allow the HISICC to optimize 
an inducer input that accelerates the enzyme expression. Simulations showed that the HISICC slowed 
the unexpectedly rapid accumulation of ACC resulting from PMMs before it reached cytotoxic levels, 
thereby improving fatty acid yields. These results highlight the potential of our approach, particularly 
in cases where monitoring intracellular biomolecules is required to handle PMMs.
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Abbreviations
S  Extracellular glucose concentration (Substrate)
X   Normalized cell density
E  Intracellular ACC concentration (Enzyme)
M   Intracellular malonyl-CoA concentration (interMediate)
R  Intracellular LacI concentration (Repressor)
P   Extracellular fatty acid concentration (Product)
I   Extracellular IPTG concentration (Inducer)
u  Inducer 2 input for FA4
y1  Measured relative cell density
y2  Measured fatty acid concentration
Model parameters
kX   Maximum growth rate
kE   Maximum ACC expression rate
kM   Malonyl-CoA synthesis rate coefficient
kP   Fatty acid production rate coefficient
kR,1  Rate of LacI expression from the chromosome
kR,2  Maximum rate of LacI expression from plasmids (FA3)
kR,3  Maximum rate of LacI expression from plasmids (FA4)
µd  Cell death rate
TX,max  Maximum toxicity of ACC on the cell growth
Etox  Threshold concentration of ACC for toxicity on fatty acid production
dE   Degradation rate of ACC
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dR  Degradation rate of LacI
KT,X   Saturation coefficient of ACC for toxicity on cell growth
KT,P   Saturation coefficient of ACC for toxicity on fatty acid production
KR,0  Dissociation constant of LacI
KI   Dissociation constant of IPTG
KM   Saturation coefficient of malonyl-CoA for transcription rate of PFR1
KS,P   Saturation coefficient of glucose for fatty acid production rate
nT,X   Hill coefficient of ACC for toxicity on cell growth
nT,P   Hill coefficient of ACC for toxicity on fatty acid production
nM   Hill coefficient of malonyl-CoA for transcription rate of PFR1
nR  Hill coefficient of LacI
nI   Hill coefficient of IPTG
HX   Constant linking cell density measurement and X
HP   Constant linking fatty acid measurement and P
Other variables
TX   Toxic effects on cell growth
TP   Toxic effects of fatty acid production
Variables in parameter estimation
θ  Vector of model parameters
θ̂  Vector of model parameter estimates
V   Objective function for optimization
N   Number of measurement time points
M   Number of IPTG input conditions
i  Subscript for process outputs (i = 1 for relative cell density and i = 2 for fatty acid concentra-

tion)
j  Subscript for E. coli strains (j = 1 for FA2 and j = 2 for FA3)
k  Subscript for IPTG input conditions
l  Subscript for measurement time index
tu  The time of addition of the inducer 2
tN   25-H culture duration
FitPercent  The normalized root-mean-squared error expressed as a percentage

Engineered microorganisms show great promise as cell factories capable of producing a wide array of products, 
including foods1, fuels2,3, functional materials4, and pharmaceuticals5. Achieving high product yields is crucial 
for ensuring the economic feasibility of this technology and is often accomplished by overexpressing bottleneck 
enzymes in target production pathways6. However, the excessive expression of enzymes can adversely affect 
microbial growth and/or viability7. For example, nutrients can be wasted in synthesizing excess enzymes, 
lowering the overall metabolite yield8–12. Furthermore, enzyme overexpression may deplete free ribozymes, 
decreasing the overall cell growth rate. In addition, the accumulation of intermediates and byproducts arising 
from enzymatic activity can lead to cytotoxicity13–17. Therefore, achieving high-yield production of the desired 
products necessitates stringent regulation of enzyme overexpression to maintain appropriate enzyme levels18–21. 
This can be achieved using two approaches: model-based process optimization (in silico feedforward controller) 
and autonomous feedback control using synthetic genetic circuits embedded in microbial cells (in-cell feedback 
controller)22–24.

The in silico feedforward controller works in conjunction with genetically engineered microorganisms to 
change key enzyme expression levels in response to process inputs such as inducer feeds8, temperature25, and 
light26,27, which are optimized using mathematical models before initiating the bioprocesses. This approach 
manages the expression of metabolic enzymes by predicting the future process state, thus maximizing the 
product yields. However, a challenge arises in the event of a significant process-model mismatch (PMM) between 
the model prediction and the actual process. When a PMM occurs, the input values predetermined using the 
mathematical model are suboptimal for the actual process. Model predictive control (MPC) is a method that 
addresses this issue by re-optimizing the process input using measurements from the ongoing process in real 
time28–32. Even though MPC provides both optimal control and robustness to PMMs, the simultaneous and 
frequent measurement of intracellular molecules (e.g., mRNAs, enzymes, and metabolites) using biochemical 
analysis techniques or fluorescent reporters presents its own set of challenges in terms of response time and 
reliability.

The in-cell feedback controller detects the concentrations of intracellular metabolites33–35, extracellular 
nutrients36, and cell density9,37,38 to regulate enzyme expression accordingly, but it cannot optimize enzyme 
expression, unlike the in silico feedforward controller. Therefore, in silico feedforward and in-cell feedback 
controllers complement each other.

