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Understanding tumour growth variability
in breast cancer xenograft models
identifies PARP inhibition resistance
biomarkers
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Understanding themechanismsof resistance toPARP inhibitors (PARPi) is a clinical priority, especially
in breast cancer.We developed a novelmathematical framework accounting for intrinsic resistance to
olaparib, identified by fitting the model to tumour growth metrics from breast cancer patient-derived
xenograft (PDX) data. Pre-treatment transcriptomic profiles were used with the calculated resistance
to identify baseline biomarkers of resistance, including potential combination targets. The model
provided both a classification of responses, aswell as a continuous description of resistance, allowing
for more robust biomarker associations and capturing the observed variability. Thirty-six resistance
gene markers were identified, including multiple homologous recombination repair (HRR) pathway
genes. HighWEE1 expressionwas also linked to resistance, highlighting an opportunity for combining
PARP and WEE1 inhibitors. This framework facilitates a fully automated way of capturing intrinsic
resistance, and accounts for the pharmacological response variability captured within PDX studies
and hence provides a precision medicine approach.

Resistance to targeted therapy is one of the major factors that renders a
multitude of cancer treatments ineffective. A number of underlying reasons
for resistance have been identified, includingmutation and expression level
changes to the drug’s target, an increase in DNA-damage repair, increased
anti-apoptotic pathways, and changes in drug metabolism or the tumour
microenvironment, to name a few1,2. These complex arrays of factors con-
tribute to the challenges of understanding themechanism(s) of resistance to
a particular targeted therapy and how to circumvent it.

Resistance can be grouped into two broad categories, intrinsic and
acquired2. Resistance that is classified as intrinsic or innatemeans that there
is a pre-treatment subpopulation of cells in the tumour that is insensitive to
the treatment. As a result of treatment, the population of sensitive cells will
then decrease leading to a tumour that is primarily composed of resistant
cells and, hence, to a resistance phenotype2. In contrast, acquired resistance
refers todrug resistance occurringduring thedurationof the treatment in an
otherwise sensitive population of cells. This can be further divided into

spontaneous and drug-induced resistance3. These parallel mechanisms
together contribute towards the critical need to rationalise and address drug
resistance to targeted cancer therapies.

There is a large body of modelling work on quantifying and elucidating
the mechanisms of resistance that span multiple fields4–6. Well-studied and
published are the classical differential equation-based models that try to
capture themacroscaledynamicsof the tumourand its response to treatment,
as well as the signalling network involved in the drug action process and the
cellular population dynamics (including the effect of the microenvironment
with varying complexity) that can incorporate stochastic or spatiotemporal
effects1,7–9. On the other hand, we have data-oriented approaches that utilise
the plethora of information available on the structure and network of bio-
logical processes, as well as the large scale of ‘omics’ data available to extract
key biomarkers of resistance and sensitivity to a treatment10,11. Rarely have
these approaches been combined into a single framework that utilises both
mathematical modelling techniques together with ‘omics’ data.
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Olaparib was the first PARP inhibitor (PARPi) to be approved12 and is
one of four nowused to treat a number of different cancers, namely ovarian,
breast, pancreatic and prostate cancers13: https://www.ema.europa.eu/en/
medicines/human/EPAR/lynparza14: https://www.accessdata.fda.gov/
drugsatfda_docs/label/2020/208558s014lbl.pdf.

PARP binds to DNA single-strand breaks (SSBs), utilising NAD+ to
initiate repair by generating poly [ADP-ribose] (PAR) chainmodifications15

that remodel chromatin to allow recruitment of repair factors as well as
modifyingPARP itself to allowchromatindissociation, enabling the binding
of additional repair proteins16. PARP inhibitors prevent auto-PARylation
and result in PARP trapping onto theDNA,which, during replication, leads
to the formation of DNA double-strand breaks (DSBs)17. When Homo-
logous Recombination Repair (HRR) is functional, these DNA DSBs are
accurately repaired, but in cells deficient inHRR, such as those with loss-of-
functionBRCA1/2mutations, the error-pronenon-homologous end joining
(NHEJ)pathway is employed18 leading to genomic instability and cancer cell
death. HRR is a complex repair process19, so PARPi sensitivity extends
beyond the loss of BRCA1andBRCA2 function to additionalHRRproteins,
including RAD51, ATR, CHK1, PALB2 and other Fanconi anaemia-
associated repair factors20.

Despite the effectiveness of PARPi, the appearance of resistance is well
documented and often associated with the recovery of HRR pathway
functionality through reversion mutations, dysregulation of the DNA-end
resection pathway, protection of stalled DNA replication forks and epige-
netic modifications21–24.

Multiple mechanisms predicting the response to olaparib have been
well studied. Characterisation of the HRR status through the detection of
HRR-related gene mutations (HRRm gene panel), HRR deficiency (HRD)
genomic scar score,BRCA1 gene promoter hypermethylation and detection
of RAD51 nuclear foci are some of the main methods being used to predict
response20,21,24–26. Despite these insights, the lack of response of some HRR-
deficient tumours, as well as the response in BRCA wild-type tumours to
PARPi, cannot always be explained. Hence, a critical step towards perso-
nalised medicine is understanding the intrinsic (baseline) mechanisms of
response to olaparib by moving beyond HRR status alone.

One of the primary aims of the studywas to formulate a computational
framework that captures the dynamics of tumour growth and treatment
effect, including resistance, offering a continuous description of drug
response and finally integrating the model output with ‘omics’ data to
extract markers of resistance. This framework builds upon a recently pub-
lished study by the authors that performs a comprehensive assessment of
tumour growth models applied to untreated PDX and CDX (cell line-
derived Xenograft) models27. While here it is applied to olaparib in triple-

negative breast cancer (TNBC) PDX models, the framework itself can be
generalised and is sufficiently robust to be applied for different treatments as
well as various tumour types.This study is a followup to23where theprimary
data have been presented.

