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Abstract

Background Accurately predicting hospital discharge events could help improve patient
flow and the efficiency of healthcare delivery. However, using machine learning and diverse
electronic health record (EHR) data for this task remains incompletely explored.
MethodsWe used EHR data from February-2017 to January-2020 from Oxfordshire, UK to
predict hospital discharges in the next 24 h. We fitted separate extreme gradient boosting
models for elective and emergency admissions, trained on the first two years of data and
tested on the final year of data. We examined individual-level and hospital-level model
performance and evaluated the impact of training data size and recency, prediction time,
and performance in subgroups.
Results Our models achieve AUROCs of 0.87 and 0.86, AUPRCs of 0.66 and 0.64, and F1
scores of 0.61 and 0.59 for elective and emergency admissions, respectively. Thesemodels
outperform a logistic regression model using the same features and are substantially better
than a baseline logistic regression model with more limited features. Notably, the relative
performance increase fromaddingadditional features isgreater than the increase fromusing
a sophisticated model. Aggregating individual probabilities, daily total discharge estimates
are accurate with mean absolute errors of 8.9% (elective) and 4.9% (emergency). The most
informative predictors include antibiotic prescriptions, medications, and hospital capacity
factors. Performance remains robust across patient subgroups and different training
strategies, but is lower in patients with longer admissions and those who died in hospital.
Conclusions Our findings highlight the potential of machine learning in optimising hospital
patient flow and facilitating patient care and recovery.

Increasing demand for healthcare, driven by changing population demo-
graphics, a rise in the prevalence of chronic diseases, societal changes, and
technological advances, places significant strain on hospital resources1. In
the United Kingdom (UK), the National Health Service (NHS) has faced
escalating demand pressures in recent years, with an increasing number of
admissions, prolonged waiting times in Emergency Departments, and
financial challenges2,3. This has been exacerbated by the COVID-19 pan-
demic, resulting in substantial backlogs in both urgent and routine care4.
With healthcare resources being inherently limited, there is a pressing need

to enhance the efficiency of healthcare services and improve hospital
capacitymanagement.A critical component is patientflowwithin hospitals,
referring to the movement of patients from admission to discharge while
ensuring they receive appropriate care and resources5.Optimising this could
improve patient experiences, avoid delays in treatment, improve health
outcomes, and reduce costs6.

Accurately predicting when patients will be discharged from the hos-
pital could improve patient flow, e.g., prompting clinicians when patients
are approaching readiness for discharge, facilitating booking transport
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Plain language summary

Predictingwhenhospital patients are ready to
be discharged could help hospitals run more
smoothly and improve patient care. In this
study, we used three years of patient records
from Oxfordshire, UK, to build a machine
learning model that predicts discharges
within the next 24 h. Ourmodel includes both
planned and emergency admissions. The
model performs well at accurately predicting
the probability, or chance, that an individual
patientwill be discharged and also estimating
the total number of discharges each day.
Important information for making the
predictions includes whether patients are
taking antibiotics and other medications, and
whether the hospital is crowded. Overall, we
show that machine learning could help
hospitals manage patient flow and improve
patient care.
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home, enabling timely preparation of discharge medication and doc-
umentation, and pre-emptively arranging room cleaning. Currently, dis-
charge predictions are made inmost hospitals at the individual patient level
by clinical teams based on the patient’s diagnosis and status and are updated
throughout their hospital stay.However, these assessments canbe subjective
and variable andmaynot always be captured in electronic healthcare record
(EHR) systems, posing challenges to efficient operational management.
Therefore, there is growing interest in leveraging automated prediction
models to forecast the length of stay (LOS) and discharge timing, both
individually and hospital-wide.

Discharge prediction has therefore become a key target for clinical
machine learning researchers. Several previous studies have attempted to
predict discharge within a fixed time window (Table 1), with studies typi-
cally predicting discharge within the next 24, 48, or 72 h. Some of these
studies have focused on specific patient populations, e.g., surgical patients7,8

or those with cardiovascular disease9, while others predict discharge for
whole hospitals10–14. A range of different classical machine learning
approaches have been evaluated, including random forests, gradient boos-
ted trees, and multilayer perceptron neural networks. Input features being
considered typically include details relating to the index date the prediction
is being made on, past medical history, prior length of stay, demographics,
current vital signs and laboratory markers, diagnoses, procedures, and
medications (Supplementary Table 1). Performance is typically modest in
most models, although some perform better, with area under the receiver
operating curve (AUROC) values ranging from 0.70 to 0.86 in whole hos-
pital models. One notable exception is a model that also included data on
EHR-user interactions10, such as the frequency of clinical notes being
updated, viewed, or printed, which achieved an AUROC of 0.92 for pre-
dicting discharge within 24 h. However, this study only included the first
admission for eachpatient, potentially under-representing complexpatients
who may be frequently re-admitted. It also excluded patients who died
during hospitalisation. Additionally, in most previous studies several key
areas relevant to implementation were not fully explored, including the
impact of training data size and recency, the time of day or day during the
week a prediction is made, and performance relative to length of stay and
specific patient subgroups, including different sociodemographic groups
and those affected by health inequalities. Apart from two studies11,13, all of
the aforementioned studies either evaluated individual-level discharge
prediction performance or hospital-wide predictions, but did not combine
the two in a single approach.

In this study, we used diverse EHR-derived features and data from a
large UK teaching hospital group to develop machine learning models to
predict individual patient-level hospital discharge within the next 24 h. By
aggregating individual predictions, our models were also successful in
predicting the total hospital-wide number of discharges expected.

Methods
Data and setting
We used data from the Infections in Oxfordshire Research Database
(IORD) which contains deidentified electronic healthcare records from
OxfordUniversityHospitals (OUH)NHSFoundationTrust. OUHconsists
of four teaching hospitals in Oxfordshire, United Kingdom, with a total of
~1100 beds, serving a population of ~755,000 people and providing spe-
cialist services to the surrounding region.

