
Mathematical analysis with control 
of liver cirrhosis causing from HBV 
by taking early detection measures 
and chemotherapy treatment
Aqeel Ahmad1,2, Muhammad Ali1, Ali Hasan Ali3,4,5, Magda Abd El-Rahman6, 
Evren Hincal2,7 & Husam A. Neamah8

Reformulating the physical processes associated with the evolution of different ailments in accordance 
with globally shared objectives is crucial for deeper comprehension. This study aims to investigate 
the mechanism by which the HB virus induces harmful inflammation of the liver, with a focus on early 
detection and therapy using corticosteroids or chemotherapy. Based on the developed hypothesis, a 
new mathematical model has been created for this purpose. The recently developed system for HBV 
is SEI1I2R, which is examined both quantitatively and qualitatively to determine its actual effect 
on stability. Reliable conclusions are ensured by examining the system’s boundedness, positivity, 
existence, uniqueness, and conducting local and global stability analysis-all crucial components of 
epidemic models. Global stability is tested using Lyapunov first derivative functions to assess the 
overall impact of asymptomatic persons and chemotherapy treatment. Additionally, the Lipschitz 
condition is used to confirm the unique solutions for the newly built HBV model using methods from 
fixed point theory, thus meeting the requirements for uniqueness and existence. Since the population 
must maintain this property, positivity is confirmed using global derivatives and Lipschitz criteria 
to calculate the rate of change in each sub-compartment. Applying the Mittag-Leffler kernel with a 
fractal-fractional operator to continuously monitor the HBV virus for liver cirrhosis infection yields 
dependable results. Furthermore, the current situation regarding the HBV outbreak pertaining to liver 
cirrhosis infection, along with the control measures implemented following early diagnosis through 
asymptomatic measures and chemotherapy treatment under constant observation, are established to 
prevent chronic stage infections. Simulations have been used to study the true behavior and impact of 
HBV in asymptomatic persons receiving chemotherapy for liver cirrhosis infection in the community. 
This research is essential for understanding the spread of viruses and developing control strategies 
based on our validated findings to mitigate the risk factors associated with liver cirrhosis.
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Hepatitis B is a potentially deadly liver condition caused by the hepatitis B virus. It poses a severe threat to global 
health and increases the risk of death from infections, prolonged liver damage, and hepatomegaly1. Whenever 
the virus steps into circulatory system and travels to the liver, hepatitis B infections happen. Once within the 
liver, the virus proliferates and floods the circulatory system with a multitude of new viruses2. Millions of people 
worldwide are infected with blood-associated viruses, including HIV, HBV, and HCV. Factors contributing to 
the continued spread of these viruses include misuse of medicinal injections, injection of blood, transmission 
from parents to their young ones, risky physical relation between human beings, and poorly sterilized beauty 
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treatments3,4. Consequently, strict sterilization protocols are necessary to prevent contamination by any blood-
borne virus, especially from beauty equipment, as hepatitis B cannot be easily rendered dormant using simple 
cleansers or alcohol-based solutions5. Over the past few decades, hairdressing has become increasingly popular 
worldwide6. Many global studies have found that barbershop shaves and razor sharing pose significant risks 
for the spread of blood-borne infections. Although shaving in shops and on the roadside is becoming more 
common, it is a crucial factor in the spread of such diseases7. The annular chromosome of HBV, consisting of 
partially double-stranded DNA, makes it challenging to eradicate if infected due to DNA strand formation. It 
is the origin of hepatitis B, which can be lethal hepatic virus. Around two billion individuals have antibodies 
indicating they may have had an HBV infection in the recent or contemporary past. About 600,000 individuals 
die each year from liver diseases linked to HBV, while more than three hundred million consistently harbor the 
infection or hepatocellular carcinoma (HCC). There is no widely accepted cure for chronic HBV carriers yet, 
but vaccination, involving both passive and active immunization given at birth, can safely and effectively prevent 
the infection8. Acute and chronic liver infections caused by HBV are characterized by a sustained level of HBV 
DNA, IgG anti-etiologic immunizer (anti-HBc), and HBV surface immunizer (HBsAg) in the bloodstream 9. A 
persistent infection may eventually lead to liver cancer or cirrhosis10. Host-related factors certainly play a role in 
the inability to eliminate the virus and the subsequent establishment of the patient’s condition11. It is becoming 
widely accepted that the host’s age affects the likelihood of contracting a chronic infection12,13. Generally 
speaking, the population’s infection prevalence significantly impacts the average age at which people contract an 
infection. A mathematical model incorporating age structure could be a more rational approach to investigate 
the significant effects of age on HBV infection. It has been demonstrated that, while all infected individuals are 
equally contagious during their infectivity phase in various epidemiological models, a fair assumption for some 
diseases like influenza, the infectivity of HBV individuals varies depending on the age of infection; therefore, 
age structure models must be developed to characterize the heterogeneity in infectious individuals, resulting 
in a partial differential equation system. Disease models often have two distinct age structures: biological age 
and infectious age. Despite the complexity of their dynamic study, age-structured epidemic models have drawn 
significant interest recently14–17. The age hierarchy of infection must be included into a model to show how it 
affects the dynamics of HBV infection transmission, since the acute and persistent stages of the disease progress 
differently based on the length of time since the infection. Recent research has focused on simulating the kinetics 
of HBV transmission18–21. The fundamental challenge in controlling epidemics is to explore and manage the 
epidemic rule as effectively as possible using a mathematical model with the provided data22. Thorough research 
on the disease should be considered in an appropriate mathematical model. Fractional calculus (FC), which 
extends the derivative to non-integer orders and integral operations and illustrates the long memory, has been 
increasingly popular in various fields, including biology, engineering, and physics, in recent years23.

Different authors have utilized various fractional approaches to mathematically interpret different types of 
phenomena in biological contexts. In24, COVID-19 was examined with a more accurate standard deviation 
by including the harmonic mean type incidence rate. A non-singular fractional operator of Atangana-Baleanu 
Caputo (ABC) was employed in25 to provide a mathematical model for the coronavirus pandemic that accounts 
for asymptomatic infected persons and vaccine effects. In26, the qualitative analysis of an HBV model was 
examined, including the study of the Hepatitis B epidemic model with a convex incidence rate. A mathematical 
model for rabies transmission under a harmonic mean type incidence rate was developed in27, considering its 
qualitative behavior. The COVID-19 epidemic model, incorporating quarantine and isolation compartments 
with the Mittag-Leffler kernel, was established in28. A dengue epidemic model was developed in29, considering 
a hospitalized class and harmonic mean incidence rate. To clarify the complex dynamics underlying the 
transmission of Anthroponotic Cutaneous Leishmaniasis, a novel mathematical model was presented in30. 
In31, the critical role that COVID-19 immunizations play in controlling the worldwide epidemic, particularly 
in Nigeria, was highlighted. It was discussed in32 that one of the most common sexually transmitted infections 
worldwide is chlamydia, caused by the bacterium Chlamydia trachomatis. The social and economic effects of 
the COVID-19 outbreak in Nigeria were examined in33 using Laplace Adomian Decomposition (LADM) in 
a unique fractional-order model. In34, the Caputo fractional-order derivative was used in a proposed model 
to study the transmission and management of the COVID-19 virus in Nigeria. The viral infection known as 
Lassa fever, most prevalent in West Africa, was studied using the fractional-order model of Lassa sickness in35. 
This paper presents a fractional-order mathematical model to assess the effects of high-risk quarantine and 
vaccination on COVID-19 transmission36.

In this article, we examined HBV using the novel concept of combining interventions to effectively manage the 
virus, particularly in those with weakened immune systems. Our primary goal is to create a novel mathematical 
system in clinical conditions for HBV early identification and chemotherapeutic treatment. Hepatitis B is an 
extremely hazardous illness that poses an imminent threat to life and limb. An introduction and historical 
context are provided in Section 1 to help readers comprehend the innovation. A new mathematical model with 
integrated measurements under a developed hypothesis is formulated in Section 2. Section 3 is consisted of a 
quantitative analysis for the given model. In Section 4, boundedness and positivity for the recently built system 
are examined using a qualitative study. In Section 5, sensitivity analysis and the local and global stability utilizing 
sophisticated technologies are examined. Existence and uniqueness of the developed solutions are verified 
in Section  6. In Section  7, numerical solutions are obtained with a non-singular kernel and advanced FFO. 
Simulations have been conducted using MATLAB coding with detailed physical interpretations in Section 8. 
Finally, the results are concluded in Section 9.

Mathematical modeling for formulation of HBV Model
We provide a fractal-fractional adaptation of the time-delayed Hepatitis B model with optimal control. Over all 
population N(t) is distributed in five different groups:
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•	 S(t): Refers to responsive patients, those who exhibit improvement or a change in their condition in response 
to a particular treatment, intervention, or stimulation. Generally speaking, “responsive patients” are individ-
uals whose conditions or behavior change in response to specific inputs or variables in the model.

