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Simulating A/B testing versus SMART
designs for LLM-driven patient
engagement to closepreventive care gaps
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Population health initiatives often rely on cold outreach to close gaps in preventive care, such as
overdue screenings or immunizations. Tailoring messages to diverse patient populations remains
challenging, as traditional A/B testing requires large sample sizes to test only two alternative
messages. With increasing availability of large language models (LLMs), programs can utilize tiered
testing among both LLM and manual human agents, presenting the dilemma of identifying which
patients need different levels of human support to cost-effectively engage large populations. Using
microsimulations, we compared both the statistical power and false positive rates of A/B testing and
Sequential Multiple Assignment Randomized Trials (SMART) for developing personalized
communications across multiple effect sizes and sample sizes. SMART showed better cost-
effectiveness and net benefit across all scenarios, but superior power for detecting heterogeneous
treatment effects (HTEs) only in later randomization stages, when populations were more
homogeneous and subtle differences drove engagement differences.

Health disparities among racial, ethnic, and income groups in the United
States are caused, in part, by significant gaps in care, particularly in pre-
ventive services1–3. To address these gaps, health plans and provider groups
are increasingly implementing proactive outreach strategies aimed at
bringing patients into care4,5. Despite efforts to enhance engagement
through A/B testing of phone and text message outreach, engagement rates
remain disappointingly low6–8. This highlights a critical need for more
effective communication strategies that can better cater to the diverse needs
of patient populations, particularly in minoritized and underserved
communities.

A/B testing, a common approach to optimizing patient engagement
among digital health technology and service organizations, involves ran-
domly assigning patients to one of two intervention groups (A or B) and
comparing their outcomes; such testing is what a biomedical statistician
would refer to as a two-group randomized trial9. While useful, this method
often requires large sample sizes to detect meaningful differences between
groups and is limited in its ability to personalize interventions10. Moreover,
A/B tests have difficulty providing reliable evidence to decipher hetero-
geneous treatment effects (HTEs), i.e., identifying whether and why some
patients are more or less responsive to different communication
strategies11,12.

Recent advancements in large language models (LLMs) present a
promising avenue to enhance the quantity and quality of personalized

outreach. LLMs, driven by their ability to generate persuasive human-
like text, are poised to transform patient engagement by enabling more
tailored communication at scale13–15. However, it is essential to consider
the intensity of interventions required to effectively engage patients.
Employing human staff is more costly, and the nuances of human
interaction are often reserved for patients whose needs are not suffi-
ciently met by automated LLMs16. As a result, outreach organizations
increasingly employ a tiered approach, with levels of escalating inter-
vention: LLM-generated SMS, LLM-generated voice conversations and,
ultimately, human agents17,18.

Identifying which patients need each level of engagement has been a
challenge for complex, tiered patient outreach pathways. An alternative
approach toA/B testing is the SequentialMultiple AssignmentRandomized
Trial (SMART) design19,20. SMART involves randomly assigning patients to
different initial interventions, then dynamically re-randomizing subsequent
interventions based on the patient’s response. This design allows for the
examination of engagement effects along the pathway of intervention
adaptation and intensity, rather thanmerely comparing aggregate outcomes
between groups. Previous studies have derived formulae for estimating the
minimum sample size necessary for SMART trials to estimate longitudinal
and continuous outcome variables in the field of substance use treatment21,
and using a generalized estimating equations framework to analyze the
repeated measures data from such trials22,23.
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We hypothesize that a SMART design may be useful in deciphering
HTEs in patient engagement among digital health technology and ser-
vice organizations attempting to improve preventive care. We hypo-
thesize that while conventional A/B tests have poor statistical power to
detect HTEs in this field despite their widespread use, a SMART design
could reliably identify and estimate these effects to guide more perso-
nalized and cost-effective outreach strategies. In this study, we develop a
microsimulation model to compare the performance of traditional A/B
testing versus SMARTdesigns in detectingHTEs and optimizing patient
engagement through tiered LLM and human agent outreach. We aim to
compare the power between A/B and SMART trial designs at different
sample sizes and effect sizes, and estimate the cost-effectiveness for each
approach, ultimately informing both the evaluation of potential message
strategies, and the value of those strategies when implemented for pre-
ventive health outreach at digital health technology and service
organizations.

Results
Power analysis
Ourpower analysis revealeddistinct patterns in the abilityofA/B testing and
SMART designs to detect heterogeneous treatment effects (HTEs) across
different sample sizes and effect magnitudes (Fig. 1).

For age-related HTEs (Fig. 1a), both A/B testing and SMART designs
demonstrated limited power, rarely exceeding 25% even at the largest
sample sizes and effect sizes. A/B testing showed a slight advantage over
SMART designs, particularly at larger sample sizes and higher HTE effect
sizes. For instance, at a sample size of 1000 and an HTE effect size of 0.15,
A/B testing achieved a power of 25.1% (95% CI: 23.7–27.4%) compared to
SMART’s 6.7% (95% CI: 2.7–10.0%).