This framework offers a complementary and more comprehensive
approach to traditionalmethods of classification, such asmRECIST criteria,
which make use of particular timepoints/events to classify a tumour28,29. In
contrast, this methodology is built around fitting all data and timepoints
together, which allows for more informative decisions on the behaviour of
each tumour and the ‘personal’ dynamics each tumour displays as part of its
growth/drug response. Additionally, a continuous scale of response has
multiple benefits, including a much finer separation between different
behaviours, evenwithin tumours that would have been grouped in the same
class. In addition, this approach provides an understanding of the under-
lying variability in studies with replicates and robust identification of bio-
markers by correlating the whole range of their expression to a similarly
continuous output.

Towards validation, the mathematical model was fitted to the olaparib
and adavosertib (WEE1i) in vivo combinationdata in addition to performing
pathway enrichment analysis and differential survival analysis. This frame-
work capturing dynamic tumour growth metrics and ‘omics’ integration to
predict resistance biomarkers, provides an opportunity to learn from varia-
bility within PDX studies, helping reduce the inference gap between pre-
clinical and clinical studies, thus is more likely to drive early-stage clinical
success. A visual representation of the framework is shown in Fig. 1.

Results
Resistance fraction, classification of PDXs and comparison to
mRECIST
The output of themodel is the resistance fraction for each individualmouse.
The classification of each PDX is derived from a consensus of the classifi-
cations of the replicates within that PDX and the resistance fraction value
from themedian of the resistance fraction values of the replicates. There are
two main observations from Fig. 2. The first is the large inter-mouse
variability seenwithin eachPDX.This variability stems from the diversity in
behaviour in the replicates of each PDX, which makes it exceptionally
difficult to summarise the tumour dynamics of each PDX using a simple
categorical classification30. In contrast to the classification, the resistance
fraction as a continuous value offers a much more robust way of capturing
both the average behaviour as well as its variability. The second is the
difference between the mRECIST criteria classification and the model
classification for the 27 PDXs (4 CR, 3 SD and 20 PD). Most disagreements
are found in the category we defined as initial responders. mRECIST only

Fig. 1 | A visual demonstration of the typical workflow for the developed fra-
mework. The fitting of the data using nonlinear mixed effects (see Methods) cal-
culates the resistance fraction (f R) that is used to predict markers of resistance and

response to a particular drug. This is followed by in silico and in vitro validation
studies across pathway analysis, preclinical efficacy screens. The framework can
easily be adapted to different tumour types and treatments.
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partially captures that behaviour through the SD category. Identifying early
responders is key towards therapeutic intervention strategies as this group
might benefit from a different treatment compared to non-responders, for
example drug combinations. Supplementary Figs. 7 show these differences
in full detail, clearly demonstrating their difference from non-responders.

The diagnostic plots, parameter estimates and errors as well as the
variability of the individual parameter estimates can be found in Supple-
mentary Figs. 1–5, SupplementaryTable 1 and demonstrate a goodfitting of
the model to the data. Supplementary Fig. 13 shows the model fit to indi-
vidual tumours together with the respective resistance fraction. Supple-
mentary Fig. 6 is the Fig. 2 equivalent for 50mg/kg.

Markers of response to olaparib
In order to identify biomarkers of resistance to olaparib, baseline tran-
scriptomics was correlated with model-derived resistance fractions (f R) at
baseline for each PDX (see “Materials and methods”) treated with olaparib
100mg/kg. Predicted gene markers of olaparib resistance are shown in
Fig. 4. There are 36 positively correlating biomarkers with resistance frac-
tion. Figure 3A shows the volcano plots of the correlation between mRNA
expressionof theCIVICgenes and the resistance fraction. “Non-significant”
gene names are excluded from the plot.

WEE1 and ATR are particularly interesting as inhibitors targeting
these genes have been explored in combination with olaparib31,32. Seven
genes were identified (ATR, BRCA1, BRCA2, CHEK1, CHEK2, PALB2
and NBN) that have been linked to the HRR pathway, which is directly
associated with the mechanism of action of olaparib22. Pathway
enrichment analysis was performed using MetaCore, where the prob-
ability of a random intersection between a set of IDs the size of a target
list with ontology entities is estimated in the p-value of hypergeometric
intersection (Source: Clarivate; Fig. 3B). This analysis highlighted key
pathways known to be associated with DNA damage repair, including:

‘BRCA1 and BRCA2 in cancer’, ‘Apoptosis and survival_DNA damage-
induced apoptosis’, ‘DNA damage_ATM/ATR regulation of G2/M
checkpoint: nuclear signalling’. Top enriched pathway maps are shown
in Supplementary Table 3. In addition to the enrichment analysis, the
selected genes were annotated with OncoKB33 and checked against
published independent studies (Supplementary Table 9). In OncoKB the
genes are annotated using five categories: therapeutic, prognostic,
diagnostic, resistance, and FDA-levels. Finally, the same analysis was
performed for 50 mg/kg, which showed many similarities in the results,
including 17 commonmarkers (highlighted in red in Fig. 4A) and many
common pathways. These can be found in Supplementary Fig. 8a, b and
Supplementary Table 4.

Additionally, we assessed the ability of the feature set to predict
response by training machine learning models to predict Resistance Frac-
tion (regression) andRECIST binary response (classification). For the latter,
we binarized RECIST values such that the non-response “0” class was
covered by “Progressive Disease” (PD), and the “1” class by everything else.
Themodels trainedwereGradient BoostingMachines, RandomForests and
Linear/Logistic Regression; they were limited by the small dataset size
(n = 27 training samples) and imbalanced class distribution (e.g. 20/27
classed as PD), which resulted in relatively low metrics (e.g. 0.65 AUC for
logistic regression, RMSE of 0.33 for linear regression).

