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Abstract

Background The presence of a blurred area, depending on its localization, in a mammogram can limit diagnostic
accuracy. The goal of this study was to develop a model for automatic detection of blur in diagnostically relevant
locations in digital mammography.

Methods A retrospective dataset consisting of 152 examinations acquired with mammography machines from three
different vendors was utilized. The blurred areas were contoured by expert breast radiologists. Normalized Wiener
spectra (nWS) were extracted in a sliding window manner from each mammogram. These spectra served as input for a
convolutional neural network (CNN) generating the probability of the spectra originating from a blurred region. The
resulting blur probability mask, upon thresholding, facilitated the classification of a mammogram as either blurred or
sharp. Ground truth for the test set was defined by the consensus of two radiologists.

Results A significant correlation between the view (p < 0.001), as well as between the laterality and the presence of
blur (p= 0.004) was identified. The developed model AUROC of 0.808 (95% confidence interval 0.794–0.821) aligned
with the consensus in 78% (67–83%) of mammograms classified as blurred. For mammograms classified by consensus
as sharp, the model achieved agreement in 75% (67–83%) of them.

Conclusion A model for blur detection was developed and assessed. The results indicate that a robust approach to
blur detection, based on feature extraction in frequency space, tailored to radiologist expertise regarding clinical
relevance, could eliminate the subjectivity associated with the visual assessment.

Relevance statement This blur detection model, if implemented in clinical practice, could provide instantaneous
feedback to technicians, allowing for prompt mammogram retakes and ensuring that only high-quality mammograms
are sent for screening and diagnostic tasks.

Key Points
● Blurring in mammography limits radiologist interpretation and diagnostic accuracy.
● This objective blur detection tool ensures image quality, and reduces retakes and unnecessary exposures.
● Wiener spectrum analysis and CNN enabled automated blur detection in mammography.

Keywords Artificial intelligence, Deep learning, Digital mammography, Image processing (computer-assisted),
Quality assurance
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Graphical Abstract

• Blurring in mammography 
limits radiologist 
interpretation and diagnostic 
accuracy.

• Objective blur detection tool 
ensures image quality, 
reduces retakes, and 
unnecessary exposures.

• Wiener spectrum analysis 
and CNNs enabled 
automated blur detection in 
mammography.

AAn automated approach to blur detection, tailored to radiologists’ expertise, 
can eliminate the subjectivity of visual assessment
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Background
A reliable and automatic assessment of mammogram
quality immediately after the acquisition allows for an
immediate retake, reducing the recall rate, patient anxiety,
radiologists’ workload, and costs. It also allows for
building large databases of high-quality data thus enabling
the development of reliable AI algorithms. One of the
prevalent quality issues in mammography is blur [1],
which can be caused by clamping paddle relaxation and
patient motion [1–5] leading to a local or global blurring
of a mammogram [1]. This artefact, depending on its
location and breast tissue density, may limit diagnostic
performance [3, 6]. Consequently, country-specific quality
assurance systems, such as those in Austria, Germany,
Norway, and the UK, include the absence of blur as one of
the criteria, which an image must satisfy [7–11].
Currently, the identification of blur relies on visual

assessment and is prone to high inter-reader variability. In
a study conducted by Ma et al [6], in which simulated
motion blur was applied to entire mammograms, the
mean κ value was 0.26, indicating a fair inter-reader
agreement [12]. Up to now, there is a very limited number
of published studies concerning automatic and standar-
dized motion blur detection in mammography. Kammona
et al [13] trained machine learning models to detect

regions with artificial blur, speculating that the simulation
might have affected the quantum noise inherently present
in the real-world data.
In another study, Hill et al [14] demonstrated that the

normalized Wiener spectrum (nWS), also known as the
normalized noise power spectrum, providing information
about the intensity of spatial frequencies, holds the
potential for blur detection. To calculate nWS for a given
region of interest (ROI) of a mammogram, a windowing
function, reducing the signal intensity at the ROI edges, is
first applied. This is followed by the calculation of the
normalized noise power spectrum, based on fast Fourier
transform. The initial windowing step is performed to
eliminate the ringing effect in the noise power spectrum.
Subsequently, a radial average is calculated, deriving nWS.
Hill et al [14], through the analysis of the extracted
nWS, demonstrated that blurring causes a reduction in
the intensity of spatial frequencies in the range of
1.6–2.4 mm-1. Importantly, in that work, 25 four-view
mammography exams from a single vendor were utilized,
and an iterative optimization procedure for multivariate
linear regression against expert readers was performed. A
comparative assessment within the patient study was
performed, as it was hypothesized that nWS might exhibit
significant variation based on tissue composition and
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complexity at a local scale within a given mammogram, as
well as between breasts with different densities.
The primary objective of our study was to evaluate the