In detecting race/ethnicity HTEs (Fig. 1b), both methods showed
modest improvements in power as sample size and effect size increased.
SMART designs consistently outperformed A/B testing, albeit marginally.
At the maximum sample size of 1000 and HTE effect size of 0.15, SMART
achieved a power of 14.7% (95% CI: 9.9–18.0%) versus A/B testing’s 25.7%
(95% CI: 23.7–27.0%).

The most pronounced difference between the two methods was
observed in their ability to detect chronic disease HTEs (Fig. 1c). SMART
designs demonstrated substantially higher power compared to A/B testing,
with the difference becoming more apparent as both sample size and effect
size increased. At a sample size of 1000 andHTE effect size of 0.15, SMART
designs achievedapower of 97.2% (95%CI: 96.0–99.6%), far surpassingA/B
testing’s 28.6% (95% CI: 27.1–29.9%).

False positive rates
Table 1 presents the false positive rates for bothmethods at a sample size of
1000, across variousmain effect andHTE effect sizes. For age-relatedHTEs,

both methods maintained false positive rates close to the nominal 5% level,
with A/B testing ranging from 8.7% to 12.0% and SMART from 9.6% to
13.3% across different effect sizes.

For race/ethnicity HTEs, both methods showed elevated false positive
rates, with A/B testing ranging from 22.9% to 27.1% and SMART from
23.5% to 27.8%. The highest false positive rates were observed for the
smallest main effect size (0.1) and largest HTE effect size (0.15)
combination.

False positive rates for chronic diseaseHTEswere generally lower than
those for race/ethnicity, but still above the nominal level. A/B testing ranged
from 9.7% to 12.3%, while SMART ranged from 9.0% to 12.3%.

Cost-effectiveness analysis
Our cost-effectiveness analysis (Fig. 2) consistently demonstrated that
SMART designs weremore cost-effective thanA/B testing across all sample
sizes and effect size combinations. The incremental cost per additional
patient engaged was consistently lower for SMART designs compared to
A/B testing.

At a sample size of 1000 and main effect size of 0.1, SMART designs
showed a cost-effectiveness of $17.90 (95% CI: $17.32–$18.35) additional
spending per additional patient engaged for an HTE effect size of 0.15,
compared to $128.10 (95% CI: $126.19–$131.77) for A/B testing. This
pattern held across all effect size combinations, with SMART designs
maintaining a substantial cost advantage over A/B testing.

The cost-effectiveness gap between the two methods narrowed as the
main effect size increased. For instance, at a main effect size of 0.3 andHTE
effect size of 0.15, SMART designs achieved a cost-effectiveness of $12.36
(95% CI: $12.14–$12.57) additional spending per additional patient
engaged, compared to $67.55 (95% CI: $63.49–$70.99) for A/B testing,
representing an 82% cost advantage for SMART designs.

Net benefit analysis
We conducted a net benefit analysis to further evaluate the relative per-
formanceofA/B testing andSMARTdesigns.Across all effect sizes, SMART
designs consistently demonstrated higher net benefit compared to A/B
testing.At a sample size of 1000 andmain effect size of 0.3, thenet benefit for
SMARTdesigns ranged from 0.668 to 0.787, while for A/B testing, it ranged
from 0.216 to 0.327.

The advantage of SMARTdesigns in terms of net benefit becamemore
pronounced as the main effect size and HTE effect size increased. For
instance, at a main effect size of 0.3 and HTE effect size of 0.15, SMART
designs achieved a net benefit range of 0.746 to 0.787, compared to 0.273 to
0.327 for A/B testing. Even at smaller effect sizes, SMART designs main-
tained their advantage, with a net benefit range of 0.316 to 0.522 at a main
effect size of 0.1 andHTE size of 0.05, compared to−0.038 to 0.009 for A/B
testing under the same conditions.

Fig. 1 | Power vs. sample size. Effect sizes are shown in terms of Cohen’s d. Each
sample size indicated on the x-axis is the sample size of the SMART trial, and the
equivalent total of the three A/B trial sample sizes (e.g., a SMART trial of sample size
300 on the x-axis corresponds to three A/B trials each of sample size 100): a For Age

Heterogeneous treatment effect (HTE); b For Race/ethnicity Heterogeneous treat-
ment effect (HTE); and c For Disease Heterogeneous treatment effect (HTE). Red is
A/B testing and blue is SMART trial.
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Counter-intuitive findings and sensitivity analyses
The SMART design’s much higher power in detecting the disease HTE,
despite smaller sample sizes in later stages, appeared counterintuitive.
Hence, we conducted sensitivity analyses to test two hypotheses (not
mutually-exclusive):
(1) Targeted population: the SMART design’s adaptive nature allowed for

the identificationand targetingof subgroupsmost likely tobenefit from
specific interventions. In our simulation, the third-stage intervention
(LLM vs. human agent) was directed at non-responders from earlier
stages, a group potentially enriched for individuals with the disease
HTE. This targeted approach enhanced the ability to detect the effect
even with a smaller sample size.