Feature importances were extracted using in-built metrics from all
models that revealed a common set of features driving predictions
across model types. Suppl Fig. 21 shows the comparison of extracted
important features from ML models with the statistically derived fea-
tures proposed as core resistance-driving biomarkers as part of this
study. Thirty-six markers were identified as significant using the linear
correlation, and to that end, for each ML feature selection method, we
kept the top 36 markers based on weight/importance. Many markers
are shared between the simple correlation and the ML methods, with

Fig. 2 | Continuous and discrete olaparib 100 mg/kg response of TNBC PDXs.
Resistance fraction boxplots with median, min, max and upper and lower quartiles.
mRECIST classification is found at the top of each boxplot representing three

distinct categories: complete responders (CR), stable disease (SD) and progressive
disease (PD) and colours represent the mathematical model classification into
complete responders (red), initial responders (green) and non-responders (blue).
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markers such as BIRC5, KIF23, DNMT1 and POLE being common in
all methods and WEE1 included as one of the top features in 4/6 ML
methods. Random Forest methods and methods that use the con-
tinuous metric of Resistance Fraction (FR) as output share more
common markers with the correlation (15–17 common) compared to
logistic regression and gradient boost (7–10 common) (see Supple-
mentary Fig. 21). Finally, we have implemented a train-test split across
our dataset to map consistency of identified markers as a way of vali-
dation. We have included the results of this in Supplementary Fig. 22,
with WEE1 being identified as the most consistent marker along with
other key resistance markers identified, such as PTPN11, SRSF2,
BRCA2 and others. We note and recognise that the statistical sig-
nificance derived from such a small ‘n’ restricts interpretation and
confidence in the observations made.

Survival analysis, including selected markers
To assess the clinical significance of the 36 biomarkers identified, these were
analysed using Kaplan–Meier survival plots, stratified by expression, and
hazard ratios calculated to further deconvolute their association to olaparib
resistance. This process was done not to find new markers but to try and
understand the effect of the identifiedmarkers on theoverall survival of both
treated and untreated cases. Survival analysis was performedon the baseline
mRNA data for both the treated and untreated tumours (331 samples for
100mg/kg and 563 samples for untreated). Table 1 shows the markers and
each category.

The four categories offer an interesting perspective on the identified
markers. The first and biggest category are markers that show a differential
survival in both treated and untreated of the same kind, meaning that in
both groups, lower expression leads to higher survival. The fact that these

Fig. 3 | Resistance correlation markers and enriched ontology terms. A Olaparib
100 mg/kgmarkers where y-axis is the log-transformed p-value with the threshold at
p = 0.05. The x-axis is the Pearson’s correlation ρwith a threshold of 0.03 and−0.03.
Highlighted in red are the markers found in both doses. B Crosstalk analysis of
olaparib 100 mg/kg hits: The network of the top five ontology terms from pathway

enrichment analysis is depicted. Nodes represent top terms, and edges represent
significant similarities (as measured by hypergeometric test) between these entities.
The edge thickness depends on the size of the intersection between two ontology
terms, while the colour of the node corresponds to the enrichment z-score.
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markers show differential survival in the untreated might be an indication
that these are associated with disease progression. A closer inspection of the
hazard ratios found in Supplementary Table 8 reveals that for most cases,
there is a greater separation (higher hazard ratio) of these markers in the
treated group and hence implies that they are not only disease progression
but also resistance markers. The second category shows only differential
survival in the treated group, which might highlight features that are closer
to true resistance markers. The third and fourth groups, with markers that
do not show any differential survival in the treated group or no differential
survival in either group despite being correlated to the resistance fraction,
indicate that these few markers lose their significance when variability is

introduced through the use of the individual tumours (as was done for the
Kaplan–Meier analysis). Selected cases of the Kaplan–Meier curves are
found in Supplementary Figs. 9–11.

HighWEE1 expression as a marker of resistance to olaparib
High expression of the gene encoding the cell cycle checkpoint regulator
WEE1 kinase was identified by the model as the strongest marker of resis-
tance to both doses of olaparib treatment. WEE1 regulates cell cycle pro-
gression and aids DNA repair, which aids tumour cell replication. To
validate this finding, an independent dataset is used that includes
adavosertib34 single agent and the combinationwith olaparib PDXdata (the

Fig. 4 | Effect of WEE1 expression on olaparib and adavosertib resistance frac-
tions. Facets represent expression levels of WEE1 with respect to the median
expression value in the cohort of PDXs. Individual point colour specifies the HRR
status of PDX. Non wild type (WT) PDXs indicate either a mutation (BRCA1,
BRCA2m, PALB2) or hypermethylation of BRCA1 promoter (Supplementary

Table 5). A Resistance fraction of adavosertib is stratified with respect to WEE1
expression levels for adavosertib single agent. B Resistance fraction of olaparib is
stratified with respect toWEE1 expression levels for olaparib single agent and
adavosertib combination. Also separated by dose for either drug.

Table 1 | Markers grouped by survival analysis category

Markers Category

ABL2, ASNS, ATR, BRCA2, CDK6, CHEK2, ERCC5, KIF23, NBN, NFE2L2, NUP98, PALB2, PBK, PTPN11, RABL3,
STAG3, TERT, TOP1, WEE1

Differential survival in both groups—same trend

BCL2, BIRC5, CHECK1, DEK, LEPR, NCOA2, NUDT15, POLE, POT1, SDHA, SRSF2 Differential survival only in treated group

AURKA Differential survival only in untreated groups

ARID2, BRCA1, DNMT1, FUBP1, FUBP1, RAD50 No differential survival in either group
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fitted model in “Methods”—Mathematical model and parameters in Sup-
plementary Table 2.

If highWEE1 expression is a marker of resistance to olaparib, then we
could expect the resistance fraction to olaparib in the combination-treated
PDXs tobe, on average, lower than the resistance fraction found in thePDXs
treated with single-agent olaparib. The reasoning behind this is that if high
WEE1 expression is a true marker of resistance to olaparib, then inhibiting
the activity of its protein product from the onset could lead to higher
treatment efficacy of olaparib. Since the treatment effects of both drugs are
fixed to their respective single agent data, the only way in which the
mathematical model will interpret this increased treatment efficacy of ola-
parib is from a decreased olaparib resistance fraction. Figure 4 shows the
differences in the olaparib resistance fraction in PDXs treated with single-
agent olaparib andwith the adavosertib combination, aswell as the effect on
the adavosertib resistance fraction. All cases are stratified by LOW and
HIGHWEE1 expression with respect to the median expression value.