We previously proposed a hybrid control system (hybrid in silico/in-cell controller, HISICC) that combines an 
in silico feedforward controller with an in-cell feedback controller to overcome the PMM-associated difficulties 
inherent in model-based process optimizations39. This approach could be classified as prevailing hierarchical 
control consisting of a high-level open-loop model-based optimal controller and low-level proportional or PID 
feedback controllers40. We designed and evaluated an HISICC for resource allocation, which contained an in-
cell feedback controller that autonomously triggered the overexpression of enzymes in an alcohol biosynthesis 
pathway concomitantly with the shutdown of a competing pathway for cell growth based on quorum sensing. 
The HISICC concept showed potential as a solution to PMM-associated difficulties. However, the in-cell 
feedback control of cell density, which relies on quorum sensing, can be substituted with electronic control using 
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a spectrophotometer. Hence, the dynamic adaptation of enzyme overexpression based on the in situ sensing of 
intracellular metabolites or intermediates remains to be demonstrated, which will be particularly useful when 
counterpart sensing techniques using fluorescence reporters or analytical instruments are not available due to 
low reliability or long turnaround time.

In this study, we aimed to demonstrate the advantage of our approach for achieving the regulated 
overexpression of rate-limiting enzymes using engineered Escherichia coli strains FA2 and FA3, originally 
developed by Liu et al. for fatty acid production41, and strain FA4, which was conceptually designed based on 
FA2 and FA3. The overexpression of the bottleneck enzyme acetyl-CoA carboxylase (ACC) in these strains 
is amenable to external tuning using isopropyl-β-D-thiogalactopyranoside (IPTG). Prediction errors in the 
intracellular ACC concentrations constitute a critical PMM, leading to lower fatty acid yields. FA3 contains an 
in-cell feedback controller that indirectly detects an increase in ACC concentrations, thereby forming a HISICC 
when combined with an in silico feedforward controller (Fig. 1); the other two strains form no-feedback systems. 
First, the three strains were modeled to allow for the design of the corresponding in silico controllers. Next, 
the robustness of HISICC in the event of PMMs was evaluated by comparing the fatty acid yields obtained 
with HISICC versus its no-feedback counterparts in multiple rounds of simulation, assuming PMMs of various 
types and magnitudes. Our results indicate that this approach can mitigate the yield loss attributable to PMMs 
associated with regulating enzyme overexpression.

Results
Fatty acid production in engineered E. coli strains
We provided an overview of the two previously developed E. coli strains (FA2 and FA341) and the strain 
conceptually designed for simulation (FA4) to help explain their mathematical modeling.

The first step in the fatty acid biosynthesis pathway in E. coli involves the conversion of acetyl-CoA to 
malonyl-CoA catalyzed by ACC, encoded by accABCD. This reaction is the rate-limiting step of the pathway15. 
Several studies have shown that ACC overexpression increases intracellular malonyl-CoA concentration and 
fatty acid yields13,42. However, ACC overexpression is toxic to cells and can decrease cell growth13–15 and fatty 
acid production41. The exact molecular mechanisms underlying its toxicity remain unclear. Because suboptimal 
ACC concentrations reduce fatty acid yields, it is necessary to rapidly stabilize the ACC concentration to an 
optimal level to offer a balance between cytotoxicity and improvements in the reaction rate.

FA2 carries a genetic regulator device containing accABCD gene under the control of T7 RNA polymerase, 
allowing ACC overexpression to be externally controlled by IPTG (Fig.  2A and B). Therefore, the IPTG 
concentration was defined as the input variable to be optimized by the in silico feedforward controller for this 
strain. Unlike the other two strains, FA2 lacks mechanisms for reducing ACC overexpression during the mid-
culture period. Therefore, to alleviate ACC toxicity, the in silico feedforward controller must maintain the initial 
ACC expression at a low level to ensure that ACC concentrations in the latter half of the culture period are not 
too high (Fig. 2C).

FA3 contains a genetically encoded feedback controller comprising the regulator device and a sensor device 
(Fig. 2D). The sensor device comprises FapR, a malonyl-CoA-responsive transcription factor, and FR1, a FapR-
regulated promoter (Fig. 2E). In this design, if the ACC level becomes too high, the malonyl-CoA produced 
triggers the sensor device to express LacI, which in turn represses ACC overexpression. Meanwhile, the in-cell 
feedback controller can be externally initiated by IPTG, which alleviates the repression of ACC overexpression 

Fig. 1. Conceptual diagram of the Hybrid In Silico/In-Cell Controller (HISICC). The in silico feedforward 
controller optimizes the inducer input to maximize product yields by balancing the acceleration of 
the bottleneck reaction against the cytotoxicity caused by overexpression of the rate-limiting enzyme. 
Simultaneously, the in-cell feedback controller within the engineered E. coli strain FA3 autonomously regulates 
enzyme concentration in response to the optimized inducer input.
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mediated by LacI. Overall, the in-cell feedback controller integrated into FA3 indirectly detects an increase in 
ACC concentration by sensing malonyl-CoA levels and responds by reducing ACC expression during the mid-
culture period. Therefore, the in silico feedforward controller coupled to this strain can employ higher IPTG 
concentrations to induce cells, leading to a higher initial expression of ACC than the in silico controller coupled 
to FA2. This shortens the response time for achieving the optimal ACC concentration (Fig. 2F). In fact, a 27% 
higher yield of fatty acids was obtained with FA3 compared to FA2 under identical culture conditions (except for 
the IPTG concentration used for induction) in a previous study41.