We extracted data for all adult inpatients ( ≥ 16 years) from 01 Feb-
ruary 2017 to 31 January 2020 who had an ordinary admission based on
NHS patient classification codes (i.e., excluding day case, regular day
admission, and regular night admissions, because the expected lengthof stay
was known a priori for these patients). We excluded patients whose
admission specialty was obstetrics or paediatrics, as these specialties used a
different EHR system and/or discharge pathway. We grouped admissions
into elective admissions (those scheduled in advance) and emergency
admissions (those who entered hospital through the Emergency Depart-
ment or other emergency admissions units) based on admission method
codes (Supplementary Fig. 1).

Feature selection and data pre-processing
Domain knowledge and prior literature were used to determine which
features within the dataset were potentially informative for predicting
patient discharge. A total of 1152 features were created and grouped into 16
feature categories (Supplementary Methods), including index date-related
features, demographics, comorbidities, current admission, ward stay, cur-
rent diagnostic category, procedures, antibiotics prescriptions, medication,
microbiology tests, radiology investigation, readmissions and previous
hospital stay, hospital capacity factors reflecting crowdedness, vital signs,
and laboratory tests.

To produce features summarising expected length of stay (LOS) by
eachpatient’s primary diagnosis, wefirst summarised all primary diagnostic
ICD-10 codes using Summary Hospital-level Mortality Indicator (SHMI)
diagnosis groupings15. Using data from all hospital admissions within the
training dataset (01 February 2017 to 31 January 2019), we calculated as
features themean, standarddeviation,median,maximum, andminimumof
the LOS for each diagnostic category, to capture the effects of a current
diagnostic category on future discharge probability16. We only used the
training data to calculate the LOS characteristics of each diagnosis category,
evenwhen applying these estimates to the test dataset, to avoid possible data
leakage, i.e., avoiding revealing information to the model that gives it an
unrealistic advantage to make better predictions. ICD10 codes were
assigned at discharge but were used as a proxy for the clinician’s working
diagnosis (not available in our dataset) to inform model predictions in
real time.

For vital signs and laboratory tests, we used both numerical values
reflecting the measurements themselves and the number of measurements
within a particular time window, reflecting the fact that the decision to
measure a vital sign or laboratory test is potentially informative in addition
to the actual result obtained17. For example, clinicians may order additional
laboratory measurements or record vital signs more frequently if patients
are unstable18. To reduce collinearity, we grouped the number of mea-
surements for vital signs (heart rate, respiratory rate, systolic blood pressure,
diastolic blood pressure, temperature, oxygen saturation, O2 L/min, O2
delivery device, AVPU score, NEWS2 score), full blood counts (hae-
moglobin, haematocrit, mean cell volume, white cell count, platelets, neu-
trophils, lymphocytes, eosinophils, monocytes, basophils), renal function
(creatinine, urea, potassium, sodium, estimated glomerular filtration rate
(eGFR)), liver function (alkaline phosphatase, aspartate aminotransferase,
alanine transaminase, albumin, bilirubin), bone profiles (adjusted calcium,
magnesium, phosphate), clotting (activated partial thromboplastin time,
prothrombin time), blood gases (arterial, venous, or capillary combined, as
labelling of blood gas type was not always complete/reliable) (base excess,
partial pressure of oxygen, partial pressure of carbondioxide, lactate, arterial
blood pH), and lipids (triglycerides, high-density lipoprotein cholesterol,
total cholesterol, low-density lipoprotein cholesterol), respectively. The
number of measurements for other blood tests were included individually.

We pre-processed the data by setting to missing implausible extreme
values (Supplementary Data 7) not compatible with life, which typically
represented uncorrectable errors in data entry, e.g., height 10m, tempera-
ture 20 oC. Categorical features were one-hot encoded.We did not perform
data truncation and standardisation as decision trees-based algorithms are
insensitive to the scale of the features, andwe did not perform imputation of
missing values because extremegradient boosting (XGB)models canhandle
missing values by default using a ‘missing incorporated in attribute’ algo-
rithm,which treatsmissing values as a separate category19,20. The proportion
of missingness for features ranged from 0 to 88%, with the values of less
commonly obtained laboratory tests exhibiting the greatest proportions of
missingness (Supplementary Fig. 2).

Prediction tasks
We predicted hospital discharge events within 24 h of an index date and
time for all patients currently in the hospital (individual-level predictions).
Model prediction probabilities were also aggregated to predict the total
number of patients currently in hospital across the 4 hospitals within the
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OUH hospital group who would be discharged within the next 24 h fol-
lowing the indexdate time (hospital-level predictions).Weused apragmatic
and operationally relevant endpoint, predicting discharges from hospital
with any outcome (discharged alive, died, or transferred to another hospital
outside of OUH [2% of discharges]).

Each patient contributed once to the dataset per day during their
hospital admission. Separate models were built for emergency and elective
admissions as predictive features may be different depending on the reason
for admission. For the main analyses, predictions were made at 12 pm for
both the training and test data, i.e., tomirror the approximate time thatmost
hospital ward rounds are completed by (accepting somemay be completed
earlier). The probability of a patient being discharged by 12 pm on the
following day was obtained. However, in real-world use model predictions
are likely to be applied throughout the day as newpatients are admitted and
others discharged.We therefore performed three sets of sensitivity analyses
(all predicting discharges within the next 24 h): 1) train and predict dis-
charge at other times of day (midnight, 6 am, 6 pm); 2) train the model and
predict discharge using data drawn randomly throughout the day, using
data available at 2 hourly intervals, i.e., midnight, 2 am, 4 am,…, 10 pm; 3)
train and predict discharge at different times of day (e.g., train at 12 pm,
test at 6 am).