technical feasibility of implementing an automated blur
detection system in digital mammography using deep
learning and real-world mammography data acquired
with machines produced by various vendors and anno-
tated by expert radiologists. In pursuit of this objective, we
focused on creating an effective nWS postprocessing
method coupled with convolutional neural network
(CNN) model development, both enabling comparisons
across diverse examinations. Importantly, deep learning
models are well-suited for this task due to their capacity
to learn complex patterns and nuances from highly
diverse medical datasets, enabling them to mimic expert
radiologists’ decision-making processes [15, 16].

Methods
Patient data
The data were retrieved from the local Picture Archiving
and Communication System. All data were completely
anonymized, and it is not possible to retrieve any personal
information about the individual women. All participants
examined have seen and signed an information letter in
which they declare that the results of the examination
may be used for scientific or educational purposes in
accordance with the requirements of the General Data
Protection Regulation.
The inclusion criteria were as follows: (1) age above 50

years, (2) absence of implants, and (3) presence of a
blurred area within the breast in at least one mammogram
from the study. Mammograms featuring blurred areas
within the pectoralis muscle, folds, skin, and nipple were
excluded. For mammograms with blurring within the
breast interior, inclusion criteria focused on whether any
findings might be obscured or distorted [6]. The exam-
ination selection was performed by BW, a board-certified
radiologist with over 35 years of experience in breast
imaging, based on the running screening reporting by
experienced screening radiologists. The final dataset
consisted of 152 mammography examinations (764
mammograms including the retakes) conducted between
June 2019 and February 2023. The dataset included nor-
mal mammograms, as well as mammograms with benign
and/or malignant findings. The patients’ age was 60 ± 6
years (mean ± standard deviation).
The data were acquired with different mammography

machines: Siemens Revelation, and Fuji Amulet, as well as
with Sectra MDM (models 1, 3, and 4). Most of the
mammograms, i.e., 688/764 (90%), were acquired with a
resolution of 4,915 × 5,355 pixels and 508 pixels/inch (i.e.,
0.05 mm/pixel; see Supplementary Table S1 for details).

Blur labelling and correlation with view, laterality, and
compression force
For blur labelling, mammograms were presented to
readers as images in Digital Imaging and Communica-
tions in Medicine−DICOM format. Annotations were
conducted on 5-megapixel displays (RX560-MD Radi-
Force, EIZO Co, Ishikawa, Japan), adhering to reading
conditions compliant with the DIN 6868-157 standard
[17]. Standard magnifications were employed, with the
additional capability to zoom to full resolution. BW
(Reader 1) board-certified radiologist with over 35 years of
experience in breast imaging, labelled the whole dataset
by contouring blurred areas through polygons. The
median polygon area amounted to 26.5 cm2 (interquartile
range 18.2–44.6 cm2). Furthermore, TS (Reader 2), a
senior radiology resident with over 7 years of experience
in breast imaging, labelled the data in a test set (159
mammograms from 31 patients) with contours. A soft-
ware using postscript markup developed by B.W. was
used for the data annotation.
We assessed the correlation between the presence of

blur and mammography view and laterality as specified
below in the Statistics section.

Image preprocessing
A schematic illustration of the model development
process is presented in Fig. 1. The labelled mammo-
grams served as an input. In the first step all mammo-
grams were rescaled to 4,915 × 4,915 pixels by adding
pixels with intensity 0: for images with an “L” laterality,
pixels were added to the right, while for those with “R”
laterality, pixels were added to the left. Subsequently,
intensity normalization to the 0–1 range was done.
Next, the pectoralis muscle was removed with a b-rayZ
AG proprietary deep-learning model, followed by
the removal of background and skin using thresholding
and contour-finding computer vision algorithms
from OpenCV 4.9 Python library (i.e., cv2.threshold,
cv2.findCountours).