Because FA3 has an in-cell feedback controller, while FA2 does not, it forms the HISICC in combination with 
in silico feedforward controllers; FA2 forms the no-feedback system. This no-feedback system was compared 
to HISICC to demonstrate its robustness to PMMs. However, FA2 has no braking circuit to reduce ACC 
overexpression during bioprocessing. This makes the no-feedback system with FA2 an inadequate counterpart 
to HISICC for demonstration. Therefore, based on these strains, we conceptually designed another strain, FA4, 
which has a genetic circuit to slow ACC overexpression in response to a second external input instead of the 
output of the sensor device (Fig. 2G). The second input channel can be a chemical inducer or a light source. Here, 
we assumed an idealized inducer/promoter pair, inducer 2/promoter 2, which was orthogonal to induction with 
IPTG. Inducer 2 induces the expression of an additional lacI downstream of promoter 2 (Fig. 2H and I). Both 
IPTG and inducer 2 were defined as the optimizable variables for the bioprocess using this strain.

Fig. 2. Designs and functions of the engineered Escherichia coli strains. (Top row) Schematic representation 
of the control circuits in E. coli strains FA2 (A), FA3 (D), and FA4 (G). The regulator device allows tunable 
overexpression of ACC using IPTG, while the sensor device detects changes in ACC concentration by 
sensing malonyl-CoA levels. Arrows marked with plus (+) or minus (−) symbols indicate upregulation or 
downregulation, respectively. (Middle row) Synthetic genetic circuits of E. coli strains FA2 (B), FA3 (E), and 
FA4 (H). Rounded boxes represent proteins, while dotted arrows depict protein expression. Red and blue 
boxes correspond to the regulator and sensor devices, respectively. (Bottom row) Simulated dynamics of state 
variables in E. coli strains FA2 (C), FA3 (F), and FA4 (I). Variable symbols are listed in Table 1. Green dotted 
horizontal lines indicate the ACC toxicity threshold (Etox). When ACC concentration (E) exceeds Etox, 
toxicity reduces fatty acid secretion per unit cell density.
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Mathematical modeling
FA2 model
This model forms the basis for modeling the other two strains, which are extensions of this model, with the 
addition of a term representing LacI expressed from plasmids to a differential equation for LacI dynamics. 
This model consists of two differential equations describing substrate consumption and cell growth and four 
differential equations describing the normalized concentrations of important compounds in the cell.

 µ = kXS (1− TX)  (1)
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The descriptions and initial values of the six state variables are summarized in Table 1, while the model 
parameters are listed in Table S1.

The equations for cell growth were derived based on Monod’s model43 with some modifications (Eqs. 1–3). 
First, the saturation of the specific growth rate µ at high substrate concentrations was ignored to simplify the 
model. Second, cell death was assumed to occur at a constant rate, µd. TX represents a deceleration in cell growth 
owing to ACC cytotoxicity, as described below.

Equations 4–6 describe the dynamics of the intracellular concentrations of ACC (E), malonyl-CoA (M ), 
and LacI (R). These three compounds were assumed to be diluted during cell growth. The concentrations of 
ACC and LacI were also assumed to decrease owing to protein degradation. The LacI degradation rate (dR) 
was adopted from Basu et al.44 LacI expression is regulated by the T7 promoter and is amenable to tuning 
using various IPTG concentrations. The mathematical expression for promoter output as a function of both 
LacI and IPTG concentrations was adopted from Gardner et al.45 (Eq. 4). The saturation constant KR,0 was 
defined as 1, indicating that R was normalized with respect to KR,0. The production and consumption rates of 
malonyl-CoA were assumed to be proportional to the concentrations of ACC and malonyl-CoA, respectively 
(Eq.  5). By defining the proportionality constants kM  and kP  as equal, we equalized the ranges of the non-
dimensionalized state variables M  and E. Finally, LacI was assumed to be expressed at a constant rate (kR,1) 
from the chromosomal lacI gene (Eq. 6). The model does not account for time delays due to gene transcription 
because the typical time scale for gene transcription in E. coli is less than 1 minute46, which is sufficiently short 
and negligible compared to the time scale for ACC regulation.

Equation 7 describes the fatty acid concentration in the culture medium. The volumetric fatty acid production 
rate was assumed to be proportional to both the cell density X  and the specific malonyl-CoA consumption rate 
kPM . The saturation constant KS,P  was introduced to reproduce the slowdown in fatty acid production per unit 
cell density due to the depletion of substrates in the culture medium. TP  represents the slowdown of fatty acid 
production due to the cytotoxicity associated with ACC overexpression, as discussed below.