We used extreme gradient boosting (XGB)models to predict discharge
within the next 24 h from an index date. Gradient-boosted trees are an
additivemethod iteratively combining fitted decision trees that identify and
set cut-off points by splitting the values of input features into those asso-
ciated with an outcome of interest (conceptually similar to the model
deciding what constitutes a ‘normal’ vs. ‘abnormal’ value). Each individual
tree has relativelyweak predictive performance, but these are combined into
a single high-performance ensemble model after proportionally weighting
individual tree contributions21. Each fitted decision tree (base learner with
low complexity) targets the prediction residuals of the preceding tree. That
is, at each step anewdecision tree is built, targeting the fractionof the output
notwell explained by the current treemodel. In thisway, a new treemodel is
continuously added to the current collection to correct themistakesmadeby
the previous one. Such a sequential training approach in gradient-boosted
trees is different from the independent training approach in random forests.
Models were trained using data from the first two years of the study (01
February 2017 to 31 January 2019) and evaluated using data from the final
year of the study (01 February 2019 to 31 January 2020). To examine
whether the trained model could be used to predict hospital discharge
following the COVID-19 pandemic, we also used data from 01 February
2021 to 31 January 2022 as an additional held-out test dataset.

We randomly split the training data, using 80%of the data for themain
model training. Within this, a Bayesian optimisation for hyperparameters
was performed by employingTree-based Parzen estimators (TPE) to search
through a wide potential hyperparameter space, maximising the AUROC
during 5-fold cross-validation. Hyperparameters tuned included learning
rate (learning_rate), the number of trees (n_estimators), the fraction of
features touse (colsample_bytree), the fractionof observations to subsample
at each step (subsample),maximumnumberof nodes allowed from the root
to the farthest leaf of a tree (max_depth), minimum weight required to
create a new node in a tree (min_child_weight), the minimum loss reduc-
tion required to make a split (gamma), L1 regularisation term on weight
(reg_alpha), and L2 regularisation term on weight (reg_lambda). Unlike
grid and random searches, which independently tune hyperparameters,
Bayesianhyperparameter optimization is an informed search algorithmthat
each iteration learns fromprevious iterations and combines thiswith a prior
distribution to update the posterior of the optimization function22. Hyper-
parameter optimisation was undertaken separately for each model fitted.
The final hyperparameter choices for the main models are shown in Sup-
plementary Table 2.

We used the built-in scale_pos_weight in the XGB classifier to account
for class imbalance, i.e. the fact there are more non-discharge events than
discharges. No imputation of missing data was performed, as XGB can
handle missing data by design. We used the remaining 20% of the training

data as validation data for feature selection, calibrating the predicted
probability fromXGBmodels using isotonic regression23,24 and determining
the best threshold for predicting an individual patient discharge event by
optimising the F1 score (jointly maximising precision and recall). Initially,
all 1152 featureswere used tofit eachmodel.Modelswere then re-fittedwith
progressively fewer features, retaining the top-ranked features fromeach full
model. Performance in the validation data and training time was used to
select the optimal number and list of input features for the main analyses.
Themodel pipeline is shown in Fig. 1.Model performancewas compared to
two baseline logistic regression (LR) models: 1) with fewer selected features
(age, sex, day of theweek, hours since admission), for benchmarking against
a relatively simple model; 2) with the same set of features as the final XGB
models, using L2 regularization, and with missing data imputed using
median values for continuous features and themode for categorical features.

For hospital-level prediction, we calculated the total number of pre-
dicted discharges expected in the next 24 h across all elective or emergency
admissions in the 4 OUH hospitals by summing the individual-level pre-
dicted discharge probabilities after calibration.

Performance assessment
Individual-level model performance was evaluated using sensitivity (recall),
specificity, balanced accuracy (arithmetic mean of sensitivity and specifi-
city), positive predictive value (PPV, precision), negative predictive value
(NPV), F1 score (harmonicmeanofprecisionand recall),AUROC,andarea
under the precision-recall curve (AUPRC). PPV and NPV provide inter-
pretable real-worldmetrics relating to actual discharge decisionmaking and
prediction performance. Although they depend on the prevalence of dis-
charge events, our estimates are likely to apply to hospitals with similar daily
discharge rates. F1 scores andAUPRC are also impacted by prevalence, and
for a given sensitivity and specificity will be lower as prevalence falls, which
should be considered when comparing subgroups with different discharge
prevalence.

For hospital-level prediction, we summarised the accuracy of predic-
tions of the total number of patients discharged using normalised mean
absolute error (MAE, %), i.e. the mean of the differences in predicted and
actual discharges each day (over the 365 predictions in the test dataset)
divided by the mean number of discharges per day.

We calculated the SHapley Additive exPlanations (SHAP) values25 for
each feature in the training dataset to determine feature importance.

We examined the model performance in different subgroups by age,
sex, ethnicity, indexofmultiple deprivation score,weekdayof the indexdate,
admission specialty, comorbidity score, source of admission, days since
admission, and discharge outcome (alive or died). We also used equalised
odds differences to compare model fairness, by checking if either the per
subgroup truepositive rate or truenegative rate differed fromtheoverall rate
by greater than an illustrative threshold of 0.126.

We also evaluated model performance using the same test data, but
with different lengths of training data from 1 to 24 months, and the impact
of training data recency using 12 months of training data at varying time
intervals before the fixed test dataset.

Statistics and reproducibility
Model performance was summarised using percentages. No statistical tests
were conducted.

Data processing and analyses were performed in Python 3.11 using the
following packages: numpy (version 1.26.4), pandas (version 2.2.0), scipy
(version 1.12.0), scikit-learn (version 1.4.1), xgboost (version 2.0.3),
hyperopt (version 0.2.7), and in R (version 4.3.2) using the following
packages: cowplot (version 1.1.1), timeDate (version 4021.104), ggplot2
(version 3.4.4), and tidyverse (version 1.3.2).