Wiener spectra extraction
First, to assess the validity of nWS as a blur indicator,
squared ROIs (1,000 × 1,000 pixels) were manually placed
over both sharp and blurred regions, and the nWS spectra
were extracted and compared. In the second phase, a
fixed-size window (200 × 200 pixels) was slid across each
image in the dataset, and nWS spectra were extracted
from each window (see Fig. 1). For the details about the
spectra extraction see Supplementary Section S1. The
spectra extracted from all the mammograms resulted in
an nWS dataset containing 4,379 spectra for a blurred
region and 125,799 spectra for a sharp region.
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Dataset splitting and model training
Following best practices in model development [18], the
dataset was split into two parts: the first part containing
~80% (103,948 of 130,178) of the data was used for hyper-
parameter tuning using 5-fold cross-validation, whereas the
second part was retained to be used as a “hold-out test set”
after the cross-validation was accomplished. The best
hyperparameters were used to train the final model with the
first part being used for training and validation, whereas
the second part for testing. A schematic illustration of all the
dataset splits is provided in Supplementary Fig. S1. All the
dataset splits, including cross-validation, were performed in
a patient-stratified way. The distribution of the classes in the
splits during the development of the final model is illustrated
in Supplementary Fig. S2. During each training, to com-
pensate for the class imbalance weighted cross entropy loss
was used. Further details regarding the training are described
in Supplementary Section S2.

Statistical analysis and model evaluation
We assessed the correlation between the presence of blur
and mammography view and laterality using the χ2 test of
independence, the correlation between the presence of
blur and the compression force using the Spearman cor-
relation coefficient (ρ), as the compression force did not
follow the normal distribution (Shapiro–Wilk statistics
0.97, p < 0.0001).
The trained CNN model outputs a probability of a given

nWS spectrum originating from a blurred region. For a
given hyperparameter set, 5-fold cross-validation was
conducted resulting in five distinct models. For each
model, the area under the receiver operating character-
istic curve (AUROC) for the corresponding test set was
computed. To calculate the AUROC statistics, bootstrap
resampling with replacement (n= 10,000) was used,
generating AUROC values for each resample and deter-
mining 95% confidence intervals (CIs). A p-value was

Fig. 1 Schematic representation of the model development pipeline. a Mammograms with a delineated blurred area by expert radiologists serve as
input. b The pectoralis muscle and the skin are removed. Subsequently, a window is slid over each mammogram, and at each location, a fast Fourier
transform is performed (c). d A radial average is calculated serving as a basis for nWS computation. e The extracted nWS from the whole dataset is used
for training, validation and testing of the CNN. f A probability map for each mammogram from a test set is obtained
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computed using Student’s t-test (AUROC > 0.5) on the
bootstrapped values. This process yielded an average
AUROC score for each hyperparameter set. The hyper-
parameter set with the highest AUROC was selected to
train the final model. The hyperparameter set achieving
the best performance consisted of a single layer CNN with
128 filters having kernel size equal to 3 and stride equal to
1, followed by batch normalization layer and a dropout
layer with rate of 0.3, utilizing the Adam optimizer with a
learning rate of 0.00001, and employing a batch size of 50.
After a final model was trained, confusion matrices were

obtained for various probability thresholds with 95% CIs
with p-values calculated similarly to the previous case.
The threshold resulting in the highest true positive and
true negative percentage was chosen. Ultimately, the
chosen threshold for the window’s probability amounted
to 0.45.
Subsequently, the chosen threshold was applied to the

blur probability map generated for each mammogram
within the test set. Windows with lower probabilities were
then discarded. Additionally, a minimum requirement of
ten interconnected windows was established to prevent
the classification of tiny regions as blurred, considering
that such regions lack diagnostic relevance. This criterion
ensured that the blurred regions resembled the polygon
labels provided by the radiologists. Furthermore, a mini-
mum average probability criterion for the remaining
windows was set. This criterion, amounting to 0.65, pro-
vided an additional layer of scrutiny, mirroring the con-
siderations made in determining whether a retake of the
mammogram is deemed necessary. Subsequently, mam-
mograms that met the established criteria were con-
sidered blurred.
In the last phase, confusion matrices at the mammo-

gram level were generated. The computation of 95% CIs
and p-values followed the same approach as that
employed for window-level confusion matrices. Further-
more, the weighted accuracy was determined, by adjusting
class weights inversely proportional to their frequencies
for a balanced dataset to exemplify the task of blur
detection. The null hypothesis for the t-test was set to
> 0.5. For Cohen’s κ, the null hypothesis was set to κ= 0.