Symbol Initial value Unit Description

S 1−X (0) Dimensionless Extracellular glucose concentration

X Estimated Dimensionless Normalized cell density

E 0 Dimensionless Intracellular ACC concentration

M 0 Dimensionless Intracellular malonyl-CoA concentration

R Estimated Dimensionless Intracellular LacI concentration

P 0 Dimensionless Extracellular fatty acid concentration

I — µM Extracellular IPTG concentration (input)

u 0 Dimensionless Inducer 2 input for FA4, u is either 0 or 1 (unit step function)

Table 1. State and input variables for the models.
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This model assumes that excessive ACC concentrations affect the specific rates of cell growth and fatty acid 
production.

 
TX = TX,max

EnT,X

K
nT,X
T,X + EnT,X

 (8)
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TX  represents the toxic effects on cell growth; an increase in E leads to an increase in TX  and a decrease in the 
specific cell growth rate µ (Eqs. 1 and 8). TP  represents the toxic effects on fatty acid production. We assumed 
that when E exceeded the threshold Etox, the value of TP  increased, and fatty acid production slowed down 
(Eqs. 7 and 9). The value of Etox was defined as 1, indicating that E was normalized with respect to Etox. As 
noted earlier, the detailed molecular mechanisms underlying the cytotoxicity of ACC overexpression remain 
unclear. Besides the metabolic burden of excessive ACC biosynthesis, another possible cause of cytotoxicity 
could be the negative effects of excessive malonyl-CoA synthesis. However, we have abstracted the cytotoxicity 
of ACC overexpression by defining TX  and TP  as functions of E for the sake of model simplicity.

Equations  10 and 11 are the observation equations that link the model simulations to the experimental 
measurements. y1 and y2 represent the relative cell density calculated based on the optical density (OD600) and 
fatty acid concentration, respectively. HX  and HP  are the proportionality constants.

 y1 = HXX  (10)

 y2 = HPP  (11)

FA3 model
FA3 contains an in-cell feedback controller that senses an increase in malonyl-CoA concentration and promotes 
LacI overexpression from plasmids to reduce ACC expression. A mathematical representation of this feedback 
was generated by extending the FA2 model; we added a term representing lacI expression from plasmids to the 
differential equation describing LacI dynamics in Eq. 6.

 

dR

dt
= kR,1 + kR,2

MnM

K
nM
M +MnM

− (dR + µ)R  (6′)

The response of the FR1 promoter to malonyl-CoA was approximated using Hill’s equation. The Hill coefficient 
nM  was defined as 4 following the modeling of another in-cell feedback controller for fatty acid production that 
employed the same FapR-based malonyl-CoA sensor as FA347,48. To simplify the model, the concentration of 
FapR was assumed to be constant. The other equations and parameter values were shared with the FA2 model.

FA4 model
FA4 contains a brake circuit designed to decelerate ACC overexpression by promoting the overexpression of LacI 
from plasmids in response to inducer 2. A mathematical representation of this brake function was generated by 
adding a term representing lacI expression from the plasmids to Eq. 6 in the FA2 model.

 
dR

dt
= kR,1 + kR,3u− (dR + µ)R  (6″)

In this equation, u represents the normalized concentration of inducer 2. We then defined u = 1 as the 
concentration of inducer 2 at which saturation of the promoter 2 response is achieved. The equations and 
parameter values were shared with the FA2 model, except for the maximum lacI expression rate of promoter 2, 
kR,3.

kR,3 was arbitrarily defined to be equal to kR,2 of the FR1 promoter in FA3. Since FA4 was idealized and 
conceptually designed at the device level49 for comparison with FA3, there are many promoter candidates 
for promoter 2, including light-inducible promoters, in the part-level design of this strain49 (Fig.  2H). 
Depending on the choice of promoter, the value of kR,3 may be reduced, resulting in a weaker braking effect 
on ACC overexpression. In addition, chemical inducers may have unintended effects on the overall dynamics 
of bioprocesses through hierarchical carbon utilization. Consequently, a no-feedback system with FA4 may 
result in lower fatty acid yields in actual experiments compared to the simulations in this study. However, our 
argument still stands that a HISICC with FA3 is more robust to PMMs associated with the key enzyme than the 
no-feedback system with FA4.

Model simulation and validation
The FA2 and FA3 models were trained using experimental data from fatty acid-producing cultures from a 
previous study41. Experimental data from only one batch of FA3 were available for parameter estimation. This 
lack of experimental data for FA3 was overcome by exploiting the fact that many genetic circuits were common 
to FA2 and FA3. These two strains were modeled in such a way that most of the equations and parameters were 
shared, and trained collectively, using experimental data from both strains together as a single training data set. 
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Namely, for each parameter common to both models, a single value was estimated so that both models could 
simultaneously fit the corresponding experimental data. Trained on all available experimental data, both models 
showed a close fit to the experimental data and consequently reproduced the improvement in fatty acid yields 
between FA2 and FA3, even though the FA3 model has only two unique estimated parameters (kR,2 and KM

) (Fig. 3A and Table S1). FitPercent, the normalized root-mean-squared error expressed as a percentage50, was 
used as an indicator of the fit of the model to the data. A FitPercent > 70% was obtained for all data sets (Fig. 3B). 
This suggests that these models successfully captured the dynamics of cell growth and fatty acid production 
by the two strains in response to different IPTG inputs. Furthermore, the holdout validation method (see the 
Methods section) was used to ensure that the trained models did not overfit the training dataset (Fig. 4). A 
FitPercent > 70% was obtained for all validation rounds, indicating that the model did not overfit the training data 
and had a good generalization performance within the range of IPTG concentrations applied in the experiments.