•	 E(t): Refers to exposed patients, those who have come into contact with a specific factor or condition of 
interest in a study or analysis without showing symptoms. Asymptomatic E(t) represents individuals who 
have been made aware of a particular disease, course of therapy, or other elements that the model is designed 
to examine for early detection. The term “exposed” indicates those who are subject to a specific situation or 
condition within the model; it does not inherently carry a negative connotation.

•	 I1(t): Refers to acutely contaminated individuals. This term usually describes people who have been exposed 
to a high concentration or dose of a contaminant in a short period. Acutely contaminated individuals may 
suffer from immediate health impacts or symptoms as a result of their exposure. It can be controlled by taking 
chemotherapy treatment.

•	 I2(t): Refers to persistently contaminated individuals, those who have been exposed to and maintain a certain 
level of contamination for a prolonged period. People exposed to and retaining a specific degree of contami-
nation over an extended period are considered persistently polluted. This represents the chronic stage, which 
may cause liver infection, but with early detection and treatment, chronic stage infection can be reduced.

•	 R(t): Represents healed or recovered individuals. The term “recovered” implies that these individuals have 
completed the process of recuperation and are no longer affected by the condition under consideration. Indi-
viduals recover from both acute and chronic stages due to control measures like early detection and chemo-
therapy.The transition of people from the class S to the class R is associated with the time delay of ξ ≥ 0. The 
flow chart of the newly developed model SEI1I2R is illustrated in Fig. 1.

In the Atangana-Baleanu sense, the new fractional order model can be formulated using the following non-
linear fractional differential equations under the fractal-fractional operator:

	




DS( t) = c− ρS(t)I2(t)− (κ0 + δ)S(t),

DE( t) = ρS(t)I2(t)− (κ0 + σ + λ)E(t),

DI1( t) = σE(t)− (κ0 + η + λ1)I1(t),

DI2( t) = ηI1(t)− (κ0 + κ1 + λ2)I2(t),

DR( t) = λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t).

� (1)

With the initial conditions

	 S(0) = S0 ≥ 0, E(0) = EO ≥ 0, I1(0) = I01 ≥ 0, I2(0) = I02 ≥ 0, R(0) = R0 ≥ 0.

The parameters of the system of given equations (model) (1) are listed as follows: c denotes the birth rate related 
to susceptible individuals, ρ represents the rate of transfer involving asymptomatic patients, and λ1 and λ2 
illustrate the recovery rates from infections at the acute or chronic stage due to asymptomatic measures for early 
detection process respectively. η represents the rate at which acutely infected individuals become chronically 
infected, a dangerous stage of infection due to HBV and causes liver cirrhosis infection. κ0 represents the natural 
death rate, with or without infection. κ1 displays the mortality rate due to Hepatitis after causing liver cirrhosis, 

Fig. 1.  Flow chart of the new developed model SEI1I2R.
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and δ illustrates the rate at which individuals recover due to a strong immune system, directly without spreading 
the infection and without medication, which is possible only due to early detection. Numerous studies have 
demonstrated that fractional-order systems outperform integer-order models in accurately representing the real 
world37.

Now, we provide some fundamental concepts about differential equations acknowledged from38, which will be 
utilized for our developed model.

Definitions: Let 0 ≤ µ , ϑ ≤ 1, then U(t) in the Riemann-Liouville for fractal fractional operator with 
generalized Mittag-Leffler kernel is defined as:

	
FFMDµ,ϑ

0,t (U(t)) =
AB(µ)

1− µ

d

dtϑ

∫ t

0

Eµ

[
− µ

1− µ
(t− Ω)µU(Ω)

]
dΩ,

where 0 < µ, ϑ ≤ 1 and AB(µ) = 1− µ + µ
Γ(µ).

Thus, U(t) with order (µ, ϑ) and having Mittag-Leffler type kernel is defined as:

	
FFMDµ,ϑ

0,t (U(t)) =
ϑ(1− µ)tϑ−1U(t)

AB(µ)
+

µϑ

AB(µ)

∫ t

0

Ωµ−1(t− Ω)U(Ω)dΩ.

Therefore, in accordance with model (1), we generate the on going fractional-order model using the fractal 
fractional derivative and the definitions given above:

	




FFM
0 Dϕ,φ

t S(t) = c− ρS(t)I2(t)− (κ0 + δ)S(t),
FFM
0 Dϕ,φ

t E(t) = ρS(t)I2(t)− (κ0 + σ + λ)E(t),
FFM
0 Dϕ,φ

t I1(t) = σE(t)− (κ0 + η + λ1)I1(t),
FFM
0 Dϕ,φ

t I2(t) = ηI1(t)− (κ0 + κ1 + λ2)I2(t),
FFM
0 Dϕ,φ

t R(t) = λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t),

� (2)

With the initial conditions:

	 S(0) = S0 ≥ 0, E(0) = EO ≥ 0, I1(0) = I01 ≥ 0, I2(0) = I02 ≥ 0, R(0) = R0 ≥ 0.

Quantitative analysis for the developed model
To demonstrate the suitability and limitations of the model, we are undertaking a procedure that ensures its 
validity, assuming it addresses universally significant problems with relevant parameter values. As outlined below

	 I1(t) ≥ I01e
−(κ0+η+λ1)t ∀t ≥ ξ, � (3)

	 I2(t) ≥ I02e
−(κ0+κ1+λ2)t ∀t ≥ ξ, � (4)

	 R(t) ≥ R0e(−κ0)t ∀t ≥ ξ. � (5)

Defining the norm as:

	
∥ A ∥∞= sup

t∈DA

| A(t) | .� (6)

The domain of A is given as DA. For the class S(t), the norm is given as bellow:

	

S(t) =c− ρSI2 − (κ0 + δ)S,

≥− ρSI2 − (κ0 + δ)S,

≥ (−ρ | I2 | −(κ0 + δ))S,

≥

(
−ρ sup

t∈DI2

| I2 | −(κ0 + δ)

)
S,

≥ (−ρ ∥ I2 ∥∞ −(κ0 + δ))S.

� (7)

For ordinary derivative, we have.

	 S(t) ≥ S0e(−ρ∥I2∥∞−(κ0+δ))t ∀t ≥ ξ.� (8)

Now for the class E(t),
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E(t) =ρSI2 − (κ0 + σ + λ)E,

≥ρ | SI2 | −(κ0 + σ + λ)E,

≥ρ sup
t∈DSI2

| SI2 | −(κ0 + σ + λ)E,

≥ρ ∥ SI2 ∥∞ −(κ0 + σ + λ)E.

� (9)

For ordinary derivative, we have

	 E(t) ≥ E0eρ∥SI2∥∞−(κ0+σ+λ)E ∀t ≥ ξ.� (10)

The positive results with non-local operator are described below.

Boundedness and positiveness
Here, we illustrate the boundedness and positivity of the newly developed model.

Theorem 1  Let the initial conditions be

	 {S(0), E(0), I1(0), I2(0), R(0)} ⊂ Υ,

Then, if the solutions S,E, I1, I2, R exist, they are all positive for all t ≥ 0, and Υ is a space in R5
+.

Proof  To demonstrate the positiveness of the solutions, we begin with an analysis using the method described 
in39–41, which address real-world issues where values are inherently positive. We define the norm as given in Eq. 
(6):

	

FFM
0 Dϕ,φ

t S(t) =c− ρI2(t)− (κ0 + δ)), ∀t ≥ 0

≥− (ρI2(t) + κ0 + δ), ∀t ≥ 0

≥− (ρ | I2(t) | +κ0 + δ)S(t), ∀t ≥ 0

≥− (ρsupt∈Dρ
| I2(t) | +κ0 + δ)S(t), ∀t ≥ 0

≥− (ρ ∥ I2 ∥∞ +κ0 + δ)S(t), ∀t ≥ 0.