Model explainability
To gain further insight into the predictions of the CNN
model and assess whether certain frequency ranges sig-
nificantly influence these predictions, an explainability
analysis using Shapley values [19, 20] was performed.
Shapley values are a concept from cooperative game
theory that allocates a fair distribution of payoffs to
players based on their contribution to the total payout. In
the context of machine learning, Shapley values are used
to explain the contribution of each feature to the

prediction of a model [21]. The details of the analysis are
provided in Supplementary Section S3.
The statistical analysis and model explainability was

performed by the first author. Values of p lower than
0.050 were considered as significant. The numbers in
parentheses across the manuscript refer to 95% CIs with
p-value < 0.001.

Model inference time
The inference time of the model was assessed on a
notebook equipped with 16 GB of RAM. Predictions for a
mammogram of size 4,915 × 4,915 pixels were performed
ten times, and the mean and standard deviation of the
inference times were subsequently calculated.

Language optimization
The manuscript text was stylistically optimized using
large language models, specifically Chat GPT (OpenAI)
and Gemini (Google).

Results
Correlation between blur and mammography view,
laterality, and compression force
The contingency tables for the presence of blurring and
the view/laterality (Table 1) served as an input for the χ2

test of independence. The results indicate a statistically
significant correlation between the view and the presence
of a blurring (p-value < 0.001), as well as between the
laterality and the presence of blur (p-value= 0.004).
Specifically, the left mediolateral oblique view (MLO)
view predominantly featured blurring. The Spearman
correlation coefficient calculated for blurring and
compression force revealed no significant correlation:
ρ= -0.03, p-value= 0.338 (see Fig. 2).

Comparison of nWS spectra extracted from blurred and
sharp areas
In Fig. 3, a comparison of nWS extracted from blurred
and sharp areas is presented. A left MLO mammogram
was labelled as partially blurred and a corresponding
sharp retake was included. Manually placed squared ROIs
cover two areas: Area 1, including the blurred region in
the original mammogram and its corresponding sharp

Table 1 Contingency table for view and laterality

View Laterality

Class Craniocaudal Mediolateral oblique Right Left

Blurred 24 134 60 98

Sharp 306 300 310 296
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region in the retake, and Area 2, including sharp regions
in both the original and the retaken mammograms. The
nWS spectrum originating from the blurred ROI has the
lowest intensity in the lower spatial frequencies.

CNN model evaluation
The CNN model trained on the entire dataset with
optimized hyperparameters, previously determined
through cross-validation, achieved AUROC of 0.808

(0.794–0.821) (Fig. 4a). Upon applying a threshold of
0.45 to the model’s probability output, 76% of nWS were
correctly classified as originating from sharp regions
(75–76%) and 70% as originating from blurred regions
(67–73%) (Fig. 4b).
At the image level (see Fig. 5 and Table 2), the model

exhibited alignment with Reader 1 in 81% (67–94%) and
with Reader 2 in 78% (60–94%) of mammograms classi-
fied as blurred, while the readers achieved consensus in
53% (35–70%) of such cases. In sharp mammograms, the
model achieved agreement in 76% (68–84%) with Reader
1 and 72% (64–80%) with Reader 2, whereas readers
reached a consensus in 95% (91–98%) of cases. The
model’s weighted accuracy computed with reference to
Reader 1 amounted to 0.840 (0.693–0.966) and with
reference to Reader 2 to 0.808 (0.623–0.737). The Cohen’s
κ for both readers amounted to 0.45 (0.30–0.59) indicat-
ing fair/moderate agreement. The wide 95% CI indicates
slight/fair/moderate agreement of the model with the
readers (see Table 2).
In consideration of the subjectivity of blur detection

among the readers, the model also underwent evaluation
in instances where both readers reached a consensus. The
model aligned with the consensus that 78% (67–83%) of
mammograms were classified as blurred and 75%
(67–83%) identified as sharp. The weighted accuracy
amounted to 0.829 (0.680–1.000), whereas the Cohen’s κ
to 0.32 (0.17–0.49).