Two points should be noted regarding the experimental data. First, the small size of the training data set 
resulted in long confidence intervals relative to the estimated values for the parameters (Figure S1). However, 
in general, the predictive performance of the trained model is independent of the length of the confidence 
interval of the model parameters, and thus the demonstration of the HISICC. Another point to note is that fatty 
acid concentrations were only measured at the end of the culture period (Fig. 3). Therefore, our trained models 
may not accurately reproduce the detailed dynamics of fatty acid accumulation in culture media. However, 
our models predicted the final fatty acid concentrations resulting from different inducer inputs with acceptable 
accuracy.

Model-based input optimization
We subsequently sought to demonstrate the performance of the in silico feedforward controllers in the HISICC 
(FA3) or no-feedback systems (FA2 or FA4) by optimizing the IPTG input to obtain the maximum fatty acid 
yields at a fixed culture duration (25 h). The FA2 and FA3 models were trained using all the experimental 
datasets before input optimization (Fig. 3, Table S1). The FA4 model shares all parameters with the other two 
models except kR,3, the maximum expression rate of lacI from plasmids. Since we assume that kR,3 is equal to 
kR,2, the counterpart parameter in the FA3 model, the FA4 model requires no training. The in silico feedforward 
controllers for FA2 and FA3 optimized the IPTG concentrations (Fig. 5A and B). In contrast, the controller for 
FA4 simultaneously optimized both the IPTG concentration and the time of addition of inducer 2 (Fig. 5C). 
To design FA4 as an idealized strain to compare with FA3, we assumed that LacI expression is induced at a 
maximum rate by a sufficient concentration of inducer 2. Therefore, the concentration of inducer 2 was not 

Fig. 3. Simulation of fatty acid production in E. coli strains FA2 and FA3 at various IPTG concentrations. (A) 
Simulated trajectories (red lines) compared with experimental data (white dots). (B) The normalized root-
mean-squared error expressed as a percentage (FitPercent) is used to evaluate the model fit.
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optimized. The feasible input range was defined as 0–1,000 µM for IPTG concentration and 0–25 h for the time 
of addition of inducer 2. In addition, comprehensive model simulations were performed to visualize the overall 
distribution of fatty acid yields over the feasible input range. The predicted fatty acid yields for all strains exhibited 
a convex-upward function with a distinct peak, and the input values optimized by the in silico controllers were 
consistent with this peak. This observation suggests that in silico feedforward controllers contribute to product 
yield improvement through input optimization. In addition, the optimal IPTG concentration for FA2 was the 
lowest among the three strains, consistent with the inability of FA2 to reduce ACC expression during the mid-
culture period; FA2 initially requires the in silico controller to maintain a lower initial IPTG concentration to 
maintain low ACC expression levels, unlike the other two strains. This suggests that the models successfully 
reproduced the trade-off inherent in ACC overexpression for fatty acid production.

Controller performance against PMMs
The robustness of HISICC against PMMs was evaluated by calculating the fatty acid yields of the three strains 
through five multi-round simulations (Fig.  6A-E). Each multi-round simulation focused on one of the five 

Fig. 5. Model-based optimization of IPTG input for maximizing fatty acid yields. White dots represent 
experimental data, and red lines represent simulations. Red dots and vertical dashed lines indicate optimized 
IPTG concentrations for E. coli strains FA2 (A), FA3 (B), and FA4 (C). In (C), gray and red lines show 
simulations with different addition times of inducer 2 and a simulation with the optimal addition time, 
respectively.

 

Fig. 4. Holdout validation of FA2 and FA3 models. Model validation was performed separately for cell density 
and fatty acid concentration using FitPercent as a model fit indicator. In each validation round, data from one 
batch of FA2 was used as the validation set, while data from the remaining FA2 and FA3 batches served as the 
training dataset.
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parameters, kE , dE , kR,2, dR, and kM , related to the proteins that constitute the in-cell feedback controller, ACC, 
LacI, and FapR. For all simulations, the parameters in the controller models for FA2 and FA3 were estimated 
using all experimental datasets (Fig. 3, Table S1), which were also employed in the controller model for FA4. 
Thus, the inducer input values employed in these simulations were identical to the optimized values shown 
in Fig.  5 (dotted vertical lines). Each simulation round introduced a PMM of different magnitudes; for the 
simulation focused on kE  (Fig. 6A), for example, ACC expression in the strains was assumed to be faster or 
slower than the values predicted by the corresponding in silico feedforward controllers. Specifically, we defined 
various values for kE , which represents the maximum rate of ACC expression, for each round to calculate the 
dynamics of the process, which are denoted as k∗E  to distinguish them from the corresponding value kE  in 
the controller model. Notably, k∗E  represents an intrinsic property of cells that is difficult to manipulate in cell 
culture-based experiments. The simulation round where k∗E/kE = 1 corresponds to the situation in which no 
PMM was introduced (Fig. 6A, dotted vertical line). That is, this round represents an ideal situation in which the 
in silico feedforward controllers perfectly predict the ACC dynamics. As with kE , we introduced PMMs with the 
other four parameters, dE , kR,2, dR, and kM , by simulating the process with parameter values deliberately shifted 
from those in the controller model (denoted as d∗E , k∗R,2, d∗R, and k∗M ,), as shown in Fig. 6B-E.