Ethics committee approval
Deidentified data were obtained from the Infections in Oxfordshire
Research Database which has approvals from the National Research Ethics
Service South Central – Oxford C Research Ethics Committee (19/SC/
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0403), the Health Research Authority and the National Confidentiality
Advisory Group (19/CAG/0144), including provision for use of pseudo-
nymised routinely collected data without individual patient consent.
Patients who choose to opt out of their data being used in research are not
included in the study. The study was carried out in accordance with all
relevant guidelines and regulations.

Results
From 01 February 2017 to 31 January 2020, 52,590 elective admissions and
202,633 emergency admissions were recorded. Using 12 pm as the predic-
tion time, 63,909 (25.0%) short admissions were excluded from the main
analyses because these admissions did not include time in hospital at 12 pm
(Supplementary Fig. 1), i.e. some admissions started after 12 pm and these
patients were discharged before 12 pm the following day. All other admis-
sions < 24 h but spanning 12 pm were included. This resulted in a total of
48,039 elective admissions (38,627 patients) and 143,275 emergency
admissions (86,059 patients) included in the analyses. The median (IQR)
age at admission was 65 (47-79) years, 97,869 (51.2%) patients were female,
and 148,060 (77.4%) were recorded as being of white ethnicity (ethnicity
missing in33,626, 17.6%).The lengthof hospital staywas right-skewed,with
most patients discharged within a few days, but some staying considerably
longer. The median (IQR) length of stay was 2.2 (1.2, 5.0) days for elective
admissions and 2.1 (0.8, 6.0) days for emergency admissions (Supplemen-
tary Fig. 3). The distribution of demographic characteristics was similar
between the training and test datasets (Table 2).

Model performance for individual-level prediction
Predicting discharge at 12 pm, 237,672 and 809,279 patient days for elective
and emergency admissions were included in the analyses. 47,177 (19.8%)
and 141,531 (17.5%) discharge events within 24 h of the index date were
observed, respectively, reflecting the daily discharge rate. The mean pro-
portion of patients discharged from the hospital within the next 24 h
decreased as the prior length of stay in the current admission increased, and
varied between emergency and elective admissions, and the day of the week
of the index date (Fig. 1).

Using the validation dataset, we evaluated model performance with
varying numbers of features, ranging from 10 to all 1152 features. Model
performance initially improved as more features were included, but then
plateaued with ≥200 features (and for some metrics even slightly declined)
(Supplementary Fig. 4). As expected, training time increased with the
number of features (Supplementary Fig. 4). We therefore used the top 200
ranked emergency and elective model features in all subsequent emergency
and elective models.

For elective admissions, the AUROC for predicting discharge within
24 h was 0.871, and the AUPRC was 0.658 (Supplementary Fig. 5). Using a
probability threshold that optimised F1 score in the validation dataset, the
PPV was 0.555, NPV 0.911, and F1 score 0.609 (Table 3). The performance
for emergency admissions was slightly lower than elective admissions, with
an AUROC of 0.860, AUPRC 0.644 (Supplementary Fig. 5), PPV 0.571,
NPV 0.912, and F1 score 0.593 (Table 3). Predicted probabilities reflected
the real probabilities of discharge after calibration, with calibration errors of

Fig. 1 | Overview of model development. a The proportion of patients discharged
from hospital within the next 24 h in elective and emergency admissions by number
of days since admission. b The proportion of patients discharged from hospital
within the next 24 h in elective and emergency admissions by day of week of the
index date. cDiagram of the prediction problem. The binary prediction problemwas
defined by classifying the outcome as ‘positive’ (discharge occurred within the next
24 h) or ‘negative’ (discharge did not occur within the next 24 h) separately for
elective and emergency admissions. Predictions were made at 12 pm. d Analysis

pipeline for the prediction of hospital discharge within the next 24 h. Extreme
gradient boosting (XGB) models were trained on the extracted labels and features
from admissions between 01 February 2017 to 31 January 2019, and was tested on
admissions between 01 February 2019 and 31 January 2020. Five-fold cross vali-
dation was used for hyperparameter tuning, and 20% randomly selected validation
data was used for feature selection, probability calibration, and threshold setting.
The best model was used to predict hospital discharges in the test data, and model
performance was examined.
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0.003 and 0.001 for elective and emergency admissions, respectively (Sup-
plementary Fig. 6). Performance in training, validation, and test data is
shown in Supplementary Table 3.

The XGB models showed substantially better performance than the
simple baseline LRmodels,whichhadAUROCsof 0.629, 0.708,AUPRCsof
0.269, 0.349, and F1 scores of 0.385, 0.409 for elective and emergency
admissions, respectively. LR models with the same 200 features as the XGB
models outperformed the simple LR models but performed worse than the
XGB models. The performance difference was larger between the baseline
and 200 feature LRmodels (e.g. AUROC0.821 vs 0.629 for elective patients)
than that between the LR models with 200 features and XGB models
(AUROC 0.821 vs 0.871 for elective patients). Hence, including additional
appropriately chosen features improved model performance by more than
using a more sophisticated modelling technique, but with both approaches
adding to performance (Table 3).When combining elective and emergency
admissions into a single XGBmodel, performancewas similar to that of the
XGBmodel for emergency admissions, with an AUROC of 0.859, AUPRC
0.634, PPV 0.561, NPV 0.909, and F1 score 0.587.

When we used the trained model to predict discharge in the post-
COVID test data (01 February 2021 to 31 January 2022), performance
remained similar for elective admissions, with an AUROC of 0.864 and
AUPRCof 0.614, butwas lower for emergency admissions,with anAUROC
of 0.820 and AUPRC of 0.543 (Table 3).