Fig. 2 Correlation between blurring and the compression force: a
boxplot summarizing the distribution of the compression force used for
the acquisition of mammograms labelled as sharp (blue) and blurred (red)

Fig. 3 Comparison of nWS extracted from blurred to sharp areas. A partially blurred left mediolateral oblique mammogram and a corresponding sharp
retake with the chosen squared regions of interest, from which the nWS spectra were extracted
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In Fig. 6, blur detection results are shown for an
examination from the test set. In this specific instance, the
MLO view for the right breast exhibits partial blurring in a
diagnostically relevant area, as indicated by the contours

drawn by the readers. A retake of this view and laterality is
also included. The predicted probabilities by the CNN
model on the window level for each mammogram are
shown in the second column. The final blurred area,

Fig. 4 Model’s evaluation on the window level. a Receiver operating characteristics analysis with the reported AUROC. b Confusion matrix at the chosen
threshold of 0.45

Fig. 5 Readers’ and model’s evaluation at the mammogram level: a Reader 1 versus model, (b) Reader 2 versus model, (c) Reader 1 versus Reader 2, and
(d) Consensus versus model
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obtained after thresholding, is shown in the third column.
The right MLO mammogram was correctly identified as
blurred, with the blurred area closely resembling the
contours outlined by the radiologists. The remaining
mammograms were correctly classified as sharp.

Model explainability
The plot displayed in Fig. 7 summarizes the analysis of the
Shapley values for windows contained in a test set and
classified by the model as blurred, i.e., having the prob-
ability above the chosen threshold value of 0.45. Spatial
frequency values with a mean Shapley additive explana-
tions value above zero contribute to an increased prob-
ability of blur output by the model, while those below zero
contribute to a decreased probability. Three frequency
ranges can be identified in the plot: ~1–3mm-1 increasing
the probability of nWS spectra being classified as blurred
~0–1mm-1 and ~3–6.5 mm-1 decreasing the probability.

Model inference time
The model inference time amounted to 5.5 ± 0.6 s.

Discussion
This study demonstrates the technical feasibility of
implementing an automated blur detection system in
digital mammography by combining Wiener Spectra
extraction with CNN. A crucial aspect introduced in this
work was the postprocessing step of the nWS model
spectra involving normalization, which introduced an
absolute scale, allowing for training the CNN model with
spectra originating from different examinations, breast
densities, and vendors, followed by the development of
thresholding steps with uniform values for all the data,
thereby removing the limitation of comparative assess-
ment of the Wiener Spectra within a single examination
as shown by Hill [14]. Owing to that, a broad applicability,
essential for future integration into clinical practice was
achieved.

An equally important consideration for clinical utility is
the inference time, which in this study amounted to
5.5 ± 0.6 s. Such an inference time would allow for an
immediate retake with a patient still present in an
examination room.
The analysis revealed a significant correlation between

the mammogram view and the presence of blur
(p < 0.001), with the MLO view exhibiting a higher pre-
valence of blurring artefacts. This phenomenon can be
attributed to the acquisition process of the MLO view,
which requires a patient to maintain a forced posture for
around 30 s. This uncomfortable position can lead to
micro-movements, which can cause blurring. This is not
the case in the craniocaudal view.
It is important to note that the compression force is

typically adjusted depending on the patient-specific fac-
tors such as pain threshold, breast elasticity, and size [22],
which can influence blurring and thus also the case
selection.
Various factors reported in the literature influence blur

detection, including blur area size, reader experience, and
acuity [3], as well as screen resolution [11]. In our study,
the agreement between the readers was fair/moderate
(κ= 0.45, 0.30–0.59). In another study conducted with
real-world data, near-perfect inter-reader agreement on
the blur presence (κ= 0.84) was reported, while the
agreement for retake necessity was fair (κ= 0.22) [14].
Noteworthy, the model developed in our study, struck a
balance between the two readers. When compared with
both Reader 1 and Reader 2 the model exhibited higher
sensitivity at the expense of lower specificity (see Fig. 5a, b
versus c). The model exhibited similar performance when
assessed on instances where a consensus was reached.
The manually placed squared ROIs indicate that blur-

ring manifests as a decrease in intensity within the low
spatial frequencies (see Fig. 3). The analysis of the Shapley
values revealed that the spatial frequency range con-
tributing to an increased blur probability output by the

Table 2 Readers’ and model’s evaluation at the mammogram level

True positives True negatives Weighted accuracya Cohen κ

Model versus Reader 1 26/32

81% (67–94%)

97/127

76% (68–84%)

0.027+ 0.813

0.840 (0.693–0.966)

0.45 (0.30–0.59)

Model versus Reader 2 18/23

78% (60–94%)