PMMs associated with ACC expression and degradation
First, we describe the results of the simulation focusing on the maximum ACC expression rate kE  (Fig. 6A). 
Drifts in kE  can occur in real bioprocesses, for example, due to fluctuations in plasmid copy number before 
and after mathematical modeling. The highest fatty acid yields were obtained in the no-PMM round for all 
three strains. Lower yields were obtained when ACC expression was slower than predicted (k∗E/kE < 1) because 
sufficient ACC accumulation was not attained during the 25-h culture period. Similarly, a faster-than-predicted 
expression of ACC (k∗E/kE > 1) also resulted in lower fatty acid yields because of the cytotoxicity associated 
with excessive ACC.

Fig. 6. Multi-round simulations examining fatty acid yields under different Process Model Mismatches 
(PMMs). The simulations explore the impact of PMMs in model parameters kE  (A), dE  (B), kR,2 or kR,3 (C), 
dR (D), and KM  (E). In each simulation round, p∗ represents the parameter value used for process dynamics 
calculations, while p refers to the estimated parameter value from Table S1 used in the controller model (kE , dE
, kR,2, kR,3, dR, or KM). Inducer inputs (IPTG concentrations for FA2 and FA3, and both IPTG concentration 
and inducer 2 addition time for FA4) were set to the optimized values from Fig. 5. The vertical dashed line 
denotes a simulation round with no PMM, where the same parameter value was used in both the controller 
and process models.
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The lowest fatty acid yield was obtained with FA2, regardless of the value of k∗E . This is attributable to the 
inability of FA2 to decelerate ACC expression during the mid-culture period, unlike the other two strains. The 
consequent accumulation of excess ACC impairs fatty acid production in the later stages of culture in this strain.

Differences were observed between FA3 and FA4 with respect to the interference by PMMs, even though 
both strains were designed to decelerate ACC overexpression. Under slow ACC expression (k∗E/kE < 1), 
little difference was observed in the fatty acid yields between the two strains. However, when ACC expression 
was comparable to that predicted by the controller (k∗E/kE ≈ 1), FA4 produced slightly higher quantities of 
fatty acids than FA3; this is because the in silico controller for FA4 could induce ACC overexpression with a 
higher concentration of IPTG and subsequently resort to abrupt braking enabled by the input of inducer 2 
(Fig. 2I). Such abrupt braking is impossible for FA3 because the in-cell feedback controller embedded in this 
strain gradually responds to an increase in malonyl-CoA concentration (Fig. 2F). Notably, under rapid ACC 
expression (k∗E/kE > 1), FA4 produced lower yields of fatty acids than FA3. The reasons for this difference 
in the robustness of the PMM are as follows. First, the in silico feedforward controller for FA4 optimized the 
addition time of inducer 2 regardless of the actual ACC concentration, which increased faster than predicted 
by the controller. Consequently, inducer 2 was added later than the truly optimal timing, allowing excess ACC 
accumulation and reducing fatty acid yields. In contrast, FA3 contains an in-cell feedback controller that allows 
an autonomous change in the timing and intensity of brake application on ACC overexpression following 
the detected increase in malonyl-CoA concentration (reflecting ACC activity). Thus, a mitigated loss of fatty 
acid yields was obtained for FA3 compared to FA4. Additionally, under conditions of a very rapid rate of ACC 
expression (k∗E/kE > 1.5), the braking effect triggered by inducer 2 was almost nonexistent, resulting in low 
fatty acid yields nearly equivalent to that of FA2, which lacks a brake circuit. Similar results were obtained in the 
simulation that focused on the degradation rate of ACC, dE  (Fig. 6B). Fluctuations in dE  can occur, for example, 
when different proteases are activated during the transition from aerobic to anaerobic metabolism. When the 
degradation rate of ACC was either faster (d∗E/dE > 1) or slower (d∗E/dE < 1) than predicted by the controller, 
FA3 suppressed the decrease in fatty acid yields to a lesser extent than FA4. This is because, as in the case of kE
, the in-cell controller implemented in FA3 adjusts the strength and timing of the brake on ACC expression in 
real time depending on the actual level of ACC. These results indicate that the in-cell feedback controller within 
the HISICC can support the in silico feedforward controller to handle PMMs associated with the key enzyme.

PMMs associated with other proteins
The decrease in fatty acid yields due to PMMs associated with LacI and FapR was less severe than that due 
to PMMs associated with ACC (Fig. 6C-E). For LacI, there was almost no difference in the decrease in fatty 
acid yields between FA3 and FA4, when both simulations focused on the expression rate from plasmids, kR,2 
(Fig. 6C) or the degradation rate, dR (Fig. 6D).