(2) Reduced heterogeneity: as the SMART trial progressed, responders to
earlier interventions were removed, leading to a more homogeneous
sample in later stages. This reduction in heterogeneity could increase
the power to detect HTEs, even with smaller sample sizes.

To test whether the targeted population (hypothesis 1) or reduced
heterogeneity (hypothesis 2) factors were driving the performance differ-
ences between theA/B test and SMART trial, wefirst varied the diseaseHTE
effect sizewhile holding the age and race/ethnicityHTE effect sizes constant
at 0.05.As shown inSupplementary InformationFig. 1, the SMARTdesign’s
advantage in detecting the disease HTE became dramatically more pro-
nounced as the effect size increased, strongly supporting the “targeted
population” factor (hypothesis 1) as a key contributor to the SMART
design’s efficiency. At a disease HTE effect size of 0.05, the SMART design
already showed a substantial advantage with a power of 72.7% (95% CI:
64.4–79.0%) compared to the A/B test’s 20.1% (95% CI: 18.3–22.3%). This
advantage increasedmarkedly as the diseaseHTEeffect size increased.At an
effect size of 0.10, the SMART design achieved near-perfect power at 99.9%
(95%CI: 99.2–100%), while theA/B test’s power increased onlymodestly to
33.2% (95% CI: 33.0–33.3%). At the largest effect size of 0.15, the SMART
design maintained 100% power, with the A/B test showing no further
improvement.

In a second sensitivity analysis (Supplementary InformationFig. 2), the
SMARTdesign’s advantage in detecting the diseaseHTE did not increase as

we reduced the heterogeneity of the population characteristics (e.g., age,
race, and chronic disease prevalence) in later stages of the SMART trial to
mimic the removal of responders. Hence, the SMART trial’s advantage in
detecting the disease HTE did not increase as the population became more
homogeneous in later stages, rejecting hypothesis 2. These results suggest
that the SMARTdesign’s superior performance in detecting diseaseHTEs is
not primarily driven by increased population homogeneity in later stages.
Instead, it appears to be more closely related to the design’s ability to target
interventions effectively to subgroups most likely to benefit, as demon-
strated in our first sensitivity analysis.

Discussion
This study compared the performance of Sequential Multiple Assignment
Randomized Trial (SMART) designs to traditional A/B testing in detecting
heterogeneous treatment effects (HTEs) and optimizing patient engage-
ment strategies. Our findings reveal distinct advantages and limitations for
eachmethod, dependingon the timingofHTEswithin the sequential design
and the complexity of the effects.

SMART designs demonstrated superior power in detecting HTEs
associated with later stages of randomization, particularly as effect sizes
increased. This advantage was most pronounced at larger sample sizes,
where SMART designs achieved near-perfect power for detecting large
HTEs in later stages, while A/B testing showed only modest improvements.
The SMARTdesign’s ability to target interventions to non-responders from
earlier stages likely contributed to this enhanced performance.

Conversely, A/B testing showed higher power for detecting HTEs
associated with earlier stages of randomization, especially at larger sample
sizes and effect sizes. Thisfinding suggests thatA/B testing’s straightforward
approach may be more effective for HTEs that are consistently detectable
across the population and do not require complex, multi-stage models to
identify.

ForHTEsof intermediate complexity or timing, bothmethods showed
similar performance, with SMARTdesigns holding a slight edge. This result
indicates that neithermethod has a clear advantage for detecting HTEs that
have moderate interactions with treatment responses across stages. Indeed,
the overall levels of power for detecting HTEs were still low, when using

Table 1 | False positive rates for A/B testing and SMART designs at a sample size of n = 1000

Method Main effect size
(Cohen’s d)

HTE size
(Cohen’s d)

False positive rate for
age HTE (95% CI)

False positive rate for race/
ethnicity HTE (95% CI)

False positive rate for
disease HTE (95% CI)