When comparing olaparib single agent response to that of the combi-
nation, there are two key observations from Fig. 4B. Firstly, there is a clear
correlation between the resistance fraction andWEE1 expression in the case
of olaparib single agent versus the combination with resistance significantly
decreased in the combination group. Secondly, the combination group has a
markedly lower olaparib resistance fraction than the single agent olaparib
group (Mann–Whitney rank test p-value « 0.05, effect size = 0.79) that
becomes less prominent for LOWWEE1 expression (Mann–Whitney rank
test p-value = 0.31). Both observations are consistent with high WEE1
expression being amarker of resistance to olaparib. Finally, as seen in Fig. 4B
HRR status seems not to correlate with the resistance fraction differences
between HIGH and LOW WEE1, further supporting the importance of
WEE1 levels as amarker. A survival analysis (Kaplan–Meier) of single-agent
versus combination and of LOW WEE1 vs HIGH WEE1 can be found in
Supplementary Fig. 16 demonstrating the increase in survival whenWEE1 is
intrinsically low or inhibited. Also, Supplementary Fig. 17 shows the decrease
in resistance fraction for olaparib 50mg/kgmonotherapy to the combination
of olaparib 50mg/kg with either adavosertib 60 or 120mg/kg. That decrease
appears in both high and low WEE1 groups, which points towards a com-
bination effect in addition to the sensitisation of the tumours to olaparib.

Finally, high variability in resistance fraction was observed for the low-
WEE1PDXs treatedwith olaparibmonotherapy.This could be attributed to
the expression of other markers identified as markers of resistance to ola-
parib. To explore this further, we split these PDXs into two groups. The low
olaparib resistance group (less than themedian) and the high group (higher
and equal to themedian). AKolmogorov–Smirnov test was then performed
on the expression of the 40 (excludingWEE1) identified markers to check
for statistical differential expression. 12markers had a significant differential
expression LEPR, DNMT1, PBK, RABL3, BCL2, BIRC5, DEK, NUDT15,
RBM15, KF23 and STAG2. These markers, individually or in combination,
could potentially explain the variability observed. Results are summarised in
Supplementary Fig. 18.

RAD51 foci
RAD51 foci have been shown to provide an accurate prediction of response
to PARPi that extends beyond BRCA mutation status23,24. A statistically
significant correlation was found between RAD51 foci score and tumour
volume change for olaparib-treated PDXs21. While this offers an implicit
association between RAD51 foci and resistance, using the current model
and the quantification of intrinsic resistance a more explicit correlation is
performed. Figure 5 shows the correlation between the resistance fraction
and (pre-treatment) RAD51 foci score for both doses.

A high correlation (ρ = 0.64) is observed, indicating that the RAD51
foci score is not only capable of classifying into responders and non-
responders but also provides a good continuous description of intrinsic
resistance/response to olaparib. The correlation becomes even stronger
(ρ = 0.75), whenwe consider only PDXswhich areHRDbut does remain to
similarly high levels for non-HRD(see SupplementaryTable 5). Correlation

with olaparib 50mg/kg is also very strong (ρ = 0.74) and can be found in
Supplementary Fig. 19.

Discussion
This manuscript builds upon the data and methodology of two papers23,27.
The data of ref. 23 are fitted using an extended version of the NLME
Maynord model used in ref. 27 is expanded beyond control data to include
not only a treatment effect that is dependent on the dose but also two
subpopulations, a resistant and a sensitive. This is done in order to estimate
the Resistance Fraction at baseline and use it a means of characterising
response and identifying biomarkers.

Thismanuscript showcases a robustmathematical model for assessing
tumour growth, treatment response and intrinsic resistance. Formulated as
part of the nonlinear mixed-effect statistical framework, it allowed us to fit
pre-clinical data for olaparib-treated TNBC PDX tumours. Quantifying
accurately and confidently the resistance fraction intrinsic to the tumours
has led to its use as the basis for further statistical modelling, which, when
combined with transcriptomics data, was able to identify potentially
important biomarkers of resistance to the PARPi olaparib.

The work presented here is a combination of statistics and mathe-
matical modelling with the addition of biomarker statistics separately. The
reasoning for that separation was the complexity of including so many
markers as inputs to theNLMEmodel. Significant efforts need to bemade to
reduce the number ofmarkers asmuch as possible before including them as
covariates to the mathematical model, and that is a potential future exten-
sion for this framework. Nevertheless, the important gap that is being filled
is the lack of such an integrated approach where a mathematical model of
tumour growth is used as a means of filtering and ranking biomarkers.

One of the findings of particular interest was the high level of WEE1
expression associated with olaparib resistance. Olaparib treatment and the
resulting PARP trapping have been reported to induce increased replication
stress and replication fork stalling35. Stalled forks can, in turn, ‘collapse’
following nuclease cleavage to form DNA DSBs. This increased S-phase
DNAdamagewould be predicted to generate an increased dependency on a
G2/M checkpoint to allow repair before the cells enter mitosis. So one
possible explanation for higher levels of WEE1 associated with olaparib
resistance could be a need for a more effective G2/M checkpoint. This is
unlikely to provide a complete explanation, however, sincePMYT1, another
important G2/M checkpoint gene was not found to be over-expressed in
olaparib resistantmodels. Unlike PMYT1,WEE1 also plays important roles
in S-phase dealingwith replication stress and stalled replication forks. These
roles include the inhibition of nucleases that can induce stalled replication
fork collapse and the formation of DNA DSBs. The data presented here,
indicating high WEE1 expression as a PARPi resistance factor, therefore
suggestsWEE1’s role in PARPi resistance may also include a greater ability
to deal with stalled replication forks following PARP trapping. Consistent
with this idea, is that two other genes whose proteins play dual roles at both
theG2/M checkpoint and in the S-phase replication stress response, namely
ATR and CHK1, were also identified as being associated with olaparib
resistance when expressed at higher levels (Fig. 4). Moreover, the EFFORT
Phase 2 clinical trial assessed the combination efficacy of adavosertib
(WEE1i) andOlaparib inpatients36, aswell as a dose escalation study in solid
tumours37. In addition, some preclinical studies have also reported the
potential combination benefit ofOlaparibwithWEE1i aswell as other small
molecule inhibitors categorised as DNA damage repair agents38,39.