� (11)

Using the definition of FFM and after simplification, we get

	
S(t) ≥ S(0)Eϕ

[
− d1−φϕ(κ0 + δ + ρ ∥ I2 ∥∞)tϕ

AB(ϕ)− (1− ϕ)(κ0 + δ + ρ ∥ I2 ∥∞)

]
, ∀t ≥ 0.� (12)

Here, d is the time element. This indicates that S(t) > 0 for all t ≥ 0. Similarly, for the E(t), we have

	

FFM
0 Dϕ,φ

t E(t) =ρS(t)I2(t)− (κ0 + σ + λ)E(t)

≥− (κ0 + σ + λ)E, ∀t ≥ 0,

yielding

	
E(t) ≥ E(0)Eϕ

[
− d1−φϕ(κ0 + σ + λ)tϕ

AB(ϕ)− (1− ϕ)(κ0 + σ + λ)

]
, ∀t ≥ 0.� (13)

Here, d is the time element. This indicates that E(t) > 0 for all t ≥ 0. For I1(t), we have

	

FFM
0 Dϕ,φ

t I1(t) =σE(t)− (κ0 + η + λ1)I1(t), ∀t ≥ 0

≥− (κ0 + η + λ1)I1(t), ∀t ≥ 0,
� (14)

And this yields:

	
I1(t) ≥ I1(0)Eϕ

[
− d1−φϕ(κ0 + η + λ1)t

ϕ

AB(ϕ)− (1− ϕ)(κ0 + η + λ1)

]
, ∀t ≥ 0.� (15)

Here, d is the time element. This indicates that I1(t) > 0 for all t ≥ 0. For I2(t), we have

	

FFM
0 Dϕ,φ

t I2(t) =ηI1(t)− (κ0 + κ1 + λ1)I2(t), ∀t ≥ 0

≥− (κ0 + κ1 + λ2)I2(t), ∀t ≥ 0,

Yielding:
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I2(t) ≥ I2(0)Eϕ

[
− d1−φϕ(κ0 + κ1 + λ2)t

ϕ

AB(ϕ)− (1− ϕ)(κ0 + κ1 + λ2)

]
, ∀t ≥ 0.� (16)

Here, d is the time element. This indicates that I2(t) > 0 for all t ≥ 0. For R(t), we have

	

FFM
0 Dϕ,φ

t R(t) =λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t), ∀t ≥ 0

≥− κ0R(t), ∀t ≥ 0,
� (17)

yielding

	
R(t) ≥ R(0)Eϕ

[
− d1−φϕ(κ0)t

ϕ

AB(ϕ)− (1− ϕ)(κ0)

]
, ∀t ≥ 0.� (18)

Here, d is the time element. This indicates that R(t) > 0 for all t ≥ 0. which shows that the developed system 
under the created hypothesis provides positive and bounded solutions for the HBV mathematical model. □

Positive solutions with non-local operator
If each initial condition given is true for non-local operators, every outcome of (2) will be positive42.

•	 For Fractal-Fractional operator having a power law kernel, we obtain ∀t ≥ ξ

	




S(t) ≥ S0Fϕ

�
−ω1−φ(−ρ ∥ I2 ∥∞ −(κ0 + δ))tϕ


,

E(t) ≥ E0Fϕ (ρ ∥ SI2 ∥∞ −(κ0 + σ + λ)) ,

I1(t) ≥ I01Fϕ

�
−ω1−φ(κ0 + η + λ1)t

ϕ

,

I2(t) ≥ I02Fϕ

�
−ω1−φ(κ0 + κ1 + λ2)


,

R(t) ≥ R0Fϕ

�
−ω1−φ(−κ0)t

ϕ

.

� (19)

 Where ω is the time element.

•	 For Fractal-Fractional operator having an exponential kernel, we obtain ∀t ≥ ξ. 

	




S(t) ≥ S0 exp

− χ1−φϕ(−ρ∥I2∥∞−(κ0+δ))t

µ(ϕ)−(1−ϕ)[−ρ∥I2∥∞−(κ0+δ)]


,

E(t) ≥ E0 exp

− χ1−φϕ(ρ∥SI2∥∞−(κ0+σ+λ))t

µ(ϕ)−(1−ϕ)[ρ∥SI2∥∞−(κ0+σ+λ)]


,

I1(t) ≥ I01 exp

− χ1−φϕ(κ0+η+λ1)t

µ(ϕ)−(1−ϕ)[κ0+η+λ1]


,

I2(t) ≥ I02 exp

− χ1−φϕ(κ0+κ1+λ2)t

µ(ϕ)−(1−ϕ)[κ0+κ1+λ2]


,

R(t) ≥ R0 exp

− χ1−φϕ(κ0)t

µ(ϕ)−(1−ϕ)[κ0]


.

� (20)

•	
•	 For Fractal-Fractional operator having Mittag-leffler kernel, we obtain ∀t ≥ ξ. 

	




S(t) ≥ S0Fϕ


− χ1−φϕ(−ρ∥I2∥∞−(κ0+δ))tϕ

µ(ϕ)−(1−ϕ)[−ρ∥I2∥∞−(κ0+δ)]


,

E(t) ≥ E0Fϕ


− χ1−φϕ(ρ∥SI2∥∞−(κ0+σ+λ))tϕ

AB(ϕ)−(1−ϕ)[ρ∥SI2∥∞−(κ0+σ+λ)]


,

I1(t) ≥ I01Fϕ


− χ1−φϕ(κ0+η+λ1)t

ϕ

AB(ϕ)−(1−ϕ)[κ0+η+λ1]


,

I2(t) ≥ I02Fϕ


− χ1−φϕ(κ0+κ1+λ2)t

ϕ

AB(ϕ)−(1−ϕ)[κ0+κ1+λ2]


,

R(t) ≥ R0Fϕ


− χ1−φϕ(κ0)t

ϕ

AB(ϕ)−(1−ϕ)[κ0]


.

� (21)

•	 The above results show that the developed model provides positive solutions for utilizing different kernels 
under bounded domains for all t.

Positively invariant region
Lemma 1  If

	
ℸ =

{
(S,E, I1, I2, R) ∈ R5

+ : 0 ≤ N(t) ≤ c

κ0

}
.� (22)
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When applied to non-negative starting circumstances, the region ℸ is positively invariant and attracts all 
solutions of the proposed system in R5

+ if N(0) ≤ c
κ0

.

Proof  We will show the positive solution to the model given in (2), and the results are outlined below:

	




FFM
0 Dϕ,φ

t S(t) |S=0≥ c ≥ 0,
FFM
0 Dϕ,φ

t E(t) |E=0≥ ρS(t)I2(t) ≥ 0,
FFM
0 Dϕ,φ

t I1(t) |I1=0≥ σE(t) ≥ 0,
FFM
0 Dϕ,φ

t I2(t) |I2=0≥ ηI1(t) ≥ 0,
FFM
0 Dϕ,φ

t R(t) |R=0≥ λ1I1(t) + λ2I2(t) + δS(t) + λE(t) ≥ 0.

� (23)

The system (23) indicates that the vector field lies within R5
+ on each hyperspace covering the non-negative 

orthant with t ≥ 0. With the addition of the constituent elements of the human population in the model given 
by Eq. (2), we arrive at the following total population:

	

FFM
0 Dϕ,φ

t N(t) =FFM
0 Dϕ,φ

t S(t) +FFM
0 Dϕ,φ

t E(t) +FFM
0 Dϕ,φ

t I1(t) +
FFM
0 Dϕ,φ

t I2(t) +
FFM
0 Dϕ,φ

t R(t),

=c− κ0(S(t) + E(t) + I1(t) + I2(t) + R(t)− κ1I1(t)).

We can write

	
FFM
0 Dϕ,φ

t N(t) ≤ c− κ0N.� (24)

Assuming N(0) ≤ c
κ0
.

	
=⇒ N(t) ≤ c

κ0
.

Therefore, a solution of the fractional order model given in (2) persists in Γ for each t > −ξ. For the fractional 
model, this means that the closed set Γ is positively stable. Consequently, we are able to explore our fractional 
order model given in (2) within the feasible region.

	
ℸ =

{
(S,E, I1, I2, R) ∈ R5

+ : S + E + I1 + I2 +R ≤ c

κ0

}
.

□

Qualitative analysis for the developed model
Constant functions reflect the states of an equilibrium system of equations that are differential with consistent 
coefficients. The balance in our circumstances is represented by:

	
FFM
0 Dϕ,φ

t N(t) =FFM
0 Dϕ,φ

t S(t) =FFM
0 Dϕ,φ

t E(t) =FFM
0 Dϕ,φ

t I1(t) =
FFM
0 Dϕ,φ

t I2(t) =
FFM
0 Dϕ,φ

t R(t) = 0.

⇒;

	

c− ρS(t)I2(t)− (κ0 + δ)S(t) = 0,

ρS(t)I2(t)− (κ0 + σ + λ)E(t) = 0,

σE(t)− (κ0 + η + λ1)I1(t) = 0,

ηI1(t)− (κ0 + κ1 + λ2)I2(t) = 0,

λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t) = 0.

We end up with constant functions as a result. As a result, time delays have no impact on how equilibria present 
themselves. With constant parameters, the equilibria of hepatitis b models are therefore equivalent43. We have 
the disease-free equilibrium states E0 as:

	
E0 = (S0, E0, I01 , I

0
2 , R

0) =

(
S0 =

c

κ0 + δ
, 0, 0, 0, R0 =

cδ

(κ0 + δ)κ0

)
.� (25)

There is an endemic equilibrium when there is an infection. By putting the right side of system given by Eq. (2) 
equal to 0 to reach the values of the endemic equilibrium E∗ = (S∗, E∗, I∗1 , I

∗
2 , R

∗) as given.

	 S(t) → 6.57067, E(t) → 1.11667, I1(t) → 0.119643, I2(t) → 0.217532, R(t) → 5.1638.� (26)

Reproductive Number
In order to get reproductive number R0 we are having the next generation matrix procedure as used in44 on 
model (2),
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let us suppose:

	 J0 = F − V.