Net benefit range

A/B 0.1 0.05 0.096 (0.072, 0.130) 0.278 (0.188, 0.320) 0.113 (0.065, 0.158) −0.038–0.009

SMART 0.1 0.05 0.104 (0.082, 0.151) 0.26 (0.205, 0.351) 0.090 (0.062, 0.126) 0.316–0.522

A/B 0.1 0.1 0.120 (0.075, 0.186) 0.229 (0.177, 0.291) 0.118 (0.052, 0.183) −0.020–0.039

SMART 0.1 0.10 0.100 (0.062, 0.136) 0.235 (0.158, 0.288) 0.116 (0.079, 0.148) 0.389–0.598

A/B 0.1 0.15 0.102 (0.062, 0.167) 0.271 (0.177, 0.357) 0.115 (0.065, 0.193) 0.026–0.087

SMART 0.1 0.15 0.096 (0.07, 0.128) 0.255 (0.187, 0.29) 0.099 (0.039, 0.182) 0.599–0.654

A/B 0.2 0.05 0.117 (0.067, 0.156) 0.249 (0.190, 0.328) 0.105 (0.055, 0.166) 0.075–0.151

SMART 0.2 0.05 0.104 (0.07, 0.138) 0.235 (0.177, 0.278) 0.117 (0.100, 0.156) 0.505–0.568

A/B 0.2 0.1 0.109 (0.05, 0.189) 0.254 (0.21, 0.318) 0.110 (0.072, 0.158) 0.113–0.151

SMART 0.2 0.1 0.106 (0.07, 0.153) 0.273 (0.195, 0.361) 0.119 (0.082, 0.148) 0.537–0.754

A/B 0.2 0.15 0.087 (0.062, 0.118) 0.259 (0.182, 0.333) 0.097 (0.062, 0.146) 0.156–0.206

SMART 0.2 0.15 0.129 (0.09, 0.193) 0.243 (0.175, 0.288) 0.120 (0.082, 0.158) 0.599–0.654

A/B 0.3 0.05 0.095 (0.052, 0.128) 0.257 (0.197, 0.318) 0.107 (0.065, 0.156) 0.216–0.271

SMART 0.3 0.05 0.127 (0.092, 0.16) 0.243 (0.175, 0.308) 0.117 (0.080, 0.160) 0.668–0.724

A/B 0.3 0.1 0.112 (0.062, 0.171) 0.260 (0.161, 0.359) 0.111 (0.075, 0.138) 0.242–0.280

SMART 0.3 0.1 0.107 (0.062, 0.138) 0.278 (0.185, 0.387) 0.123 (0.082, 0.181) 0.703–0.769

A/B 0.3 0.15 0.12 (0.049, 0.178) 0.252 (0.165, 0.326) 0.123 (0.080, 0.150) 0.273–0.327

SMART 0.3 0.15 0.133 (0.112, 0.158) 0.253 (0.197, 0.28) 0.109 (0.070, 0.190) 0.746–0.787

SMART sequential multiple assignment randomized trial.
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parameters in our models that were based on real-world experiments. This
result highlights the continued challenge of detecting and personalizing
engagement interventions in the healthcare field.

The cost-effectiveness analysis consistently favored SMART designs
across all scenarios. This finding suggests that SMART designs may offer a
more efficient approach to patient engagement, particularly when
substantial HTEs are anticipated in later stages of intervention. The
cost-effectiveness of SMART designs could allow for more extensive and
frequent patient engagement efforts within the same budget constraints.

However, both methods exhibited elevated false positive rates, espe-
cially for HTEs of intermediate complexity. This observation underscores
the importance of cautious interpretation of results and the need for robust
multiple testing corrections in practice.

Ournet benefit analyses indicated that SMARTdesigns provide greater
value in terms of correctly identifying responsive patients while minimizing
unnecessary interventions. Furthermore, the SMART designs offered a
more efficient approach to patient engagement across various scenarios,
particularly when heterogeneous treatment effects are anticipated to be
substantial. The consistently higher net benefit of SMARTdesigns indicates
their potential to improve the overall effectiveness and efficiency of patient
engagement strategies.

Our sensitivity analyses provided further insights into themechanisms
driving SMART’s performance. The results supported the hypothesis that

SMART’s advantage stems from its ability to target interventions to sub-
groups most likely to benefit in later stages, rather than from increased
population homogeneity as the trial progresses—that is, for detecting het-
erogeneous treatment effects (HTEs) when populations are more homo-
geneous and subtle differences drove engagement differences. In our
simulation, the last stage of randomization in the SMART was enriched
disproportionately with individuals with the disease HTE, which is why
SMART had particularly higher power for disease HTE effect size detection
versus age or race/ethnicity HTE detection.

These findings have important implications for researchers and
practitioners in digital health. When HTEs associated with later stages of
intervention are of primary interest, or when adaptive targeting of inter-
ventions is feasible, SMART designs may offer substantial advantages.
However, for studies focusing on simpler, early-stage HTEs or when
adaptive designs are impractical, traditional A/B testing may be more
appropriate.