Model performance for hospital-level prediction
Summing individual-level predicted discharge probabilities, the predicted
total number of discharges across the 4 OUH hospitals accurately reflected
daily fluctuations in discharge numbers during the week for elective and
emergency patients, and the performance was similar across the whole test

data period (Fig. 2). TheMAEwas 8.9% (MAE= 3.7 discharges, mean total
discharges = 41) for elective admissions using the XGB model, lower than
the 10.7% (MAE = 4.4/41) obtained using baseline LR models. Errors were
well controlled on most days, IQRs for absolute errors (normalised by the
actual number of discharges) for baseline LR and XGB models were
5.9–18.4% and 4.9–15.8% respectively (Supplementary Fig. 7). For emer-
gency admissions MAEs were 4.9% (MAE = 7.2/146; IQR 2.3–9.3%) using
XGB compared with 5.8% (MAE= 8.6/146; IQR 2.8–11.4%) using the
baseline LR models (Table 3, Supplementary Fig. 7). MAEs were higher in
post-COVID test data, using XGB these were 11.6% (MAE = 3.9/34) for
elective (higher in percentage terms in part because of lower total discharge
numbers), and 10.0% (MAE= 15.0/150) for emergency patients (Table 3,
Supplementary Fig. 8).

Subgroup performance and model fairness
Using balanced accuracy to jointly summarise sensitivity and specificity,
model performance was broadly similar by sex, ethnicity, and deprivation
score, but some variations existed in other subgroups. For elective admis-
sions, predictions made onMonday and Sunday, and for patients admitted
to trauma andorthopaedics or acutemedicine had lower balanced accuracy.
For emergency admissions, balanced accuracy was lower on Sundays, and
for patients admitted to trauma and orthopaedics and medical sub-
specialties. For both elective and emergency admissions, balanced accuracy
was lower in those > 80 years, those with high comorbidity scores, with
increasing days since admission, and in admissions from other hospital
providers. Balanced accuracy was also substantially lower in those who died
in hospital than those who were discharged alive (with lower AUROCs,
AUROC= 0.712 vs 0.870, 0.762 vs 0.862 for elective and emergency
admissions, respectively). In addition to lower accuracy, lower discharge

Table2 |Baselinecharacteristicsof 48,039electiveand143,275emergencyadmissionsbetween01February 2017 to31January
2020 used in training and testing discharge prediction models

Elective (N = 48,039) Emergency (N = 143,275) Total (N = 191,314)

Training (N = 32,832) Test (N = 15,207) Training (N = 92,611) Test (N = 50,664)

Age (years)

Median (Q1, Q3) 62.0 (48.0, 73.0) 62.0 (48.0, 73.0) 67.0 (47.0, 81.0) 66.0 (46.0, 81.0) 65.0 (47.0, 79.0)

Sex

Female 16,409 (50.0%) 7603 (50.0%) 47,790 (51.6%) 26,067 (51.5%) 97,869 (51.2%)

Male 16,423 (50.0%) 7604 (50.0%) 44,821 (48.4%) 24,597 (48.5%) 93,445 (48.8%)

Ethnicity

White 23,977 (73.0%) 10,961 (72.1%) 73,611 (79.5%) 39,511 (78.0%) 148,060 (77.4%)

Mixed 173 (0.5%) 92 (0.6%) 627 (0.7%) 390 (0.8%) 1282 (0.7%)

Asian 712 (2.2%) 402 (2.6%) 2198 (2.4%) 1264 (2.5%) 4576 (2.4%)

Black 355 (1.1%) 185 (1.2%) 1040 (1.1%) 566 (1.1%) 2146 (1.1%)

Other 271 (0.8%) 155 (1.0%) 792 (0.9%) 406 (0.8%) 1624 (0.8%)

Unknown 7344 (22.4%) 3412 (22.4%) 14,343 (15.5%) 8527 (16.8%) 33,626 (17.6%)

IMD deprivation score

Median (Q1, Q3) 9.8 (5.9, 15.5) 9.9 (6.2, 15.8) 10.5 (6.2, 16.5) 10.3 (6.5, 16.3) 10.2 (6.2, 16.1)

Missing 525 212 1122 555 2414

Admission source

Usual place of residence 32,232 (98.2%) 14,959 (98.5%) 87,493 (94.6%) 48,212 (95.4%) 182,896 (95.7%)

Other hospital provider 487 (1.5%) 196 (1.3%) 4210 (4.6%) 2023 (4.0%) 6916 (3.6%)

Other 92 (0.3%) 36 (0.2%) 758 (0.8%) 324 (0.6%) 1210 (0.6%)

Missing 21 16 150 105 292

Length of stay (days)

Median (Q1, Q3) 2.2 (1.2, 5.1) 2.2 (1.2, 4.9) 2.1 (0.9, 6.1) 2.0 (0.8, 5.7) 2.1 (1.0, 5.6)

IMD: Index of multiple deprivation (higher scores indicate greater deprivation, range 0–73.5).
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rates in some subgroups including with increasing prior length of stay, also
contributed to lower in PPV in those groups, albeit with linked increases in
NPV (Fig. 3, see Supplementary Fig. 9 for F1 scores, AUROCandAUPRC).
Most subgroups met an equalised odds difference threshold of 0.1 (Sup-
plementary Fig. 9). Within elective admissions, exceptions included pre-
dictions made on Sunday, patients admitted from other hospital providers,
with ≥ 10 days prior length of stay and those who died in hospital. Pre-
dictionsmadeon thedayof admissionhadbetter than averageperformance.
For emergency admissions, exceptions included patients > 80 years, those
admitted to trauma and orthopaedics or fromother hospital providers, with
≥ 4 days since admission and those who died in hospital.