Construction of F and V is based on Next generation method in which infection rate may be taken in F and rest 
of the parameters must be in V, where F and V are as follows:

	

F =




0 0 0 0 0

0 −σ 0 0 0

0 σ 0 0 0

0 0 η 0 0

0 0 0 0 0




V =




κ0 + δ 0 0 ρc
κ0+δ 0

0 κ0 + λ 0 − ρc
κ0+δ 0

0 0 κ0 + η + λ1 0 0

0 0 0 κ0 + κ1 + λ2 0

−δ −λ −λ1 −λ2 κ0



.

Now using

	 K = FV −1,� (27)

Also using the characteristics equation det(K − ΛI) = 0, We obtained Λ by solving characteristics equations 
which shows the reproductive number R0. We find the reproductive number using the next generation technique 
and get the following:

	
R0 =

cρση

(κ0 + δ) + (κ0 + κ1 + λ2) + (κ0 + λ2 + λ1) + (κ0 + λ + σ)
,� (28)

Which is less than one under the considered parameters, and it will rise if we rise up the rate of η, c and ρ.

Sensitivity Analysis
Sensitivity analysis is used to assess how different elements, when combined with uncertain data, affect a model’s 
stability. Also, the research can pinpoint the crucial variables. If we take into account the partial derivative of the 
threshold for the pertinent parameters, we can investigate the sensitivity of R0.

Reproductive number is:

	

R0 =
cρση

(κ0 + δ) + (κ0 + κ1 + λ2) + (κ0 + λ2 + λ1) + (κ0 + λ + σ)
,

∂R0

∂κ0
=

1

(κ0 + δ)2(κ0 + κ1 + λ2)2(κ0 + λ2 + λ1)2(κ0 + λ + σ)2

×
[
− ((κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1))− (κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ + σ)

− (κ0 + δ)(κ0 + λ2 + λ1)(κ0 + λ + σ)− (κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)
]
η < 0,

∂R0

∂c
=

ρση

(κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)
> 0,

∂R0

∂ρ
=

ρση

(κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)
> 0

∂R0

∂σ
=− cρ(κ0 + λ)η

(κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)2
> 0,

∂R0

∂η
=

cρση

(κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)
> 0,

∂R0

∂δ
=− cρση

(κ0 + δ)2(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)
< 0,

∂R0

∂κ1
=− cρση

(κ0 + δ)(κ0 + κ1 + λ2)2(κ0 + λ2 + λ1)(κ0 + λ + σ)
< 0,

∂R0

∂λ2
=− cρ(2κ0 + κ1 + 2λ2 + λ1)ση

(κ0 + δ)(κ0 + κ1 + λ2)2(κ0 + λ2 + λ1)2(κ0 + λ + σ)
< 0,

∂R0

∂λ1
=− cρση

(κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)2(κ0 + λ + σ)
< 0,

∂R0

∂λ
=− cρση

(κ0 + δ)(κ0 + κ1 + λ2)(κ0 + λ2 + λ1)(κ0 + λ + σ)2
< 0.

� (29)
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It becomes clear that R0 is incredibly sensitive as we alter the parameters. The parameters δ, κ1, λ, λ1 and λ2 are 
shrinking in this work whereas the variables c, ρ, σ and η are expanding. Figure 2 illustrates this reproductive 
number behavior under different parameters.

In order to confirm the bounded behavior of the newly developed Hepatitis B virus model, combinations of each 
compartment with the influence of the other compartments are examined. Here, it has extremely complicated 
effects on the populace; the hepatitis connection system is continuous and time-dependent. Upon determining 
the rate of change under various parameters, it is apparent that the value of R0 is quite sensitive. Therefore, 
medication should follow prevention for effective infection control. As shown in Fig. 2, the indices previously 
mentioned assist in identifying the crucial factors that influence the infection’s potential to spread.

All of the aforementioned sub-figures demonstrate how the value of R0 behaves in a very responsive manner. 
The behavior with respect to ρ with k0 and k1, and the behavior of ρ with c, η with σ, and σ with η are similar with 
minor effects. It is also observed that R0 is most sensitive under the rate of change of different parameters, as the 
rate of change of these parameters η and σ provides a high risk of disease spread. This needs to be maintained 
within a specific range; otherwise, chronic stage infection will rise and cause liver cirrhosis. However, all of the 
sub-figures show that each parameter’s rate of change is limited, which is crucial for stable conditions.

Locally and globally analysis of the model
Local stability analysis for equilibrium
As per equilibria, local stability is confirmed by the subsequent theorem.

Theorem 2  When R0 is less than 1, the disease-free equilibrium point of the suggested fractional-order Hepati-
tis B Virus (HBV) model shows local asymptotic stability.

Proof  Assume that the suggested system is stable at E0. The Jacobian matrix, which can be shortened to J, is as 
follows:

	

J =




−ρI2 − (κ0 + δ) 0 0 ρS 0

ρI2 −(κ0 + σ + λ) 0 ρS 0

0 σ −(κ0 + η + λ1) 0 0

0 0 η −(κ0 + κ1 + λ2) 0

δ λ λ1 λ2 −κ0




At E0

	

Jo =




−(κ0 + δ) 0 0 − ρc
κ0+δ 0

0 −(κ0 + σ + λ) 0 ρc
κ0+δ 0

0 σ −(κ0 + κ1 + λ2) 0 0

0 0 η −(κ0 + κ1 + λ2) 0

δ λ λ1 λ2 −κ0




So, the characteristics equation is

	

| J0 − ΛI |=0

| J0 − ΛI |=

∣∣∣∣∣∣∣∣∣∣∣

−(κ0 + δ)− Λ 0 0 − ρc
κ0+δ 0

0 −(κ0 + σ + λ)− Λ 0 ρc
κ0+δ 0

0 σ −(κ0 + κ1 + λ2)− Λ 0 0

0 0 η −(κ0 + κ1 + λ2)− Λ 0

δ λ λ1 λ2 −κ0 − Λ

∣∣∣∣∣∣∣∣∣∣∣

= 0
� (30)

The eigenvalues Λ have been obtained from the above determinant. The calculated eigenvalues are as follows:

	

Λ =− 0.05,

Λ =− 0.03,

Λ =− 0.215506 + 0.0137158i,

Λ =− 0.00398878− 1.04083× 10−17i.

In systems modeled by differential equations, negative real parts of eigenvalues suggests that perturbations or 
disturbances will decay over time, leading to stable behavior. The above results show that the real parts of all the 
eigenvalues are negative, indicating that the system is locally asymptotically stable for R0 < 1. □
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Fig. 2.  Reproductive number behavior under different parameters.
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Global Stability Analysis
Applying Lyapunov’s method and Lasalle’s invariance principle, the global stability analysis is shown to determine 
the prerequisites for epidemic extermination.

First derivative of Lyapunov
Theorem 3  As R0 > 1, then endemic equilibrium points of the SEI1I2R model is globally asynchronously 
stable

Proof  In order to proove this the Lyapunov function is going to be written as.

	

L (S∗, (E∗, I∗1 , I
∗
2 , R∗) =

(
S − S∗ − S∗ log

S

S∗

)
+ (E − E∗ − E∗ log

E

E∗) +

(
I1 − I∗1 − I∗1 log

I1
I∗1

)

+

(
I2 − I∗2 − I∗2 log

I2
I∗2

)
+

(
R−R∗ − R∗ log

R

R∗

)
.

Taking derivative we have;

	

FFM
0 Dϕ,φ

t L =

(
S − S∗

S

)FFM

0

Dϕ,φ
t S(t) +

(
E − E∗

E

)FFM

0

Dϕ,φ
t E(t) +

(
I1 − I∗1

I1

)FFM

0

Dϕ,φ
t I1(t)

+

(
I2 − I∗2

I2

)FFM

0

Dϕ,φ
t I2(t) +

(
R−R∗

R

)FFM

0

Dϕ,φ
t R(t).

We have

	

FFM
0 Dϕ,φ

t L =

(
S − S∗

S

)
(c− ρSI2 − (κ0 + δ)S) +

(
E − E∗

E

)
(ρS(t)I2(t)− (κ0 + σ + γ)E(t))

+

(
I1 − I∗1

I1

)
(σE − (κ0 + η + λ1)I1) +

(
I2 − I∗2

I2

)
(ηI1 − (κ0 + κ1 + γ2)I2)

+

(
R−R∗

R

)
(λ1I1 + γ2I2 + δS − κ0R + γE).