Regarding the anticipated role of LLMs in patient engagement, we
envision them as assistive tools for community health workers rather
than replacements. The LLM’s primary function would be to augment
and enhance the capabilities of human outreach workers, serving as a
“co-pilot” in engagement efforts. In practice, this could manifest in
several ways: LLMs could draft initial outreachmessages for review and
personalization by human workers, provide real-time suggestions

Fig. 2 | Cost-effectiveness vs. sample size for A/B testing and SMART designs.
Each sample size indicated on the x-axis is the sample size of the SMART trial, and
the equivalent total of the three A/B trial sample sizes (e.g., a SMART trial of sample

size 300 on the x-axis corresponds to three A/B trials each of sample size 100). Cost-
effectiveness on the y-axis is in terms of $US 2024 per additional patient engaged.
Red is A/B testing and blue is SMART trial.
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during conversations with patients, or handle routine inquiries, freeing
up human workers to focus on more complex cases or personal
interactions. For example, an LLM could generate personalized edu-
cational content or appointment reminders, while a human worker
could follow up with patients who have specific concerns or require
more nuanced support. This hybrid approach leverages the scalability
and consistency of LLMs while maintaining the empathy, cultural
competence, and complex decision-making abilities of human work-
ers. Importantly, the LLM would be continuously refined based on
feedback from both patients and health workers to ensure its outputs
remain relevant, accurate, and culturally appropriate.

Limitations of this study include the use of simulated data, which may
not fully capture the complexities of real-world patient populations and
engagement patterns. Additionally, our implementation of SMARTdesigns
and A/B testing represents only one possible approach; alternative imple-
mentations may yield different results. Future research should explore the
performance of these methods in real-world settings, investigate the impact
of different SMART design implementations, and develop strategies to
mitigate the elevated false positive rates observed in both methods. Studies
examining the long-term outcomes and cost-effectiveness of interventions
identified through thesemethodswould also be valuable. A limitation of this
study was the use of a brief single-stage LLM-tailoredmessage in each stage
of experiment before escalation to the next stage, rather thanmore complex
conversational exchanges which could have provided richer insights into
patient concerns and barriers to care. However, due to current US laws (the
TelephoneConsumerProtectionAct 47USC § 22736),most SMSmessages
related to healthcare are currently limited to singlemessages of less than 160
characters unless the patient responds.

In conclusion, this study demonstrates that the choice between
SMARTdesigns andA/B testing for detectingHTEs and optimizing patient
engagement should be guided by the complexity and timing of anticipated
HTEs within the intervention sequence. While SMART designs offer
advantages for detecting complex, later-stage HTEs and in overall cost-
effectiveness, traditional A/B testing remains valuable for detecting simpler,
early-stage HTEs. Researchers should carefully consider these factors when
designing studies to optimize patient engagement strategies in digital health
interventions.

Methods
Overview
This study employs a microsimulation model to compare the performance
of traditional A/B testing versus Sequential Multiple Assignment Rando-
mized Trial (SMART) designs in detecting heterogeneous treatment effects
(HTEs) and optimizing patient engagement strategies. Our approach con-
sists of five main components:
(1) Microsimulation model design: we developed a model that simulates

individual patients with various characteristics and their engagement
responses to different outreach strategies.

(2) A/B test simulation: we simulated a series of traditional A/B tests, each
comparing two outreach strategies at a time.

(3) SMART design simulation: we simulated a three-stage SMART design
that adapts interventions based on patient responses.

(4) Power and false positive rate calculations: we assessed the ability of
both methods to detect true HTEs and their propensity for false
positive results.

(5) Cost-effectiveness and net benefit analyses: we evaluated the economic
efficiency of both approaches and their overall value in patient
engagement.

The microsimulation model incorporates three theorized HTEs:
patient age, race/ethnicity, and chronic disease status. These variables were
selected based on prior evidence suggesting their potential influence on
patient engagement. We simulated populations with varying sample sizes
and effectmagnitudes to comprehensively compare the performance ofA/B
testing and SMART designs.

In the following sections, we detail each component of our metho-
dology, including the data sources and parameters used in our simulations,
the specific designs of our A/B tests and SMART trials, our analytical
approaches, and the metrics used to evaluate performance.

Microsimulation model design
To examine the statistical power, false positive rates, and cost-effectiveness
of traditionalA/B testing versus SMARTdesigns in detecting heterogeneous
treatment effects (HTEs), we developed a microsimulation model. A
microsimulation simulates individual patients, their characteristics (e.g.,
demographics, clinical history), and their subsequent engagement levels
(e.g., responding to outreach) based on the messaging approach used24.