Discussion
This study extended the HISICC concept we previously developed to address the PMM problem39 to a system 
that regulates the overexpression of a key enzyme based on feedback from an intracellular metabolite biosensor. 
The engineered E. coli strains FA2 and FA3, developed by Liu et al. for fatty acid production41, were employed for 
a proof-of-concept study. Unlike FA2, FA3 has an in-cell feedback controller that indirectly detects an increase in 
the concentration of the rate-limiting enzyme, ACC, by sensing malonyl-CoA produced by its enzymatic activity 
and then applying a brake on the expression of the enzyme. Therefore, only FA3 forms an HISICC in combination 
with the in silico feedforward controller. We hypothesized that the in-cell feedback controller allows an HISICC 
to adjust the timing and strength of brake application according to the detected enzyme concentration, which, 
in turn, allows a mitigation of fatty acid yields loss attributable to the PMM associated with the rate of enzyme 
expression. As a first step in proving this hypothesis, we constructed mathematical models and designed in 
silico feedforward controllers for the strains. The models captured the dynamics of cell growth and fatty acid 
production in response to various inducer concentrations and exhibited good predictive performances against 
experimental data during holdout validation. Next, we evaluated the robustness of the HISICC against PMMs 
using a multi-round simulation by comparing FA2, FA3, and FA4. FA4 was conceptualized based on the circuit 
designs of FA2 and FA3 and contained a brake circuit that decelerated the enzyme overexpression in response 
to another inducer. Comparing the fatty acid yields from the three strains revealed that when the rate of enzyme 
overexpression was higher than that predicted by the in silico controllers, the minimum fatty acid yield loss was 
obtained with FA3, consistent with our hypothesis. This observation demonstrates the potential of the extended 
HISICC with intracellular biosensing as a solution to the PMM problem.

The robustness of the HISICC to PMMs was evaluated by simulations rather than by culture experiments 
as in previous modeling studies on in-cell feedback controllers35,51, because the actual cell dynamics, which are 
only partially manipulable in real culture experiments, can be arbitrarily defined in simulations. As a result, the 
robustness of HISICCs was extensively and quantitatively tested in a controlled manner. Of course, additional 
experimental evaluations of robustness would further confirm the feasibility of our approach. Specifically, 
PMMs could be introduced into real culture experiments with some degree of control by deliberately shifting 
the parameter values in the controller model from those estimated in model training. In this case, the results of 
the exhaustive simulations presented in this study are helpful in determining the appropriate range of parameter 
shift for assessing controller robustness.

Our simulations do not demonstrate that the proposed approach can address all possible PMMs that may 
occur in bioprocesses. While the HISICC is more robust than no-feedback systems to PMMs related to expression 
or degradation rates of ACC, PMMs related to LacI and FapR, which constitute the in-cell feedback controller, 
may negate this advantage. However, according to simulations, the effect of PMMs for LacI and FapR is small 
compared to that for ACC (Fig. 6). In addition, there is little difference in robustness between the HISICC and 
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no-feedback counterparts with respect to the PMMs associated with the expression or degradation rates of LacI 
(Figs. 6C and D). Furthermore, the metabolic burden of LacI and FapR is lower, and their expression rates are 
less likely to drift due to plasmid instability than ACC, which is overexpressed to the point of cytotoxicity. In 
other words, there is a reasonable chance that the PMMs associated with ACC will be the main factor affecting 
product yields. Therefore, our simulations suggest that our approach could be a potential solution to the PMM 
problem in practical bioprocesses.

The in-cell controller used in this study is simple in structure and crude in operation; as described in the 
Results section, due to the gradual response of FapR to malonyl-CoA, it takes time for the HISICC to stabilize 
the ACC level at the desired level, resulting in a lower product yield than the no-feedback counterpart in the 
absence of PMMs. Therefore, it is expected that an advanced in-cell controller capable of differential or second-
order differential control52,53 can be used as the in-cell controller for HISICC to shorten the response time and 
improve performance.

In this study, in silico feedforward controllers were designed to optimize only one or two inputs: the IPTG 
concentration for FA2 and FA3, and the IPTG concentration and time of addition of inducer 2 for FA4. These 
inputs can also be optimized by an exhaustive experimental search, instead of in silico controllers. However, 
there are two directions for extending the application of our control framework where in silico controllers would 
play a more important role: multiple enzyme regulation and time-varying process inputs. First, if multiple rate-
limiting enzymes need to be regulated, as in another E. coli strain engineered for fatty acid production by Xu 
et al.47, the cost of the experimentation for the optimal input will likely be high. Second, IPTG has the problem 
of irreversibility; in batch processes, the added IPTG remains unconsumed and continues to activate IPTG-
inducible promoters. In contrast, inducing gene expression using light11,26,27, temperature25, or consumable 
inducers such as glucose54, lactose55, and arabinose56 is reversible and allows time-varying inputs to the in-cell 
feedback controller. Although these reversible input channels enable the effective and dynamic regulation of the 
expression of key enzymes, they require determining the optimal input values for each control interval, making 
the experimental approach very challenging. Thus, the HISICC concept extended in this study is expected 
to provide a practical solution to PMM-associated issues in more complicated bioprocesses involving the 
manipulation of multiple enzymes or time-varying process inputs, the demonstration of which is an important 
topic for future research.