Sensitivity analyses by prediction time
Patientsweremore likely to be discharged between 10 amand 8 pm, and the
observed proportion of patients discharged within the next 24 h slightly
varied by prediction time chosen (Supplementary Fig. 10). Using models
trained using data at 12 pm only, performance varied with different test
dataset prediction times (12 am, 6 am, 12 pm, 6 pm, randomly throughout
the day), with the best performance at 12 pm (AUROC= 0.871, 0.860 for
elective and emergency admissions, respectively), followed by 6 am for
elective admissions (AUROC= 0.861) and 6 pm for emergency admissions
(AUROC= 0.812). Performance was lowest predicting discharges over the
next 24 h at 6 pm for elective admissions (AUROC= 0.817) and 12 am for
emergency admissions (AUROC= 0.789) (Fig. 4).

Compared tomodels trained and tested at 12 pm, the performancewas
slightlyworsewhen themodelwas trained andpredictionsweremade using
timesdrawnrandomly throughout theday,withAUROCof0.858 and0.849
for elective and emergency admissions, respectively (Fig. 4, Supplementary
Fig. 11). However, this performance exceeded that observed for most
models trained at a specific time but tested at different times.

When training andpredicting at the same timeof day, the performance
was slightly better at 12 am and 6 am for elective admissions, with AUROC
of 0.874 and 0.876, respectively (vs. 0.871 at 12 pm). However, the perfor-
mance was lower at 12 am and 6 am in emergency admissions, with
AUROC of 0.816 and 0.819, respectively (vs. 0.860 at 12 pm). The perfor-
mance was slightly lower at 6 pm for both elective and emergency admis-
sions compared to 12 pm (AUROC= 0.847 and 0.826) (Fig. 4,
Supplementary Fig. 11).

Training dataset size and recency impact prediction
performance
Fixing the test dataset to the12months from01February 2019,we evaluated
the performance of models trained with data from the preceding 1-24
months, i.e., ranging from only 01 January 2019 to 31 January 2019 to the
entire period from 01 February 2017 to 31 January 2019. Individual patient-
level and hospital-wide performance all improved as the number ofmonths
of training data increased, but largely plateaued after 12 months (Fig. 5a).
This saturation effect suggested that the 24 months of training data used in
themain analysis wasmore than sufficient to achieve optimal performance.
The relative percentage change in AUROC for 1 vs 24 months, and 12 vs
24months of training datawas 8%and0.9% for elective admissions, 5% and
0.6% for emergency admissions, and in AUPRC 24% and 2.1%, and 10%
and 1.6% for elective and emergency admissions, respectively.

Mimicking real-world implementation, we also considered the impact
of decreasing the recency of training data (Fig. 5b). We used the same fixed
test dataset, but only 12months of training data varyingwith an interval of 0
to 12 months between the end of the training period and the start of the
testing period. Performance was generally consistent, with the most recent
training data performing only slightly better. The relative percentage change
for 0 vs 12-month intervals in AUROC was only 1% and 1%, and AUPRC
was only 5% and 2% for elective and emergency admissions, respectively.

Feature importance
The top five most important features for predicting discharge in elective
admissions were number of oral medications received in the last 24 h, theT
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standard deviation of historic length of stay for other patients on the current
ward, if the patient completed a course of antibiotics in the last 24 h, receipt
of intravenous antibiotics in the last 24 h, and the number of procedures the
patient underwent in the last 24 h. For emergency admissions, the fivemost
important features were number of oral medications in the last 24 h,
completion of antibiotics in the last 24 h, hours since admission, the stan-
dard deviation of historic length of stay for other patients on the current
ward, and receipt of intravenous antibiotics in the last 24 h. The top 20most
predictive features are shown inFig. 6 (directionof associations are shown in
Supplementary Fig. 12). We also grouped individual features by feature
category and summarised the mean importance of the top five most
important featureswithin each feature category.Themost important feature
categories were (non-antibiotic) medications, antibiotics, hospital capacity
factors, procedures, and lab tests in elective admissions, and (non-antibiotic)
medications, antibiotics, hospital capacity factors, demographics, and cur-
rent admission factors in emergencyadmissions (Fig. 6).Combiningelective
and emergency admissions into a single model, the most important feature
categories were (non-antibiotic) medications, antibiotics, hospital capacity
factors, current admission factors, and ward stay features (Supplemen-
tary Fig. 13).

Discussion
Machine learning underpinned by large-scale EHR data has the potential to
transform how healthcare is delivered, but applications to the operational
management of hospitals are largely unexplored27. By exploiting a wide
range of features in EHRs, we could accurately predict patient discharge
events within the next 24 h across diverse whole hospitals.We predicted the
total number of discharges each day following an elective admissionwith an
MAE of 8.9% and 4.9% following an emergency admission. We also
achieved accurate predictions for individual patients with an AUROC of
0.871 and 0.858 for elective and emergency admissions, respectively. PPV
and NPV were 0.555 and 0.911 following an elective admission, and 0.571
and 0.912 following an emergency admission. We achieved substantially
better performance at predicting individual discharge than the baseline LR
models with only a limited number of features. Both the addition of extra
features and use of a more sophisticated modelling approach (XGB)
improved performance, with the former having the greatest effect.

Webuilt onprior studies and includedawide rangeof features, selected
and curated by experienced clinicians, statisticians, and machine learning
experts. We accounted for individual patient factors, both immediate and
longer-term, and considered hospital-wide factors including historical
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length of stay for specific conditions. Reflecting the features used, and also
the modelling approach taken, our model performance is amongst the best
reported for this task, while also pragmatically accounting for patients
admitted more than once and those who died, in contrast to the best-
performing reported model which excluded both these patient groups10.
Alternativemodel architectures, including those that allow entire time series
as inputs, might further enhance performance, butmay also need improved
data quality to achieve significant performance gains as well as additional
computational resources and training time.