Other markers identified in Fig. 3, were also associated with the DNA
damage response and the mechanism of action of olaparib, including those
associatedwithHRR, namelyBRCA1, BRCA2,CHEK2, PALB2 andNBN, as
well as STAG2 that is part of the cohesion complex necessary for the use of
the sister chromatid, an undamaged template during HRR40. Additional
confidence in the mathematical modelling used here to identify factors
associated with olaparib resistance also comes from the pathway enrich-
ment analysis that identified five top pathways associated with olaparib
resistance that can all be linked to the PARPimechanism of action; namely,
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three DDR-associated pathways, the BRCA1/2 breast cancer pathway and
the DNA damage apoptosis and survival associated pathways.

One additional, but clinically relevant finding from this study, was that
the more accurate use of resistance fractions to classify preclinical olaparib
response (compared to the more traditional mRECIST approach), could
effectively bepredictedusing theRAD51 foci assay (Fig. 5). It is nowpossible
to assess basal levels of RAD51 foci to predict HRR functionality41 and
current efforts are underway to generate diagnostics based on the RAD51
assay42. The data presented here are consistentwith the goal of usingRAD51
foci to predict PARPi sensitivity or resistance. RAD51 has been established
as a key resistance marker in several other studies previously, however also
acknowledging that the biological mechanisms underpinning this activity is
not straightforward/consistent or fully understood yet. RAD51 plays a cri-
tical role within the Homologous Recombination Repair pathway (HRR),
and its upregulation has been observed in resistance to PARP inhibition in
BRCAm cells in vitro43. Recent studies have also explored the potential of
RAD51 as a potential drug target within the context of BRCAm TNBC,
showing synergistic efficacy with dual PARP-RAD51 conjugates in breast
cancer cells44.Whilst this and similar studies exploring the synthetic lethality
of olaparib with RAD51i have shown promise, this field needs further in-
depth studies to confirm and establish therapeutic potential.

While intrinsic resistance is a major contributor to treatment failure,
there are other ways resistance can occur that are not considered in this
framework. Quantifying all potential types of resistance is challenging and
requires specific types of experimental protocols to provide the data in order
to separate them45. Tomodel acquired resistance,wewould need tomeasure
mRNA expression not only at baseline but also post-treatment. That would
allow us to quantify and correlate the changes we see in gene expression to
the tumour growth dynamics observed. In the data used for this study, only
baseline transcriptomics were available. Trying to include and quantify
acquired resistance using the data in this paper led to parameter identifia-
bility issues with respect to resistance parameter estimates. Both the equa-
tions and the general framework of the approach presented here, areflexible
enough to include additional terms and data.

Although the simple Pearson’s correlation does provide relevant
markers, more complex statistical and machine-learning methods could
also be used to extract features. This includes nonlinear models that do not
assume a linear relationship between the expression and the resistance
fraction. An initial test was performed using ML models such as Random
Forest and Gradient Boost but struggled due to the limited dataset and the
imbalances in the class distribution. Further parameter reduction methods
might need to be implemented to decrease the parameter space. A further
limitation of the model is that f R is treatment-specific parameter based on

efficacy and hence cannot differentiate between non-response and resis-
tance. In practical terms, what thatmeans is that this parameter will attain a
high value (close to 1) if the tumour does not respond because of resistance
but because of the wrong (non-efficacious) treatment being given. In the
case of our data and any case where the treatment is the right one for a
particular indication then f R should emulate true resistance.

Mathematical modelling of resistance to cancer treatments offers a
unique opportunity for new metrics to characterise resistance as well as
sensitivity and the degree of response. These new metrics, such as the
resistance fraction used in thismanuscript, offer a continuous description of
the behaviours seen, can account for variability, and can very naturally be
summed up for each individual (PDX)model.We believe that thesemetrics
can, in turn, provide a very viable and robust input to bioinformatic and
statistical models including, but not limited to, regression, differential gene
expression and random forest models, consequently enriching their
descriptive and predictive capabilities. The goal of the resistance fraction is
not to replace the mRECIST criteria or other classification methods but
rather to supplement them. For example, in the identification of interesting
subcategories, such as the initial responders defined here. All the above can
be particularly useful in generating early intervention strategies for TNBC
patients and, by extension, other tumour types, discovering potential
combination targets and validating existing biomarkers (as was shown here
for the RAD51 foci assay). With further validation in the clinic, this
methodology could make an important contribution to the future practises
of precision medicine.

Methods
Patient-derived xenograft (PDX) models and in vivo treatment
experiments
Fresh tumour samples fromTNBCpatients were collected for implantation
into nude mice under an institutional review board (IRB)-approved pro-
tocol. Experiments were conducted following the EuropeanUnion’s animal
care directive (2010/63/EU) andwere approvedby theEthicalCommittee of
Animal Experimentation of theVall d’HebronResearch Institute. Informed
consent was collected from all patients.