98/136

72% (64–80%)

0.025+ 0.783

0.808 (0.623–0.972)

0.31 (0.17–0.46)

Reader 2 versus Reader 1 17/32

53% (35–70%)

121/127

95% (91–98%)

0.033+ 0.530

0.563 (0.387–0.737)

0.54 (0.35–0.70)

Model versus consensus 26/32

78% (67–83%)

97/127

75% (67–83%)

0.25+ 0.579

0.829 (0.680–1.000)

0.32 (0.17–0.49)

a Class weights are assigned inversely proportional to their respective frequencies as assigned by Reader 1. The 95% CI values are indicated in parentheses. All p-values
are below 0.001
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Fig. 6 Blur detection results for a mammographic examination contained in the test set. a The right MLO mammogram in the original examination was
labelled by both Readers 1 and 2 as blurred, the retake of this view is also shown in the bottom line. b Blur probability maps output by the trained model.
c Final blurred area classification obtained after thresholding. CC, Craniocaudal view; L, Left breast; MLO, Mediolateral oblique view; R, Right breast
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model is ~1–3mm-1, consistent with the findings from
manually placed ROIs. This range also aligns with the
results obtained by Hill et al [14], who identified a spatial
frequency range of 1.6–2.4 mm-1 as the most informative
for blur detection. Additionally, considering the scarcity
of data and the time-intensive nature of searching,
retrieving, and annotating the data, the insights into the
physics of blur provided in this study can be utilized to
develop strategies for the introduction of realistic artificial
blur to sharp mammograms, paving the way for various
deep learning models’ development.
The main limitation of our study is the data are highly

skewed towards sharp images and relatively small sample
size, lack of external validation, and the fact that 80% of
the dataset, used for cross-validation was labelled by a
single, albeit highly experienced, radiologist. Furthermore,
the current work did not assess the real clinical value of
the model. Specifically, our study only references whether
the images appear blurred or not, without evaluating how
the detected blur impacts diagnostic quality or patient
recall rates. In subsequent studies, these limitations will
be overcome by significantly increasing the number of
mammography images, featuring a broad range of reso-
lutions and originating from various clinical sites, as well
as by ensuring that annotation is performed by multiple
expert radiologists. A deep learning model, developed on
the larger dataset, will be evaluated clinically in a pro-
spective study, both in diagnostics and screening settings.
After successful clinical evaluation, in a diagnostic setting,
when presented with a map indicating a blurred area in a
mammogram (see Fig. 6c), a technician will be able to
promptly consult the attending radiologist to determine if
a retake is necessary. In this workflow scenario, the
experienced radiologist will consider various factors
including available views, breast density and the specific
location of the blurred area, as well as the possibility of

additional imaging. In this way, the risk of potential
unwarranted x-ray exposure is minimized. In the
screening setting, in which the radiographers are specifi-
cally trained to acquire high-quality mammograms and
are solely responsible for retake decisions, the model can
provide additional support in their decision-making pro-
cess. In both settings, the need for a recall, which not only
induces additional psychological stress for the patient but
also increases costs for the facility, can be mitigated.
In conclusion, in this technical feasibility study, a blur

detection deep learning model with broad applicability was
developed and evaluated. Our findings suggest that a reliable
method for detecting blur, utilizing feature extraction in
frequency space, and customized to align with the clinical
expertise of radiologists, could mitigate the subjectivity
inherent in visual assessments. Future research will focus on
evaluating the clinical impact on diagnostic accuracy and
patient recall rates to fully establish the model’s value in
diagnostic and screening settings.

Abbreviations
AUROC Area under the receiver operating characteristic curve
CI Confidence interval
CNN Convolutional neural network
MLO Mediolateral oblique view
nWS Normalized Wiener spectrum/spectra
ROI Region of interest
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Additional file 1: Table S1 Resolution of the mammograms in the
dataset. Fig. S1 Dataset splitting: The dataset was split into two parts: the
first part containing ~ 80% of the data was used for hyperparameter
tuning using 5-fold cross-validation (CV), whereas the second part was
retained to be used as an “outer test set” after the CV was accomplished.
Fig. S2 Training of the final model: The distribution of the classes in the
training, validation and test set on the window level.

Fig. 7 Feature importance for model predictions. Average Shapley values calculated for each spatial frequency bin with corresponding standard errors
depicted by black arrows
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