We aggregated calibrated patient-level probabilities into precise pre-
dictions of daily discharge numbers at the hospital level. This approach
underpins the performance achieved, and is in contrast to other approaches
modelling total discharges for the entire population28 or combining binary
patient-level predictions (e.g., admission/discharge yes/no)29. Splitting data
by calendar time rather than randomly splitting data into training and
testing, we showed that hospital data in previous years could accurately
predict discharges in future years. Also, our model was generally robust in
predicting discharges following the start of the COVID-19 pandemic, with
the performance for elective patients remaining essentially unchanged.
However, performance was lower in emergency admissions, likely in part
reflecting changes in reasons for admission, hospital capacity30 and the
availability of community support following discharge.

Our model performance was consistent across different population
subgroups by sex, ethnicity, and deprivation, but was lower in longer
admissions, older patients, and those who were admitted from other hos-
pital providers.Weachievedbest performance for short-stay patients,where

factors related to their active treatment and response were important in
discharge decisions andwere relatively well captured by the datawe used. In
contrast, for longer-stay and older patients, particularly after an emergency
admission, gaps in available data led to less accurate predictions. This
highlights the importance of extending the data types available to improve
performance, e.g., assessments of functional state which are often docu-
mented only as free text and were not available in the data we used, and
external factors such as the availability of social care and typical waiting
times for social care packages or residential care. Performance was much
lower in patients who died in hospital, potentially because the model
training favoured features that predicted recovery rather than deterioration
when predicting discharge. Fitting a multiclass model, e.g., predicting dis-
charge alive in 24 h, death before discharge, and discharge alive after 24 h,
could address this, since these different outcomes are likely to have different
predictors. This might substantially improve individual-level predictions
whilst having less impact onoverall accuracybased on summing individual-
level predicted probabilities of discharge alive and death across the
population.

Model performance was better with increasing training data size, with
saturation at around 12months’ training data, and was slightly better using
more recent than distant data, suggesting that training could be undertaken
without using excessive historical data and could simply be updated two or
three times a year in a real-world application. Additionally, differences
between the time of day that models were trained and tested on had a
relatively modest impact, however some variations exist, especially for
emergency admissions with the best performance for models trained and

elective emergency

A
ge

S
ex

E
thnicity

IM
D

W
eekday

S
pecialty

C
om

orbidity
S

ource
D

ays since adm
ission

O
utcom

e

0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

>80
60−80
40−60

<40

Male
Female

Unknown
Other
Mixed
Black
Asian
White

>16
10.5−16

6.5−10.5
<6.5

Holiday
Sunday

Saturday
Friday

Thursday
Wednesday

Tuesday
Monday

Others
Medical subspecialty

Trauma and orthopedics
Surgical subspecialty

Acute, emergency and geriatric medicine
Acute and general surgery

Severe, >=5
Moderate, 3−4

Mild, 1−2
No, 0

Other places
Other hospital provider

Usual place of residence

28+d
21−27d
14−20d
10−13d

7−9d
6d
5d
4d
3d
2d
1d
0d

Died
Alive

Balanced accuracy

a
elective emergency

A
ge

S
ex

E
thnicity

IM
D

W
eekday

S
pecialty

C
om

orbidity
S

ource
D

ays since adm
ission

O
utcom

e

0.2 0.4 0.6 0.2 0.4 0.6
PPV

b
elective emergency

A
ge

S
ex

E
thnicity

IM
D

W
eekday

S
pecialty

C
om

orbidity
S

ource
D

ays since adm
ission

O
utcom

e

0.80 0.85 0.90 0.95 1.000.80 0.85 0.90 0.95 1.00
NPV

c

Fig. 3 | Model performance by subgroups in the test dataset (01 February 2019 to
31 January 2020). Balanced accuracy (a), positive predictive value (PPV) (b), and
negative predictive value (NPV) (c) were compared. IMD=index of multiple
deprivation score (higher scores indicate greater deprivation). ‘Weekday’ refers to
the day of the week of the index date. Comorbidity was calculated using Charlson

comorbidity score. ‘Source’ refers to the source of admission. Overall performance is
shown by the dashed line in each plot. 95% confidence intervals were calculated
using bootstrap (n = 500). F1 score, area under the receiver operating curve
(AUROC), and area under the precision-recall curve (AUPRC) are shown in Sup-
plementary Fig. 9.

https://doi.org/10.1038/s43856-024-00673-x Article

Communications Medicine |           (2024) 4:236 9

www.nature.com/commsmed


tested at 12 pm. This probably reflects in part that recent data arising from
clinical reviews and routine tests predominantly conducted in the morning
inform these predictions. Additionally, admission of new and more unwell
patients during the late afternoon and evening may make overnight and
early morning predictions more challenging. Where computational
resources allow, optimal performance could be achieved by using models
updated throughout the day, optionally also tuned to specific times of day.

We found that non-antibiotic medications, antibiotics, and hospital
capacity factors were the most predictive feature categories for both emer-
gency and elective admissions. Switching to oral medications or completing
antibiotic courses usually indicates clinical improvement, and hospital
capacity factors such as the length of stay of current inpatients and the
number of patients in the current ward reflect the crowdedness/pressure on
hospital beds. On the contrary, discharge planning (physiotherapy con-
tacts), microbiology tests, and previous lengths of stay and readmissions

played a relativelyminor role in dischargeprediction. Sequentially including
more of the most predictive features increased model performance, but
plateaued after including the top 200 features, and the computational time
was substantially reduced to only 20% vs when all 1152 features were used,
suggesting that including more features does not necessarily improve per-
formance. Hospitals may need to pay more attention to the data collection
quality of the key features that are most predictive to achieve accurate and
efficient predictions.