Surgical or biopsy specimens from primary tumours or metastatic
lesions were immediately implanted in mice as described in ref. 22. Our
cohort is composed of 33 patient-derived xenografts (PDX) treated with
olaparib as a single agent, and 27 PDX treated with adavosertib (WEE1
inhibitor, WEE1i) as a single agent and the combination with olaparib. To
evaluate drug sensitivity, tumour-bearingmicewere equally distributed into
treatment groups once tumours reached sizes ranging from100 to 300mm3.
As a single agent, olaparib is administered orally six times per week unless

Fig. 5 | Pearson’s correlation of resistance fraction toRAD51 foci scores forOlaparib 100 mg/kg.Colour is assigned by classification using the resistancemodel. Pearson’s
ρ value, 95% confidence intervals and p-value are included. The red dotted line corresponds to the 10% threshold for differentiating PARPi‐sensitive from PARPi‐resistant19.
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otherwise specified (in 10%v/v DMSO/10%w/v Kleptose [HP-β-CD]) at 50
or 100mg/kg. For the 50mg/kg there are 32 PDX, 240 mice, 161 of which
have two tumours grafted on either side, giving a total of 402 tumours. For
100mg/kg, there are 27 PDXs (4 CR, 3 SD and 20 PD). PDX and 192 mice
(139 with two tumours), diving 331 tumours overall. Similarly, as a single
agent, adavosertib is administered orally five times per week unless other-
wise specified (in 0.5%v/v Methylcellulose) at 60mg/kg or 120mg/kg, with
24 and 20 PDX, respectively. The combination is given with either dose of
adavosertib, but only with 50mg/kg of olaparib. Experiments with different
doses are analysed separately.

Tumour growth is measured with calliper bi-weekly from the first day
of treatment. To generate PDX models with acquired resistance to PARPi,
olaparib treatment was maintained for up to 150 days in olaparib-sensitive
tumours until individual tumours regrew. In all experiments, mouse weight
was recorded twice weekly. The tumour volume was calculated as V = 4/3/
L × l2, “L” being the largest diameter and “l” the smallest. Mice were
euthanized when tumours reached 1500mm3 or in case of severe weight
loss, in accordance with institutional guidelines. Baseline (pre-treatment)
transcriptomics were obtained for each of the 33 PDX.

Only the olaparib single agent data are used for the development of the
framework and 100mg/kg dose for the biomarker discovery pipeline. The
combination, adavosertib and olaparib 50mg/kg data are then used for
validation checks for a particular marker. This choice was based on the fact
that 100mg/kg is the clinically relevant dose and hence more relevant
biomarkers associated with resistance to that dose instead of 50mg/kg.

Mathematical model
As can be seen from the data, there is awide spectrumof different dynamics,
from the simple response and non-response curves to the more complex
relapse dynamics. In order to be able to capture the diverse dynamics of
these data sets, it is necessary to account for the differences in response using
resistance. The inclusion of resistance is particularly essential when it comes
to modelling the U-shaped regression/relapse pattern seen in many cases,
which points towards a change in the responsiveness of the tumour
occurring throughout the duration of the study. TheMayneordmodel46,47 is
an empirical model of tumour growth where the rate of change of the
volume is proportional to the surface of the tumour. The basic assumption
of thismodel is that the rate of growth of the radius of the tumour is constant
which gives rise to the proportionality of the tumour volume change to the
surface. Sincemodelling resistancewill add further complexity, the goal was
for the base model to remain as simple as possible while being adequate at
describing tumour growth at the same time. By introducing two compart-
ments, one for the sensitive and one for the resistant part of the tumour, the
model changes as follows:

dSðtÞ
dt

¼ K � Dð Þ 1� f RðtÞ
� �

VðtÞ23; S tð Þ ¼ V tð Þ 1�f R tð Þ� � ð1Þ

dRðtÞ
dt

¼ Kf RðtÞVðtÞ2=3: R tð Þ ¼ VðtÞf RðtÞ ð2Þ

Where S is the sensitive tumour volume,R is the resistance tumour volume,
V is the total tumour volume, K is the growth rate of the tumour, D is the
treatment effect and the total volume is given by Sþ R. f R is the resistance
fraction of the tumour at time t given by RðtÞ=ðRðtÞ þ SðtÞÞ. f R 0ð Þ is the
resistance fraction at time zero and themain parameter being fitted, needed
for the initial conditions of the two subpopulations. It ranges from 0 to 1
with 0 being a completely sensitive tumour and 1 being completely resistant.

In addition to olaparib single agent data, the adavosertib single agent
and combination with olaparib data are fitted using the aforementioned
model for subsequent analysis. For that purpose, the coremodel remains the
same,with the onlydifference being that insteadof two compartments, there
are four: sensitive to both treatments, sensitive to olaparib but resistant to
adavosertib; resistant to olaparib but sensitive to adavosertib and resistant
to both.

Model development
Fitting was performed using non-linearmixed effects (NLME)48, NLME is a
statistical framework that can incorporate mechanistic and semi-
mechanistic models such as the tumour growth and allows for a more
complete capturing of the data by taking into account all individual data,
inter-individual variability, dependence of measurements and ignoring
missing values.

Volume time-series data were fitted on the logarithmic scale with an
additive error, no covariance between different parameters and the first
order conditional estimation (FOCE)49 method in NONMEM [ICON plc
Ireland]. Both doses were fitted together to get an accurate estimation of
their difference in efficacy.

The growth rate population and random effects were fixed to values
estimated using the untreated data from our dataset. That was done to
decrease the number of parameters that we needed to fit in order to keep the
values andmodelmore reproducible. Thefitting processwas performed 100
times using the ‘retries’ functionality of PSN with varying initial estimates.
The purpose being to assess the stability of the model as well as derive a
consensus for the discrete classification of the growth curves.

The classificationof the growth curves into complete responders, initial
responders and non-responders is done in two steps. First, we separate
complete responders from the rest by setting a cut-off to the resistance
fraction below, which we assume is practically zero. Having extracted the
complete responders, the initial and non-responders are separated using a
mathematical inequality that determines the sign of the volumederivative at
time zero. Adding (1) and (2) gives dV=dt and solving for dV

dtjt¼0
> 0 gives:

f R 0ð Þ � D� K
D

> 0: ð3Þ

Inequality (3) shows that if the resistance fraction is higher than the
D� K=D the tumour volumewill start increasing from the beginning of the
experiment. The opposite yields a tumour volume that initially decreases
(negative derivative) before eventually increasing again (relapse).