We simulated a population with three theorizedHTEs: (1) patient age,
(2) patient race/ethnicity, and (3) patient chronic disease status. These
variables were selected based on prior theory and empirical evidence sug-
gesting their potential influence on patient engagement. The model incor-
porates these HTEs by assigning different effect sizes to each patient
subgroup. The data generating process for all simulations was described
using a logistic regression model. The probability of engagement (Pr[en-
gage]) ismodeled as a functionof the treatment assignment (trt), patient age,
race/ethnicity, chronic disease status, and interactions between the treat-
ment and patient characteristics. The process is specified per Eq. (1):

logitðPr½engage�Þ ¼ β0 þ β1ðtrt ¼ empatheticÞ þ β2ðtrt ¼ humanÞ
þβ3ðtrt ¼ weekendÞ þ β4ageþ β5raceþ β6chronic�disease

þβ7ðtrt ¼ empatheticÞ× ageþ β8ðtrt ¼ weekendÞ× race
þβ9ðtrt ¼ humanÞ × chronic�diseaseþ ε

ð1Þ

where Pr[engage] is the probability of engagement; β₀ is the intercept (base
probability of engagement); β1, β2, and β3 are the main effects of the
treatment assignments (empathetic, human, andweekend, respectively); β4,
β5, and β6 are the main effects of age, race, and chronic disease status,
respectively; β7, β8, and β9 are the interaction/HTE effects between the
treatment assignments and patient characteristics; ε is the random noise
term, which we used to induce correlation within repeated measures by
person.

The variables in the model are defined as follows:
• trt: treatment assignment, which can be “empathetic”, “factual”,

“human”, “LLM”, “weekday”, or “weekend”.
• age: patient age, a continuous variable in years.
• race: patient race/ethnicity, a categorical variable with levels “White”,

“Black”, “Hispanic”, and “Other”.
• chronic_disease: patient chronic disease status, a binary variable

(0 = no chronic disease, 1 = any chronic disease).

The interaction terms in the model capture the heterogeneous treat-
ment effects (HTEs) between the treatment assignments and patient char-
acteristics. Specifically:
• β7 represents the HTE between the empathetic treatment and age,

where the effect is present for patients older than 50.
• β8 represents theHTEbetween theweekend treatment and race,where

the effect is present for patients who are not Black or Hispanic.
• β9 represents the HTE between the human treatment and chronic

disease status, where the effect is present for patients with a chronic
disease.

The randomnoise term (ε) is added to the linear predictor to introduce
stochasticity in the engagement probabilities.

The engagement probabilities are calculated by applying the inverse
logit function to the linear predictor, ensuring that the probabilities are
bounded between 0 and 1. Finally, the engagement outcomes are generated
by drawing from a Bernoulli distribution with the calculated engagement
probabilities based on typical response rates in prior trials, and with the
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main effect sizes and HTE effect sizes varied across ranges specified
further below.

The microsimulation model was calibrated using aggregate patient
data and estimates from previous outreach campaigns to ensure realistic
effect sizes andvariations.The input parameters for themodel, including the
probability distributions for patient characteristics and engagement risk, are
detailed in the Supplementary Information.

Traditional A/B test simulation
We simulated a series of A/B tests to compare the performance of two
outreach strategies at a time: (1) empathetic vs. factual message senti-
ment, (2) weekday vs. weekendmessage timing, and (3) LLM-generated
vs. human agent outreach. In each A/B test, patients were randomly
assigned to one of the two intervention groups, and their engagement
outcomes were recorded. Hence, there are three separate A/B trials,
each person being assigned to only one intervention, and with only one
outcome (whether or not they engage). Each A/B trial has one-third the
sample size of the SMART trial described below (e.g., three A/B tests of
N = 100 each, versus a SMART trial with N = 300 to test all three
interventions at once, as detailed below).

To test for HTEs, we conducted subgroup analyses by fitting logistic
regression models with interaction terms between the intervention group
and each theorized HTE covariate (age, race/ethnicity, chronic disease
status).

To test for both true positive and false positiveHTEs, we fitted the data
to the following generalized linear regression model per Eq. (2):

logitðPr½engage�Þ ¼ β0 þ β1 × Iðtrt ¼ interventionÞ þ β2 × ageþ β3 × I × ðrace ¼ BlackÞ
þβ4 × Iðrace ¼ HispanicÞ þ β5 × Iðrace ¼ OtherÞ þ β6 × chronic�disease

þβ7 × Iðtrt ¼ interventionÞ × ageþ β8 × Iðtrt ¼ interventionÞ× Iðrace ¼ BlackÞ
þβ9 × Iðtrt ¼ interventionÞ × Iðrace ¼ HispanicÞ
þβ10 × Iðtrt ¼ interventionÞ× Iðrace ¼ OtherÞ
þβ11 × Iðtrt ¼ interventionÞ× chronic disease

ð2Þ

where Pr[engage] is the probability of engagement; I(⋅) is the indicator
function, which takes the value 1 if the condition inside the parentheses is
true and 0 otherwise; trt is the treatment variable, with “intervention”
representing the intervention arm and “control” (reference level) repre-
senting the control arm for each of the three A/B tests; β0 is the intercept
term; β1 represents the main effect of the intervention; β2 represents the
main effect of age; β3, β4, and β5 represent the main effects of race (Black,
Hispanic, and Other, respectively) compared to the reference level (White);
β6 represents the main effect of having a chronic disease; β7 represents the
interaction effect between the intervention and age; β8, β9, and β10 represent
the interaction effects between the intervention and race (Black, Hispanic,
and Other, respectively); β11 represents the interaction effect between the
intervention and having a chronic disease.