By putting S = S − S∗,E = E − E∗,I1 = I1 − I∗1 , I2 = I2 − I∗2 , R = R−R∗ leads to:

	

FFM
0 Dϕ,φ

t L =

(
S − S∗

S

)
(c− ρ(S − S∗)(I2 − I∗2 ) − (κ0 + δ)(S − S∗))

+ (
E − E∗

E
) (ρ(S − S∗)((I2 − I∗2 ))− (κ0 + σ + λ)(E − E∗))

+

(
I1 − I∗1

I1

)
(σ(E − E∗))− (κ0 + η + λ1)(I1 − I∗1 ) +

(
I2 − I∗2

I2

)
(η(I1 − I∗1 )− (κ0 + κ1 + λ2(I2 − I∗2 ))

+ (
R−R∗

R
)(λ1(I1 − I∗1 ) + λ2(I2 − I∗2 )) + δ(S − S∗)− κ0(R−R∗) + σ(E − E∗)).

FFM
0 Dϕ,φ

t L =c− c
S∗

S
− ρI2

(S − S∗)2

S
+ ρI∗2

(S − S∗)2

S
− (κ0 + δ)

(S − S∗)2

S

+ ρI2S − ρI∗2S − ρI2S
∗ + ρI∗2S

∗ − I2Sρ
E∗

E
+ ρSI∗2

E∗

E

+ ρS∗I2
E∗

E
− S∗ρI∗2

E∗

E
− ρI∗1S

∗E
∗

E
+ σE − σE∗ − σE

I∗1
I1

+ σE∗I
∗
1

I1
− (κ0 + η + λ1)

(I1 − I∗1 )
2

I1

+ ηI1 − ηI1
I∗2
I2

− ηI∗1 + ηI∗1
I∗2
I2

− (κ0 + κ1 + λ2)
(I2 − I∗2 )

2

I2
+ λ1I1 − λ1I

∗
1 − λ1I1

R∗

R
+ λ1I

∗
1

R∗

R
+ λ2I2

− λ2I
∗
2 − λ2I2

R∗

R
+ λ2I

∗
2

R∗

R
+ δS − δS∗ − δS

R∗

R
+ δS∗R

∗

R

− κ0
(R−R∗)2

R
+ σE − σE∗ − σE

R∗

R
+ σE∗R

∗

R
.

� (31)

We can write

	
FFM
0 Dϕ,φ

t L = M −G.� (32)

Where

	

M =c + ρI∗2
(S − S∗)2

S
+ ρI2S + ρI∗2S

∗ + ρSI∗2
E∗

E
+ ρS∗I2

E∗

E
+ σE + σE∗I

∗
1

I1

+ ηI1 + ηI∗1
I∗2
I2

+ λ1I1 − λ1I
∗
1 + λ1I

∗
1

R∗

R
+ λ2I

∗
2

R∗

R
+ δS + δS∗R

∗

R
+ σE + σE∗R

∗

R
.

And
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G =c
S∗

S
+ ρI2

(S − S∗)2

S
+ (κ0 + δ)

(S − S∗)2

S
+ ρI∗2S + ρI2S

∗ + I2Sρ
E∗

E

+ S∗ρI∗2
E∗

E
+ ρI∗1S

∗E
∗

E
+ σE∗ + σE

I∗1
I1

+ (κ0 + η + λ1)
(I1 − I∗1 )

2

I1

+ ηI1
I∗2
I2

+ ηI∗1 + (κ0 + κ1 + λ2)
(I2 + I∗2 )

2

I2
+ λ1I

∗
1 + λ1I1

R∗

R

+ λ2I
∗
2 + λ2I2

R∗

R
+ δS∗ + δS

R∗

R
+ κ0

(R−R∗)2

R
+ σE∗ + σE

R∗

R
.

� (33)

We conclude that if M < G this yields dLdt < 0 as long as;

	

S =S∗, E = E∗, I1 = I∗1 , I2 = I∗2 , R = R∗.

0 =M −G ⇒ dL

dt
= 0.

� (34)

From the above calculation, we obtain that

	
(S∗, E∗, I∗1 , I

∗
2 , R

∗) ∈ Γ :
dL

dt
= 0.� (35)

Here is the point E∗, the endemic equilibrium of the newly developed model. Using LaSalle’s invariance principle, 
E∗ is globally asymptotically stable in Γ if G < M . □

Existence and uniqueness analysis
In the context of a Banach space, fixed point mappings offer a comprehensive approach to studying the existence 
of a unique solution. A fixed point mapping theorem indicates that at least one solution exists for the suggested 
system described by Equ. (2) within the interval [0, T ]45. Consider the system defined by Eq. (2) as:

	




FFM
0 Dϕ,φ

t S(t) = c− ρS(t)I2(t)− (κ0 + δ)S(t) = S̃(t, S(t)),
FFM
0 Dϕ,φ

t E(t) = ρS(t)I2(t)− (κ0 + σ + λ)E(t) = Ẽ(t, E(t)),
FFM
0 Dϕ,φ

t I1(t) = σE(t)− (κ0 + η + λ1)I1(t) = Ĩ1(t, I1(t)),
FFM
0 Dϕ,φ

t I2(t) = ηI1(t)− (κ0 + κ1 + λ2)I2(t)) = Ĩ2(t, I2(t)),
FFM
0 Dϕ,φ

t R(t) = λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t) = R̃(t, R(t)).

� (36)

The modification of the system (36) can be represented as follows:

	




FFM
0 Dϕ,φ

t S(t) = S0(t) + φ(1−ϕ)tφ−1

AB(ϕ) S̃(t, S(t)) + ϕφ
AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1S̃(ξ, S(ξ))dξ = A1 + A2,

FFM
0 Dϕ,φ

t E(t) = E0(t) + φ(1−ϕ)tφ−1

AB(ϕ) Ẽ(t, E(t)) + ϕφ
AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ẽ(ξ, E(ξ))dξ = B1 + B2,

FFM
0 Dϕ,φ

t I1(t) = I01 (t) +
φ(1−ϕ)tφ−1

AB(ϕ) Ĩ1(t, I1(t)) +
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ĩ1(ξ, I1(ξ))dξ = C1 + C2,

FFM
0 Dϕ,φ

t I2(t) = I02 (t) +
φ(1−ϕ)tφ−1

AB(ϕ) Ĩ2(t, I2(t)) +
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ĩ2(ξ, I2(ξ))dξ = D1 +D2,

FFM
0 Dϕ,φ

t R(t) = R0(t) + φ(1−ϕ)tφ−1

AB(ϕ) R̃(t, R(t)) + ϕφ
AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1R̃(ξ, R(ξ))dξ = E1 + E2,

� (37)

Where

	




A1 = S0(t) + φ(1−ϕ)tφ−1

AB(ϕ) S̃(t, S(t)), A2 =
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1S̃(ξ, S(ξ))dξ,

B1 = E0(t) + φ(1−ϕ)tφ−1

AB(ϕ) Ẽ(t, E(t)), B2 =
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ẽ(ξ, E(ξ))dξ,

C1 = I01 (t) +
φ(1−ϕ)tφ−1

AB(ϕ) Ĩ1(t, I1(t)), C2 =
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ĩ1(ξ, I1(ξ))dξ,

D1 = I02 (t) +
φ(1−ϕ)tφ−1

AB(ϕ) Ĩ2(t, I2(t)), D2
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ĩ2(ξ, I2(ξ))dξ,

E1 = R0(t) + φ(1−ϕ)tφ−1

AB(ϕ) R̃(t, R(t)), E2 =
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1R̃(ξ, R(ξ))dξ.

� (38)

We establish the fundamental element of the regulating Eq. (36), where P (A1, B1, C1, D1, E1) are contraction 
maps and U(A2, B2, C2, D2, E2) as continuous compact integral parts using Krasnoselski’s fixed point theorem.

Theorem 4  The non-linear map P (A1, B1, C1, D1, E1): [0,T]× R× R → R5 given in (36) illustrates Lipschitz 
contractive condition for constants and P (MA,MB,MC,MD,ME > 0).

Proof  Assuming the operator P (A1, B1, C1, D1, E1): [0,T]× R× R → R5 is defined in a complete normed 
space.
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∥ (S,E, I1, I2, R) ∥= max

t∈[0,T]
∥ S(t), E(t), I1(t), I2(t), R(t) ∥, S, E, I1, I2, Rt ∈ [0,T].� (39)

(i): First of all, P (A1, B1, C1, D1, E1) is a contraction map. For S(t) and S̃(t),

	

∥ A(S,E, I1, I2, R)(t)− A(S̃, E, I1, I2, R)(t) ∥= ∥ c− ρSI2 − (κ0 + δ)S − (c− ρS̃I2 − (κ0 + δ)S̃) ∥
= ∥ −ρI2(S − S̃)− (κ0 + δ)(S − S̃) ∥

∥ A(S,E, I1, I2, R)(t)− A(S̃, E, I1, I2, R)(t) ∥≤ ∥ ρI2 + (κ0 + δ) ∥∥ (S − S̃) ∥
≤MA ∥ (S − S̃) ∥,

� (40)

Where MA =∥ ρI2 + (κ0 + δ) ∥.