Regarding the choice of time zero, with PARPi, there is a delay between
administration and effect due to the build-up of theDNAdamage over a few
cell cycles; this was not included in the mathematical model. So, the
simulated tumour from the model immediately demonstrates the effect of
thedrug.While thismight not capture the initial timepoints perfectly, it does
capture the overall dynamics and curve of the tumour growth. Since then,
there has beennodelay in themodel. The fraction at time zero is the one that
will determine if the tumour shows no response or some response before
relapsing. If thedelaywas accounted for in themodel, the choice of time zero
as the time point against which the above inequality is checked would be
incorrect as the effect of the drugwouldn’t be evident until a later timepoint.
Then the choice of the timepoint would have beennon-trivial and subject to
variability.

Based on the above tumours are initially assigned a classification. Since
the parameter estimation is run 100 times that classification is subject to
variation. As a result, to derive the final classification a consensus is used of
the classification in all 100 runs, i.e. the most popular classification is the
final. Similarly, the classification in the level of the PDX is derived. Having
acquired the final classification of themice (replicates) for a particular PDX
we assign to it a classification based on the most common classification of
the mice that comprise it.

Mathematical model assumptions, nonlinear mixed effects for-
mulation and parameter values

• While the tumour growths are different and there is evidence to suggest
that the growth rate of the sensitive is faster than the resistant in this
paper we will assume they are the same due to potential identifiability
issues.

• There canpotentially be a numberof sources of resistance to treatment,
which include intrinsic, acquired as well as drug-induced resistance.
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Because we have only pre-treatment transcriptomic data there is no
meaningful way to associate any markers with acquired resistance,
which would require access to measurements of mRNA expression
throughout the duration of the treatment. Due to that fact it was
decided to keep themodel as simple as possible by only considering an
intrinsic resistance parameter which could be associated with the
mRNA data to derive potential markers of resistance.

• No random effect was associated with the treatment fixed effect
parameter D. That was done, without loss of generality, in order to
enhance the idea that any variation in the mean response to the
treatment stems from the resistance parameter. Further test including a
random effect for the treatment parameter showed no significant
differences.

• An essential assumption for the stability of the parameter estimation
was the restriction of the treatment effect to be always larger than the
growth rate (both fixed and random effect included). Failure to satisfy
that condition led to the estimation of the parameters varying widely
between the multiple runs and being very sensitive to initial estimates.
Thatwas undesirable as in order to identify the biomarkerswewant the
parameter quantification to be as stable and accurate as possible. To
enforce the restriction we assume the treatment is always proportional
to the growth following the formulaKð1þ THETADÞwhereTHETAD
is thefixed effect of the treatment. Similar formulas can be used such as
the additive K þ THETAD which yield similar results.

• The resistance fraction f R was fitted as a logistic function to restrict it
between zero and 1. For that reason an exact zero value is almost never
attained. That makes it necessary to introduce a cut-off value below
which we assume that the resistance fraction is practically zero.

• Olaparib requires a few cell cycles before it’s full effect can take place.
That leads to a delay in the full effectwhichcause the tumour to initially
grow before regression can occur in the mice that do respond to the
drug. While a delay can be included in the mathematical model it
causes identifiability issues with the treatment effect leading to very
prolonged delay periods and unrealistically high treatment effects. The
only remedy is a precise and realistic range restriction on the values the
delay can take which won’t allow the treatment effect to assume very
large values. Since there are no references as to what this range might
the delay was not included. Themodel can get around that initial delay
by varying the initial tumour volume. A higher tumour volume
smooths out that behaviour in the simulated curves and allows the
model to befitted to amuchbetter degree in the caseswhere the delay is
observed. Of course that leads to a higher initial tumour volumes for
these particular mice by we believe without loss of generality and
correct characterization of the curves.

• Continuous dose instead of intervals.
• To account for both doses fitted together an additional parameter was

added on top of the parameter for the 50mg/kg dose. The sign of the
effect was left unrestricted to access whether the fitting process will
naturally show that the 100mg/kg dose is more efficacious:

Dolap ¼ K 1þ e THETA50þTHETAextra DOSE�50ð Þ=50ð Þ� �

The diagnostic plots found in the Supplementary Figs. 1–4 demon-
strate a good fitting of themodel to the data. The residual errors are centred
around zero with no visible deviation from normality and the individual
predictions (IPRED) demonstrate a very close fit to the raw data. The final
fitted parameter values and errors are in Supplementary Table 1. These
represent the values from the best out of the 100 runs of the method.

It is worth mentioning that the 100 iterations revealed minimal dif-
ferences between them with regards to the resistance fraction of each
individual tumour. Supplementary Fig. 5 demonstrates the variability per
individual tumour for the 100 runs. The same behaviour is observed in all
PDXs and both doses but only specific PDXs are shown for clarity reasons.
mRECIST criteria are included at the top of each boxplot for comparison.

Combination model
Themodel used tofit the adavosertibmonotherapy and combinationdata is
based on (1) and (2) we the addition of two extra compartments to account
for resistance to either and both treatments. The model is as follows:

dS1ðtÞ
dt

¼ K � Dolap � DAdav

� �
1� f 1RðtÞ
� �

1� f 2RðtÞ
� �

VðtÞ
2
3;

S1 0ð Þ ¼ V 0ð Þ 1� f 1R 0ð Þ� �
1� f 2R 0ð Þ� �

dS2 tð Þ
dt

¼ K � Dolap

� �
1� f 1R tð Þ� �

f 2R tð ÞV tð Þ
2
3; S2 0ð Þ ¼ V 0ð Þ 1� f 1R 0ð Þ� �

f 2R 0ð Þ

dS3ðtÞ
dt

¼ K � DAdav

� �
f 1R tð Þð1� f 2RðtÞÞVðtÞ

2
3; S3 0ð Þ ¼ V 0ð Þf 1R 0ð Þ 1� f 2R 0ð Þ� �

dRðtÞ
dt

¼ Kf 1R tð Þf 2R tð ÞVðtÞ2=3: R 0ð Þ ¼ Vð0Þf 1R 0ð Þf 2R 0ð Þ

Where S1� S3 are the sensitive tumour volumes toboth,Olaparib only and
adavosertib only respectively, R is the resistance tumour volume to both.
f 1R; f

2
R are the resistance fractions of the tumour at time t given for Olaparib

and adavosertib, respectively. Finally,Dolap; DAdav are the treatment effectof
Olaparib and adavosertib.