The statistical significance of these interaction terms (two-tailed
p < 0.05, without Bonferroni correction formultiple testing to reflect typical
practices in the digital health community) was used to determine the pre-
sence of HTEs. If any interaction term had a p value less than 0.05, we
recorded it as detecting the presence of anHTE, and further classified it as a
true or false positive.

SMART design simulation
We simulated a three-stage SMART design (known as a “SMART Design
II”21) with the following randomizations:
(1) Patients were randomly assigned to receive either an empathetic

(“Your health matters. Getting a mammogram can give you peace of
mind and potentially save your life. We’re here to support you every
step of the way”) or factual message (“Regular mammograms are
recommended for women over 40. They can detect breast cancer early
when it’s easier to treat. Have you scheduled yours?”) sentiment from
an LLM chatbot via SMS (LLM sentiment stage).

(2) Non-responsive patients were randomly assigned to receive a message
at a different day and time (LLM timing stage).

(3) Patients who remained non-responsive were randomly assigned to
receive personalized outreach from either an LLM (“In [your
community], access to mammograms has improved. We can help
you find a convenient location and time for your screening”) or a
human agent (LLM vs. human agent stage).

The engagement outcomes at each stage were recorded, and the
cumulative engagement rate was calculated for each patient subgroup.
Hence, each participant in the trial had three outcomes (yes/no
to engagement to the first intervention test, non-involvement or yes/no to
engagement in the second intervention test, and non-involvement or
yes/no to engagement in the third intervention test). For each SMART
trial simulation, the sample size was equal to the sum of the sample size of
the three separate A/B trials.

To account for the repeated measures in the SMART design, we
employed a generalized estimating equation model specified as follows per
Eq. (3):

logitðPr½engage�Þ ¼ β0 þ β1 × Iðtrt1 ¼ intervention1Þ
þβ2 × Iðtrt2 ¼ intervention2Þ þ β3 × Iðtrt3 ¼ intervention3Þ
þβ4 × ageþ β5 × Iðrace ¼ BlackÞ þ β6 × Iðrace ¼ HispanicÞ
þβ7 × Iðrace ¼ OtherÞ þ β8 × chronic disease

þβ9 × Iðtrt1 ¼ intervention1Þ× ageþ β10 × Iðtrt2 ¼ intervention2Þ × age
þβ11 × Iðtrt3 ¼ intervention3Þ× ageþ β12 × Iðtrt1 ¼ intervention1Þ × Iðrace ¼ BlackÞ
þβ13 × Iðtrt1 ¼ intervention1Þ × Iðrace ¼ HispanicÞ
þβ14 × Iðtrt1 ¼ intervention1Þ × Iðrace ¼ OtherÞ
þβ15 × Iðtrt2 ¼ intervention2Þ × Iðrace ¼ BlackÞ
þβ16 × Iðtrt2 ¼ intervention2Þ× Iðrace ¼ HispanicÞ
þβ17 × Iðtrt2 ¼ intervention2Þ × Iðrace ¼ OtherÞ
þβ18 × Iðtrt3 ¼ intervention3Þ × Iðrace ¼ BlackÞ
þβ19 × Iðtrt3 ¼ intervention3Þ × Iðrace ¼ HispanicÞ
þβ20 × Iðtrt3 ¼ intervention3Þ× Iðrace ¼ OtherÞ
þβ21 × Iðtrt1 ¼ intervention1Þ × chronic disease
þβ22 × Iðtrt2 ¼ intervention2Þ × chronic disease
þβ23 × Iðtrt3 ¼ intervention3Þ × chronic disease

ð3Þ

where Pr[engage] is the probability of engagement; I(⋅) is the indicator
function, which takes the value 1 if the condition inside the parentheses is
true and 0 otherwise; trt1, trt2, and trt3 are the treatment variables for the
first, second, and third stages of the SMART design, respectively, with
“intervention1”, “intervention2”, and “intervention3” representing the
corresponding intervention arms and “control” (reference level) repre-
senting the control arm; age, race, and chronic_disease are defined as in the
A/B test model; β0 is the intercept term; β1, β2, and β3 represent the main
effects of the interventions at each stage; β4–β8 represent the main effects of
age, race, and chronic disease, as in the A/B testmodel; β9–β11 represent the
interaction effects between the interventions and age at each stage; β12–β20
represent the interaction effects between the interventions and race at each
stage; β21–β23 represent the interaction effects between the interventions
and having a chronic disease at each stage.