Methods
Experimental data
Experimental data from the fatty acid production cultures used to train and validate the FA2 and FA3 models 
were obtained from Liu et al.41 (Figures S2 and S4 in the Supplementary Information appended to the original 
article41). Regarding the culture conditions, seed cultures of both strains were grown overnight at 37 °C on a 
rotary shaker at 220 rpm in Luria–Bertani medium supplemented with the appropriate antibiotics (50 mg/L 
ampicillin, 50 mg/L kanamycin, and 30 mg/L chloramphenicol). The seed cultures were then transferred to 
a minimal medium (M9 minimal medium supplemented with 2% glucose, 75 mM MOPS, 2 mM MgSO4, 1 
mg/L thiamine, 10 μM FeSO4, 0.1 mM CaCl2, and the following micronutrients: 3 μM [NH4]6Mo7O24, 0.4 mM 
boric acid, 30 μM CoCl2, 15 μM CuSO4, 80 μM MnCl2, and 10 μM ZnSO4) at a concentration of 2% (v/v) and 
grown overnight for adaptation; the M9 media was supplemented with the same antibiotics as before. Fatty acid 
production cultures were initiated from the overnight culture for adaptation with an initial OD600 of 0.08 and 
grown in fresh minimal medium supplemented with 2% glucose and 0.01% arabinose. When an OD600 of 0.6 was 
attained, the strains were induced with 200 nM anhydrotetracycline and different concentrations of IPTG. The 
relative cell density (arbitrary units) was defined previously41 using OD600 values recorded every 1,000 s. Samples 
for fatty acid quantification were collected 25 h after induction.

Parameter estimation
MATLAB/Simulink 2022a was used for model construction and simulation. Simulink Design Optimization 
was used to estimate the model parameters. To simulate the models, Simulink automatically selected an 
appropriate variable step solver. As described in the previous subsection, only the relative cell density and fatty 
acid concentration were used as training data. We downsampled the relative cell density into datasets at 4-h 
intervals. For fatty acid concentrations, only endpoint values (25 h) were available. The parameter values were 
chosen to minimize the sum of the squared errors between the model predictions and the training data, as 
shown in Eqs.  12 and 13. The errors were normalized to the maximum values of the measurements in the 
same culture. In Eqs.  12 and 13, V  represents the objective function for optimization. The vectors θ and θ̂ 
represent the model parameters and their estimated values, respectively. The parameters y and ŷ represent the 
measured and predicted process outputs, respectively. I  represents the IPTG input. The subscripts i, j, k, and l 
represent the process output (i = 1 for relative cell density and i = 2 for fatty acid concentration), strain (j = 1 
for FA2 and j = 2 for FA3), IPTG input, and measurement time index, respectively. Ni and Mj represent the 
number of measurement time points for process output i and the IPTG input levels for strain j, respectively. The 
compositions of the datasets and the corresponding indices are summarized in Tables S2 and S3.

 
θ̂ = argmin

θ
[V (θ)]  (12)
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The lsqnonlin command of Simulink Design Optimization was used for optimization. The trust region method 
was selected as the optimization algorithm for this command. Initial parameter estimates were approximated 
using general knowledge of the physical properties of biomolecules, as well as E. coli growth and gene expression 
(Table S1). A scaling factor equal to the initial estimate was specified for each parameter to prevent large absolute 
values from disproportionately affecting the overall parameter estimation.

Model validation
The holdout method was used to validate whether the models could predict the experimental results for various 
IPTG concentrations without overlearning. For each round of validation, one batch of FA2 was selected from six 
batches, excluding the batches induced at the highest (1,000 µM) or lowest (0 µM) IPTG concentrations; the data 
obtained from this batch were defined as the validation dataset (Fig. 4). The data obtained from the remaining 
five batches of FA2 and one batch of FA3 were collectively defined as the training datasets. The normalized root-
mean-squared error, expressed as a percentage (FitPercent50), was employed to measure how well the model 
response fitted the validation dataset. For each validation round, the FitPercent was calculated for the cell density 
or fatty acid concentration as follows:
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Subscript k represents the batch of strain FA2 selected for the validation dataset. The subscript set Dtrain,k 
represents the set of FA2 batches selected for the training dataset corresponding to k.

Model-based input optimization
Simulink Design Optimization was used to optimize the IPTG input. The optimal values Iopt for FA2 and FA3 
were chosen to maximize the fatty acid yields obtained at the end of the 25-h culture period, as follows:

 
Iopt = argmin

I
[−ŷ2,j (tN ; I)] for j = 1, 2.

There is another decision variable for FA4: the time of addition of the inducer 2, denoted as tu. The optimal 
values Iopt and tu,opt for FA4 were selected as follows:

 
(Iopt, tu,opt) = arg min

(I,tu)
[−ŷ2,j (tN ; I, tu)] for j = 3.

The subscript j represents the strain index (j = 1 for FA2, j = 2 for FA3, and j = 3 for FA4). The culture duration 
tN  in the simulation was defined as 25 h, as in the experiment performed. As with the parameter estimation, 
the lsqnonlin command was used for optimization and the trust region method was selected as the algorithm.

Data availability
The datasets and computer code used in this study are available on GitHub  (   h t t p s : / / g i t h u b . c o m / T o m o k i O h k u b 
o / H I S I C C 2     ) .  
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