In a similar way, we can have

	 ∥ B(S,E, I1, I2, R)(t)− B(S, Ẽ, I1, I2, R)(t) ∥≤MB ∥ (E − Ẽ) ∥, � (41)

	 ∥ C(S,E, I1, I2, R)(t)− C(S,E, Ĩ1, I2, R)(t) ∥≤MC ∥ (I1 − Ĩ1) ∥, � (42)

	 ∥ D(S,E, I1, I2, R)(t)−D(S,E, I1, Ĩ2, R)(t) ∥≤MD ∥ (I2 − Ĩ2) ∥, � (43)

	 ∥ E(S,E, I1, I2, R)(t)− E(S,E, I1, I2, R̃)(t) ∥≤ME ∥ (R− R̃) ∥, � (44)

Where MB =∥ (κ0 + σ + λ) ∥,MC =∥ (κ0 + η + λ1) ∥,MD =∥ (κ0 + κ1 + λ2) ∥,ME =∥ (κ0) ∥ .

This suggests that in the operator’s case P (S,E, I1, I2, R) having:

	

∥ P (S,E, I1, I2, R)(t)− P (S̄, Ē, Ī1, Ī2, R̄)(t) ∥=φ(1− ϕ)tφ−1

AB(ϕ)
max
t∈[0,T]

| (S,E, I1, I2, R)(t)− (S̄, Ē, Ī1, Ī2, R̄)(t) |

≤φ(1− ϕ)tφ−1

AB(ϕ)
max
t∈[0,T]

∥ (S,E, I1, I2, R)(t)− (S̄, Ē, Ī1, Ī2, R̄)(t) ∥

≤φ(1− ϕ)tφ−1

AB(ϕ)
max
t∈[0,T]

M,

� (45)

Where M = max[MA,MB,MC,MD,ME
] < 1 is a Lipschitz constant. ⇒ P (S,E, I1, I2, R).

(ii): Secondly, we subsequently demonstrate that U(A2, B2C2, D2, E2) is consistently compact.
The non-zero positive constants provided in Eq. (36) for χA, χB, χC, χD, χE,ΞA,ΞB,ΞC,ΞD,ΞE  ensure the 

absolute modulus of all positively bounded continuous operators A, B, C, D, and E. The satisfaction of the 
boundedness inequalities that follow demonstrates the extent of compactness of the operator U(A2, B2C2, D2, E2)
.

	




| A(t, S) | ≤ χA ∥ S ∥ +ΞA,

| B(t, E) | ≤ χB ∥ E ∥ +ΞB,

| B(t, I1) | ≤ χC ∥ I1 ∥ +ΞC,

| D(t, I2) | ≤ χD ∥ I2 ∥ +ΞD,

| E(t, R) | ≤ χE ∥ R ∥ +ΞE.

� (46)

Assuming W is a closed subset of Z as:

	 W = [(A,B,C,D,E) ∈ Z/ ∥ A,B,C,D,E ∥≤ φ, φ > 0].� (47)

For (A,B,C,D,E) ∈ W, we find:

	

∥ A2(t, S) ∥= max
t∈[0,T]

| ϕφ

AB(ϕ)Ψ(ϕ)

∫ t

0

(t− ξ)ϕ−1ξφ−1A(ξ, S(ξ))dξ |

≤ τϕφ

AB(ϕ)Ψ(ϕ)

∫ τ

0

(t− ξ)ϕ−1ξφ−1 | A(ξ, S(ξ)) | dξ

≤ τϕφ

AB(ϕ)Ψ(ϕ)
χAφ + ΞA.

� (48)

Similarly, we have
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



∥ B2(t, E) ∥≤ τϕφ

AB(ϕ)Ψ(ϕ)χBφ + ΞB,

∥ C2(t, I1) ∥≤ τϕφ

AB(ϕ)Ψ(ϕ)χCφ + ΞC,

∥ D2(t, I2) ∥≤ τϕφ

AB(ϕ)Ψ(ϕ)χDφ + ΞD,

∥ E2(t, R) ∥≤ τϕφ

AB(ϕ)Ψ(ϕ)χEφ + ΞE.

� (49)

Further, the maximum norm of ∥ H(A2, B2C2, D2, E2) ∥ is obtained as

	 ∥ H(A2, B2C2, D2, E2) ∥≤ ([χA, χB, χC, χD, χE]φ + ΞA,ΞB,ΞC,ΞD,ΞE) = ζ,� (50)

Where ζ  is always positive. Hence,

	 ∥ H(A2, B2C2, D2, E2) ∥≤ ζ ⇒ H,� (51)

is a uniformly bounded operator.

Now, we prove that H is continuous at equal rate for tx < ty ∈ [0,T], as follows

	

| A2(t2, S)− A2(t1, S) |=
ϕφ

AB(ϕ)Ψ(ϕ)

∣∣∣∣
∫ ty

0

(t− ξ)ϕ−1ξφ−1A(ξ, S(ξ))dξ −
∫ tx

0

(t− ξ)ϕ−1ξφ−1A(ξ, S(ξ))dξ

∣∣∣∣

≤ ϕφ

AB(ϕ)Ψ(ϕ)

[∫ ty

0

(t− ξ)ϕ−1ξφ−1 −
∫ tx

0

(t− ξ)ϕ−1ξφ−1

]
(χA + ΞA)

≤ χA + ΞAφ

AB(ϕ)Ψ(ϕ)

[
tϕ,φ2 − tϕ,φ1

]
.

� (52)

Similarly,

	




| B2(t2, E)− B2(t1, E) |≤ χB+ΞBφ
AB(ϕ)Ψ(ϕ)


tϕ,φ2 − tϕ,φ1


,

| C2(t2, I1)− C2(t1, I1) |≤ χC+ΞCφ
AB(ϕ)Ψ(ϕ)


tϕ,φ2 − tϕ,φ1


,

| D2(t2, I2)−D2(t1, I2) |≤ χD+ΞDφ
AB(ϕ)Ψ(ϕ)


tϕ,φ2 − tϕ,φ1


,

| E2(t2, R)− E2(t1, R) |≤ χR+ΞRφ
AB(ϕ)Ψ(ϕ)


tϕ,φ2 − tϕ,φ1


.

� (53)

Since t2 → t1 is autonomous from (S,E, I1, I1, R). This implies that

	 ∥ H(A2, B2C2, D2, E2)(t2)−H(A2, B2C2, D2, E2)(t1) ∥,� (54)

⇒ H(A2, B2C2, D2, E2) is a pure constant operator.

⇒ H(A2, B2C2, D2, E2) is, according to Arzela’s theorem, reasonably compacted.
The Krasnoselski theorem follows as a consequence of the contraction and continuity of the operators P and 

U, which ensure the existence of a single, unique solution. □

Theorem 5  The system given in (2) has a unique solution if

	
τϕ,φ

AB(ϕ)Ψ(ϕ)
M ≤ 1.� (55)

M = max{MA,MB,MC,MD,ME}

Proof  Establish an operator J = (J1, J2, J3, J4, J5 : Z → Z) by utilizing (37) as:

	




J1(S,E, I1, I2, R) = S0(t) + φ(1−ϕ)tφ−1

AB(ϕ) A(t, S(t)) + ϕφ
AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1S̃(ξ, S(ξ))dξ,

J2(S,E, I1, I2, R) = E0(t) + φ(1−ϕ)tφ−1

AB(ϕ) B(t, E(t)) + ϕφ
AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ẽ(ξ, E(ξ))dξ,

J3(S,E, I1, I2, R) = I01 (t) +
φ(1−ϕ)tφ−1

AB(ϕ) C(t, I1(t)) +
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ĩ1(ξ, I1(ξ))dξ,

J4(S,E, I1, I2, R) = I02 (t) +
φ(1−ϕ)tφ−1

AB(ϕ) D(t, I2(t)) +
ϕφ

AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1Ĩ2(ξ, I2(ξ))dξ,

J5(S,E, I1, I2, R) = R0(t) + φ(1−ϕ)tφ−1

AB(ϕ) E(t, R(t)) + ϕφ
AB(ϕ)Φ(ϕ)

 t

0 (t− ξ)ϕ−1ξφ−1R̃(ξ, R(ξ))dξ.