The GEE model assumes an exchangeable correlation structure to
account for the within-subject correlations across the stages of the SMART
design25.

Power calculations, false positive rates, cost-effectiveness
analysis and net benefit analysis
WesimulatedA/B tests andSMARTdesignswith sample sizes ranging from
100 to 1000 patients for each of the three A/B trials (i.e., 300 to 3000 for the
aggregate SMART trial). For each sample size, we conducted 100 simula-
tions and calculated the proportion of simulations in which a significant
HTE was detected (i.e., power) for each of the three HTEs (age, race/eth-
nicity, chronic disease status).

Additionally,we calculated the false positive rates for eachnon-existent
HTE interaction (the ones not present in the data-generating process) in
both A/B tests and SMART designs. For each intervention experiment (or
each randomization in the SMART design), we tested if the p value of any
interaction terms for the non-existent HTEs was less than 0.05 (without
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correction for multiple testing, given typical practice in the digital health
community), indicative of a false positive detection.

We conducted a cost-effectiveness analysis by assigning typical costs to
each type of outreach based on industry estimates. The total cost of each
simulated trial was calculated, and the incremental cost-effectiveness ratio
(ICER) was computed as the additional cost per additional patient engaged
compared to the baseline (no intervention) scenario. We assigned typical
costs to each type of outreach based on industry estimates, per message
(Supplementary Information), including the technology infrastructure,
personnel, and other resources required to deliver the interventions. The
total cost of each simulated trial was calculated by summing the costs of all
outreach attempts based on the number of patients assigned to each
intervention.

The effectiveness of each trial design was measured by the proportion
of patients engaged compared to the baseline (no intervention) scenario.We
calculated the engagement rate for each patient subgroup and the overall
population in each simulated trial.

The ICER was computed as the ratio of the difference in costs to the
difference in effectiveness between two trial designs26–28, representing the
additional cost per additional patient engaged when moving from one trial
design to another. A lower ICER indicates a more cost-effective approach.

We conducted a Net Benefit Analysis as described by Vickers et al.29 to
evaluate the clinical utility of our LLM-based intervention. The net benefit
was calculated as per Eq. (4):

Net Benefit ¼ ðTrue Positives=NÞ � ðFalse Positives=NÞ * ðpt=ð1� ptÞÞ
ð4Þ

Where N is the total number of patients, pt is the threshold probability at
which the benefit of intervention is equal to the harm of unnecessary
intervention.

We calculated net benefit for a range of main effect sizes (0.1, 0.2, 0.3)
and heterogeneous treatment effect sizes (0.05, 0.1, 0.15). For the net benefit
analysis, we used threshold probabilities ranging from 5% to 30% to create
decision curves.

To assess the impact of varying effect sizes on the power, false positive
rates, cost-effectiveness and net benefit of A/B testing and SMART designs,
we conducted a sensitivity analysis by simulating trials with different
combinations of main effect sizes (Cohen’s d values of 0.1, 0.2, and 0.3) and
HTE effect sizes (Cohen’s d of 0.05, 0.1, and 0.15), representing a range from
small to large effects.

Sensitivity analysis
To assess the robustness of our findings and explore potential mechanisms
driving the performance differences between A/B testing and SMART
designs, we conducted a series of sensitivity analyses. First, we varied the
HTE effect sizes across stages to examine whether the SMART trial’s
advantage in detecting the disease HTE becomes more pronounced as the
effect size increases in later stages, while keeping the age and raceHTE effect
sizes constant, providing insight intowhether andwhen the SMARTdesign
may be beneficial for detecting HTEs among smaller samples non-
responsive to earlier interventions (analysis 1). Second, we modified the
population characteristics across stages to assess whether the SMART trial’s
advantage in detecting the diseaseHTE increases as the population becomes
more homogeneous in later stages (analysis 2). These sensitivity analyses
aimed to provide a more comprehensive understanding of the factors
influencing the relative performance of A/B testing and SMART designs in
detecting heterogeneous treatment effects, and to assess the robustness of
our findings to different assumptions and scenarios.

All simulations and analyses were performed using R (version 4.1.0),
and the code is available at https://github.com/sanjaybasu/smart-
engagement/. The study was deemed exempt as all patients were simu-
lated and no actual individual patient datawere used; informed consentwas
waived by the Western Institutional Review Board WIRB-Copernicus
Group IRB (Reference # 20221442).

Data availability
Data are available without restrictions at https://github.com/sanjaybasu/
smart-engagement/.

Code availability
Code, which can be run in R (version 4.1.0) is available without restrictions
at https://github.com/sanjaybasu/smart-engagement/.
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