Ensuring the availability of beds and timely patient discharge is pivotal
in managing patient flow within healthcare systems31, but existing inter-
ventions often adopt static procedures such as ‘discharge by noon’, or
respond only to critical levels of patient demand32, therefore failing to
address the broader complexities of patient flow dynamics. Moreover, the
integration of automated discharge prediction models into clinical practice
remains limited33. Although clinician predictions of discharge within 24 h
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were not available in our data, previous studies have shown that prediction
models performed as well or more accurately than clinicians in predicting
hospital discharges, demonstrating the potential for operational benefits11,12.
A few previous studies have also implemented their discharge prediction
models and observed a reduction in hospital length of stay12,34, we therefore
envision our approach could be deployed in several ways. For example,
within each hospital ward, a dashboard of discharge tasks (confirming
follow up plans, writing discharge letters, preparing discharge medication,
booking transport home, social care readiness, room cleaning, etc) and
binary predictions of discharge within the next 24 h, could be used by
healthcare workers to flag patients likely to be discharged to facilitate timely
completion of outstanding tasks. Discharge probabilities could also be used
to rank the patients most likely to go home to ensure their discharge pre-
parations were prioritised. Where the total number of planned or expected

admissions within the next 24 h exceeded the predicted number of dis-
charges, preparations for redeploying staff and resources could be made by
operational teams.However, further trials using the best performingmodels
and different implementation strategies are required to establish optimal
approaches, alongside economic evaluations to address what level of model
accuracywould be required (e.g. avoiding having to cancel booked transport
or cleaning) for these interventions to be cost-effective and resource effi-
cient. On-going oversight of input data quality/completeness and the
accuracy of predictions by specialist data science teamswould be required at
a hospital level. Taken together, our models have the potential to be applied
to improve the efficiency of patient flow across hospital settings, leading to
accelerated care delivery and patient recovery, and optimal use of healthcare
resources. Although our study was based on data from hospitals in
Oxfordshire, this framework could potentially also apply to hospitals in
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other regions within the UK and internationally with similar settings,
offering a prospect formitigating the pressure of overcrowding onNHS and
other healthcare systems, thus improving healthcare delivery efficacy and
resource management on a national scale.

Limitations of our study include our focus on a relatively short pre-
diction horizon of 24 h, limiting the scope of planning and interventions
that could follow the same timescale. However, our approach could be
adapted to make longer-range predictions too. We focused on ordinary
admissions, excluding day cases and other regular admissions to avoid
artificially inflatingperformance as the expected lengthof staywas known in
advance for these patients. However, some of these admissions may unex-
pectedly have stayed longer than expected and this is not captured by our
current approach. A strength of our approach is that it produced a gen-
eralised model for the whole hospital, however it is possible that refined
models for specific patient subgroups, e.g. based on prior length of stay,
procedure or diagnosis, could offer improved performance albeit leading to
greater complexity in model training, oversight and implementation. To
some extent the XGB architecture addresses this within a single model, as
key patient groups can be separated by the decision treefitting process if this
improves performance, with each patient subgroup having distinct down-
stream decision trees.

We used diagnosis categories derived from ICD-10 codes for training
and testing, which were only recorded at discharge, however in reality the
primary working diagnosis is known in real-time to clinicians and could be

used if documented electronically.We did not incorporate hospital features
such as the percentage of occupied beds, as the number of available beds in
each hospital was not available in our dataset. Additionally, we did not
evaluate how model performance varied with the degree of operational
pressure experienced by hospitals, which could be considered in the future
as accurate predictions are particularly beneficial when resources are most
constrained.We adopted a relatively simple, pragmatic approach to feature
engineering, using summaries of time series data including blood tests and
vital sign measurements. Performance could potentially be improved by
better representing these dynamic data in future work, and by investigating
the benefits of dimensionality reduction and more complex feature repre-
sentations such as t-SNE35 or autoencoders36. Moreover, we used temporal
data from the samehospital for validation and testing, rather than data from
a completely different hospital group. Future work should incorporate
validation with data from diverse settings to further strengthen the validity
and generalisability of our findings, as well as studies of the impact of
deploying similar models.

We only used structured EHR data for predicting imminent hospital
discharge and did not consider other data types such as unstructured free
text, which could potentially improve prediction further, particularly for
patients with prolonged hospital stays. We used the XGBoost algorithm,
which is awidely employedmethod recognised for its superior performance
compared toother traditionalmachine learningmodels, but other advanced
architectures including deep learning models have the potential for
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improving performance and accommodating flexible updates, such as
incorporatingnewdata over timeor acrossdifferent settings. In recent years,
there has been an increasing interest in using natural language processing
and deep learning models for hospital management tasks such as length of
stay prediction and utilising more complex data including free text medical
records37–39. For example, a recent study demonstrated the efficacy of large
language models trained on unstructured clinical notes for predicting
hospital length of stay, outperforming traditional models40. Future studies
should explore similar approaches and make use of unstructured data to
enhance predictive capabilities for healthcare management.

In conclusion, our study shows the feasibility of integrating machine
learning modelling approaches with EHR data to facilitate real-time
operational management in hospitals, with realistic requirements for
training data andmodel updating. Ourmodels achieve a good performance
for both individual-level and hospital-level discharge predictions, demon-
strating the potential to be deployed to improve the efficiency of hospital
management, patient flow dynamics, and expedite patients’ recovery and
discharge processes.

Data availability
The datasets analysed during the current study are not publicly available as
they contain personal data but are available from the Infections in
Oxfordshire Research Database (https://oxfordbrc.nihr.ac.uk/research-
themes/modernising-medical-microbiology-and-big-infection-
diagnostics/iord-about/), subject to an application and research proposal
meeting the ethical and governance requirements of the Database. For
further details on how to apply for access to the data and a research proposal
template please email iord@ndm.ox.ac.uk. The source data for Figs. 1–6 is
located in Supplementary Data 1–6.

Code availability
A copy of the analysis code is available at https://github.com/jiaweioxford/
discharge_prediction. https://doi.org/10.5281/zenodo.1401533241.
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