� (56)

For (S,E, I1, I2, R), (S̄, Ē, Ī1, Ī2, R̄) ∈ Z, and utilizing (38), we have:
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∥ J1(S,E, I1, I2, R)− J1(S̄, Ē, Ī1, Ī2, R̄) ∥=φ(1− ϕ)tφ−1

AB(ϕ)
∥ (A(t, S(t))− A(t, S̄(t))) ∥

+
ϕφ

AB(ϕ)Φ(ϕ)

∫ t

0

∥ A(ξ, S(ξ))− A(ξ, S̄(ξ)) ∥ (t− ξ)ϕ−1ξφ−1A(ξ, S(ξ))dξ

≤φ(1− ϕ)tφ−1

AB(ϕ)
MA ∥ S − S̄ ∥ +

τϕφ

AB(ϕ)Φ(ϕ)
MA ∥ S − S̄ ∥

≤
[
φ(1− ϕ)tφ−1

AB(ϕ)
+

τϕφ

AB(ϕ)Φ(ϕ)

]
MA ∥ S − S̄ ∥,

� (57)

Where ∥ S − S̄ ∥→ 0 when S → S̄. Hence

	
∥ J1(S,E, I1, I2, R)− J1(S̄, Ē, Ī1, Ī2, R̄) ∥≤

[
φ(1− ϕ)tφ−1

AB(ϕ)
+

τϕφ

AB(ϕ)Φ(ϕ)

]
MA ≤ 1,� (58)

With

	
∥ J1(S,E, I1, I2, R)− J1(S̄, Ē, Ī1, Ī2, R̄) ∥

[
1−

(
φ(1− ϕ)tφ−1

AB(ϕ)
+

τϕφ

AB(ϕ)Φ(ϕ)
MA

)]
≤ 0.� (59)

Similarly, we find

	




∥ J2(S,E, I1, I2, R)− J2(S̄, Ē, Ī1, Ī2, R̄) ∥

1−


φ(1−ϕ)tφ−1

AB(ϕ) + τϕφ

AB(ϕ)Φ(ϕ)MB


≤ 0,

∥ J3(S,E, I1, I2, R)− J3(S̄, Ē, Ī1, Ī2, R̄) ∥

1−


φ(1−ϕ)tφ−1

AB(ϕ) + τϕφ

AB(ϕ)Φ(ϕ)MC


≤ 0,

∥ J4(S,E, I1, I, R)− J4(S̄, Ē, Ī1, Ī2, R̄) ∥

1−


φ(1−ϕ)tφ−1

AB(ϕ) + τϕφ

AB(ϕ)Φ(ϕ)MD


≤ 0,

∥ J4(S,E, I1, I3, R)− J4(S̄, Ē, Ī1, Ī2, R̄) ∥

1−


φ(1−ϕ)tφ−1

AB(ϕ) + τϕφ

AB(ϕ)Φ(ϕ)ME


≤ 0.

� (60)

Therefore,

	
∥ J(S,E, I1, I2, R)− J(S̄, Ē, Ī1, Ī2, R̄) ∥≤

[
φ(1− ϕ)tφ−1

AB(ϕ)
+

τϕφ

AB(ϕ)Φ(ϕ)

]
M ∥ (S,E, I1, I2, R)− (S̄, Ē, Ī1, Ī2, R̄) ∥ .� (61)

The map J shows the characteristics of Schauders and Krasnoselskis theorems and and showed that our model is 
unique and has positive solutions. □

Numerical scheme
To numerically resolve the model (2), this section comprises a numerical scheme based on a Newton polynomial. 
Following the suggested paradigm, unique differential and integral operators will be employed. The conventional 
differential operator will be substituted with the Mittag-Leffler kernel operator. Furthermore, a variant with an 
adjustable order will be utilized.

	




FFM
0 Dϕ,φ

t S(t) = c− ρS(t)I2(t)− (κ0 + δ)S(t),
FFM
0 Dϕ,φ

t E(t) = ρS(t)I2(t)− (κ0 + σ + λ)E(t),
FFM
0 Dϕ,φ

t I1(t) = σE(t)− (κ0 + η + λ1)I1(t),
FFM
0 Dϕ,φ

t I2(t) = ηI1(t)− (κ0 + κ1 + λ2)I2(t),
FFM
0 Dϕ,φ

t R(t) = λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t).

� (62)

To make things easier, we express the following equation as given bellow:

	

FFM
0 Dϕ,φ

t S(t) =S1 (t, S, E, I1, I2, R),
FFM
0 Dϕ,φ

t E(t) =E1 (t, S, E, I1, I2, R),
FFM
0 Dϕ,φ

t I1(t) =I11(t, S, E, I1, I2, R),
FFM
0 Dϕ,φ

t I2(t) =I21 (t, S, E, I1, I2, R),
FFM
0 Dϕ,φ

t R(t) =R1(t, S, E, I1, I2, R).

� (63)

Where

	

S1(t, S, E, I1, I2, R) =c− ρS(t)I2(t)− (κ0 + δ)S(t),

E1(t, S, E, I1, I2, R) =ρS(t)I2(t)− (κ0 + σ + λ)E(t),

I11(t, S, E, I1, I2, R) =σE(t)− (κ0 + η + λ1)I1(t),

I21(t, S, E, I1, I2, R) =ηI1(t)− (κ0 + κ1 + λ2)I2(t),

R1(t, S, E, I1, I2, R) =λ1I1(t) + λ2I2(t) + δS(t)− κ0R(t) + λE(t).
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We got the ongoing result following the application from Mittag-Leffler kernel to the fractal-fractional integral,

	

S(tµ + 1) =
1− ϕ

AB(φ)
t1−φ
µ Y1(tµ, S(tµ), E(tµ), I1(tµ), I2(tµ), R(tµ))

+
ϕ

AB(ϕ)λ(ϕ)

µ∑
v=2

∫ tv+1

tv

Y1(t, S, E, I1, I2, R)τ 1−φ(tµ+1 − τ )ϕ−1dτ,
� (64)

	

E(tµ + 1) =
1− ϕ

AB(φ)
t1−φ
µ Y2(tµ, S(tµ), E(tµ), I1(tµ), I2(tµ), R(tµ))

+
ϕ

AB(ϕ)λ(ϕ)

µ∑
v=2

∫ tv+1

tv

Y2(t, S, E, I1, I2, R)τ 1−φ(tµ+1 − τ )ϕ−1dτ,
� (65)

	

I1(tµ + 1) =
1− ϕ

AB(φ)
t1−φ
µ Y3(tµ, S(tµ), E(tµ), I1(tµ), I2(tµ), R(tµ))

+
ϕ

AB(ϕ)λ(ϕ)

µ∑
v=2

∫ tv+1

tv

Y3(t, S, E, I1, I2, R)τ 1−φ(tµ+1 − τ )ϕ−1dτ,
� (66)

	

I2(tµ + 1) =
1− ϕ

AB(φ)
t1−φ
µ Y4(tµ, S(tµ), E(tµ), I1(tµ), I2(tµ), R(tµ))

+
ϕ

AB(ϕ)λ(ϕ)

µ∑
v=2

∫ tv+1

tv

Y4(t, S, E, I1, I2, R)τ 1−φ(tµ+1 − τ )ϕ−1dτ,
� (67)

	

R(tµ + 1) =
1− ϕ

AB(φ)
t1−φ
µ Y5(tµ, S(tµ), E(tµ), I1(tµ), I2(tµ), R(tµ))

+
ϕ

AB(ϕ)λ(ϕ)

µ∑
v=2

∫ tv+1

tv

Y5(t, S, E, I1, I2, R)τ 1−φ(tµ+1 − τ )ϕ−1dτ.
� (68)

By utilizing the Newton polynomial as follows:

	

G(t, S, E, I1, I2, R) ≃G(tµ−2, Sµ−2, Eµ−2, I1(µ−2), I2(µ−2), Rµ−2)

+
1

∆t
[G(tµ−1, Sµ−1, Eµ−1, I1(µ−1), I2(µ−1), Rµ−1)

−G(tµ−2, Sµ−2, Eµ−2, I1(µ−2), I2(µ−2), Rµ−2)](τ − tµ−2)

+
1

2∆t2
[G(tµ, Sµ, Eµ, I1(µ), I2(µ), Rµ)

− 2G(tµ−1, Sµ−1, Eµ−1, I1(µ−1), I2(µ−1), Rµ−1)

−G(tµ−2, Sµ−2, Eµ−2, I1(µ−2), I2(µ−2), Rµ−2)].

× (τ − tµ−2)(τ − tµ−1)

Here are the numerical solutions for P (φ) when the Newton polynomial is substituted into Equations 
(64656667)-(68).

	

S(µ+1) =
1− ϕ

AB(ϕ)
t1−φ
µ S1(tµ, S(tµ), I1(tµ), I2(tµ), R(tµ)) +

ϕ

AB(ϕ)λ(ϕ)

× Σµ
v=2S1(tv−2, S

v−2, Iv−2
1 , Iv−2

2 , Rv−2)t1−φ
v−2 ×

∫ tv+1

tv

(tµ+1 − τ )ϕ−1dτ

+
ϕ

AB(ϕ)λ(ϕ)
Σµ
v=2

1�
t
[t1−φ
v−1S1(tv−1, S

v−1, Iv−1
1 , Iv−1

2 , Rv−1)

− t1−φ
v−2S1(tv−2, S

v−2, Iv−2
1 , Iv−2

2 ), Rv−2]×
∫ tv+1

tv

(τ − tv−2)(tµ+1 − τ )ϕ−1dτ

+
ϕ

AB(ϕ)λ(ϕ)
Σµ
v=2

1

2
�
t2
t1−κ
v S1(tv, S

v, Iv1 , I
v
2 , R

v)

− 2t1−φ
v−1S1(tv−1, S

v−1, Iv−1
1 , Iv−1

2 , Rv−1) + t1−φ
v−2S1(tv−2, S

v−2, Iv−2
1 , Iv−2

2 , Sv−2)

×
∫ tv+1

tv

(τ − tv−2)(τ − tv−1)(tµ+1 − τ )ϕ−1dτ.

We can perform the following computations.
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∫ tv+1

tv

(tφ+1 − τ )ϕ−1dτ =
(∆t)ϕ

ϕ
[(µ− v + 1)ϕ − (µ− v)ϕ],

∫ tv+1

tv

(τ − tv−2)(tµ+1 − τ )ϕ−1dτ =
(∆t)ϕ+1

ϕ(ϕ + 1)
,

∫ tv+1

tv

(τ − tv−2)(τ − tv−1)(tµ+1 − τ )ϕ−1dτ =
(∆t)ϕ+2

τ (ϕ + 1)(ϕ + 2)
× [(µ− v + 1)µ × {2(µ− v)2

+ (3ξ + 10)(φ− v) + 2ξ2 + 9ξ + 12} − (φ− v)ξ

× {2(µ− v)2 + (5ϕ + 10)(µ− v) + 6ϕ2 + 18ϕ + 12}].

S(µ+1) =
1− ϕ

AB(φ)
t1−φ
µ P1(tµ, S(tµ), I1(tµ), I2(tµ), R(tµ))

+
ϕ(∆t)ϕ

AB(ϕ)λ(ϕ + 1)
Σµ
v=2t

1−φ
v−2P1(tv−2, S

v−2, Iv−2
1 , Iv−2

2 )

× [(µ− v + 1)ϕ − (µ− v)ϕ]

+
ϕ(∆t)ϕ

AB(ϕ)λ(ϕ + 2)
Σµ
v=2[t

1−φ
v−1S1(tv−1, S

v−1, Iv−1
1 , Iv−1

2 )

− t1−φ
v−1S1(tv−2, S

v−2, Iv−2
1 , Iv−2

2 Rv−2)]

× [(µ− δ + 1)ϕ(µ− v + 3 + 2ϕ)− (µ− v)ϕ(µ− v + 3 + 3ϕ)]

+
ϕ(∆t)ϕ

2AB(ϕ)λ(ϕ + 3)
Σµ
v=2[t

1−φ
v S1(tv, S

v, Iv1 , I
v
2 )

− 2t1−φ
v−1S1(tv−1, S

v−1, Iv−1
1 , Iv−1

2 , Sv−1)

+ t1−φ
v−2S1(tv−2, S

v−2, Iv−2
1 , Iv−2

2 )]

× [(µ− v + 1)ϕ{2(µ− v)2 + (3ϕ + 10)(µ− v) + 2ϕ2 + 9ϕ + 12}
− (µ− v)ϕ{2(µ− v)2 + (5ϕ + 10)(µ− v) + 6ϕ2 + 18ϕ2 + 12}].

Similarly we may derive results for E(µ+1), I (µ+1)
1 , I (µ+1)

2  and R(µ+1).

Simulation explanation
Here, we applied a sophisticated method to derive conceptual findings and evaluate their applicability. The 
following examples illustrate the validity of the theoretical results. The proposed SEI1I2R system is explained 
using real situations through simulations. Figs. 3, 4, 5, 6, and 7 display the solutions for S(t), E(t), I1(t), I2(t)
, and R(t) for different fractional values across various dimensions. Numerical simulations for the Hepatitis 
B Virus model were conducted using MATLAB. The parameters used in the proposed system are as follows: 
ρ = 0.05, c = 0.4, η = 0.04, κ0 = 0.03, κ1 = 0.05, λ1 = 0.06, λ2 = 0.06, δ = 0.02, λ = 0.03, σ = 0.004, with 
initial conditions: S(0) = 100, E(0) = 60, I1(0) = 40, I2(0) = 20, and R(0) = 0.

Susceptible S(t), acutely infected I1(t), chronically infected I2(t), and recovered R(t) all decrease and 
approach a stable state over time, as seen in Figs. 3, 5, 6, and 7. The dynamics for E(t), representing asymptomatic 
cases identified early, rise as dimensions and fractional values decrease, stabilizing after some time, which can 
be seen in Fig. 4. Similar behaviors are observed whether using a dimension of 0.7 or 0.4, with minor effects; 
however, more appropriate results are achieved by reducing dimensions, as shown in Fig. 6a,b. These figures 
illustrate that acute infections start to reduce with a decrease in dimension while increasing with a dimension 
of 0.7. A comparison of fractional order with integer order results is presented in Fig. 3a, 4a, 5a, 6a, 7a and 3b, 
4b, 5b, 6b, 7b, showing the graphical representation of HBV’s impact in acute and chronic stages using the 
suggested numerical method. Additionally, it is noted that as fractional values decrease, the solutions for each 
compartment become more reliable and accurate. Furthermore, it is observed that recovery increases with 
reduced fractional values and dimensions, as shown in Fig.  7a,b, under acute and chronic stages. Reducing 
dimension in HBV is to reduce the spread attack from different dimensions treated in the form like fractals. We 
need to minimize the effect from the different dimensions. This tells clearly that when dimensions are reduced, 
chronic stage infections are reduced as we observed in Fig. 6a,b part respectively. The order of the fractional 
derivative is utilized to investigate the continuous monitoring of the spread of HBV because the derivative tells 
us the rate of change of each sub-compartment of the HBV model. All derivative terms are included during 
formulations, and the fractional-order operator is used to investigate the continuous rate of change, which shows 
continuous monitoring of each sub-compartment. In contrast, the integer order provides investigation at a single 
point or within a single region. We provide detailed comparisons by taking fractional values 0.9, 0.85, and 0.80, 
and an integer order value of 1.0 to demonstrate how fractional operators capture the behavior of each sub-
compartment for HBV more effectively and better capture the memory effects than the integer order. Similarly, 
we can observe the impact of asymptomatic measures, noting that acute infection I1 and chronic infection 
I2 reduce over time. Chronic infection, in particular, decreases sharply due to early detection measures and 
treatment. The parameters η and γ are most sensitive; if their rates increase, HBV spread increases. Conversely, 
if we decrease these parameters’ rates, HBV infections decrease, and ultimately, the system will become disease-
free due to these control measures. If we raise the η and ρ rates from 0.05, HBV infection rises, causing liver 
cirrhosis due to an increase in the chronic stage. Therefore, it is crucial to maintain these rates through control 
measures. It is deduced that HBV can be controlled by combining early detection and treatment measures to 
manage liver infection in both acute and chronic stages.
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Conclusion
We employ the sophisticated tool FFO for a fractional-order model of the viral illness hepatitis B to examine 
reliable data. This model is developed by incorporating both asymptomatic and treatment measures to control 
liver cirrhosis cases caused by HBV. For individuals with low immunity, we recommend strategies to prevent 
the spread of liver cirrhosis through early detection by introducing asymptomatic measures and chemotherapy 
treatment, which will help to make the environment disease-free soon. Examining the worldwide effects of 
chronic Hepatitis B virus (HBV) disease necessitates early risk factor detection and mitigation techniques. The 
constructed continuous dynamical system is analyzed qualitatively and statistically to evaluate its actual impact 
during chemotherapy to confirm its stability. It is necessary to understand how the model responds under 
constraints, which are established by both local and global stability analysis, to comprehend the dynamics of the 
epidemic. Additionally, we validate the presence of restricted and distinct solutions for the fractional-order HBV 
model, which are important characteristics to validate in newly created models. Furthermore, we determine the 
HBV’s bounded and positive solutions and examine the results of global initiatives to stop the virus’s spread 
and manage liver cirrhosis within the bounded domain. Prevention techniques and treatment approaches have 
demonstrated synergistic benefits that reduce the incidence of HBV infections and are beneficial in lowering 
the chronic stage of infection that results in liver cirrhosis. By using various fractional values, the FFO achieves 

Fig. 4.  Simulation of Hepatitis B sub-compartment E(t) with different fractional order value at dimensions 0.7 
and 0.4.

 

Fig. 3.  Simulation of Hepatitis B sub-compartment S(t) with different fractional order value at dimensions 0.7 
and 0.4.
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trustworthy, practical results and continually monitors the progress under a continuous rate of change, including 
dimensions and control of the virus by combined measures. Numerical simulations using MATLAB are utilized 
to uncover the real behavior of the Hepatitis B virus in the population after exposure and chemotherapy within a 
regulated range of parameter η and ρ in order to prevent liver cirrhosis infection. Moreover, projections derived 
from verified outcomes could be employed in subsequent research to facilitate comprehension of the behavior 
and environmental dissemination of HBV, together with the early identification protocols.

Fig. 6.  Simulation of Hepatitis B sub-compartment I2(t) with different fractional order value at dimensions 0.7 
and 0.4.

 

Fig. 5.  Simulation of Hepatitis B sub-compartment I1(t) with different fractional order value at dimensions 0.7 
and 0.4.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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