Modified mouse RECIST
Given that thePDXdatautilised in this studywasobtained fromSerra et al. 23,
we followed the criteria defined in that study. In order to capture the response
of the subcutaneous implants, a modified Response Evaluation Criteria in
SolidTumours (RECIST) criteriawasusedwhichwasbasedon the%tumour
volume change: complete response (CR), best response← 95%; partial
response (PR), best response← 30%; stable disease (SD), −30%< best
response <+20%; progressive disease (PD), best response >+20%.

Transcriptomic features
Having fitted the data, various measures of response and resistance can be
used in order to identify biomarkers of resistance to olaparib. A typical
approach would be to use the classification of the PDXs to separate them
into responders (complete responders, initial responders) and non-
responders and then perform a differential gene expression using the pre-
treatment mRNA expression to see what genes are deferentially expressed
between the two groups50. While this can be accomplished using both the
mRECIST criteria and the classification of our model we believe that the
most informative way is to use the continuous description of resistance
(resistance fraction) that has been acquired. That offers the identification of
genes that potentially show a more rigorous correlation throughout the
range of the resistance/response spectrum in contrast to the dichotomy of a
classification. To that end a linear correlation (Pearson’s correlation) was
performed between the resistance fraction, in the PDX level (median of the
resistance fractions of the individual tumours originating from that PDX, 27
unique PDXs for olaparib 100mg/kg), and the pre-treatment processed
mRNA expression values (see “Methods”—Processed mRNA data) of
certain genes. The correlation was performed for the resistance fraction
estimated in the olaparib 100mg/kg dosing group. In order to decrease the
number of genes we are exploring we primarily focused on a list of genes
called CIViC (clinical interpretation of variants in cancer) which is com-
prised of 440 genes (at the time of investigation) that have been identifiedby
manual curation to be clinically relevant to cancer51 (see Supplementary
Table 6).

A threshold needs to be established that separate significant and non-
significant correlations. A p-value less than or equal to 0.05was used for that
purpose. Due to the p-value and the correlation strength being related to
eachother in the case of simple linear correlationswedidnot use the latter as
a threshold. The full list of correlation values for the CIViC genes can be
found in the Supplementary Table 7.
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Finally, we have implemented a train-test split across our dataset to
map consistency of identifiedmarkers as awayof validation.Wedivided the
27 PDX models into 2/3:1/3 train:test split iterated over 100-fold (small ‘n’
required a large number of folds to identify any signal with identifying
consistent markers) (Suppl. Fig. 22).

Pathway enrichment analysis and cross-talk
We used MetaCore (Source: Clarivate) to perform enrichment analysis.
Genes were matched to possible targets in functional ontologies of Meta-
Core. The probability of a random intersection between a set of IDs the size
of target list with ontology entities is estimated in p-value of hypergeometric
intersection. The lower p-value means higher relevance of the entity to the
dataset. Canonical pathwaymaps represent a set of signalling andmetabolic
maps for human. All maps are created by expert PhD scientists from
Clarivate Analytics relying on published peer-reviewed literature.

To adjust enrichment results we additionally performed crosstalk
analysis. The network of the top 10 ontology terms from pathway enrich-
ment analysis. Nodes represent top terms and edges represent significant
similarities (asmeasuredbyhypergeometric test) between these entities. The
edge thickness depends on the size of intersection between two ontology
terms while the colour of the node corresponds to the enrichment z-score.

Survival analysis
After identifying key genes, Kaplan–Meier survival analysis was performed
on treated and control data stratified by HIGH (≧mean expression value)
and LOW (<mean expression value) expression for each of the genes. For
this analysis, individual tumour survival endpoints were utilised as opposed
to a PDX-level given the potential uncertainty that could be introduced by
aggregating survival endpoints at the PDX-level. Markers were then sepa-
rated into four categories depending on which groups they demonstrated a
differential survival for. The stratified survival curves were compared using
the hazard ratio (HR) using the Cox proportional-hazard model. Analysis
was performed in R using survival 3.6–4 package52,53.

Processed mRNA data
The available RNAseq data are TPM (Transcripts Per Kilobase Million)
normalised. The data originate from two different batches marked as “old”
and “new”. Supplementary Fig. 12 demonstrates through a UMAP a
separation of the expression profiles between samples which is highly cor-
related to the batch. This is also seen in the expression distribution plot in
Supplementary Fig. 13a. To correct for that ComBat batch correction was
applied to the LOG(x+ 1) transformed data smoothing the differences
between the clusters as seen in Supplementary Fig. 13b.

Inclusion and ethics statement
This studywas performedby a teamof collaborative scientistswith a diverse
background across gender, nationalities, scientific and technical capabilities
etc. All in vivo data analysed as part of this study were published previously
(Serra et al., Clin Cancer Res. (2022) 28 (20): 4536–4550 and aligned with
established ethical protocols. All animal procedures were approved by the
Ethics Committee of Animal Research of the Vall d’Hebron Institute of
Oncology and by the Catalan Government and were conformed to the
principles of the WMADeclaration of Helsinki, the Department of Health
and Human Services Belmont Report, and following the European Union’s
animal care directive (2010/63/EU).

Data availability
PDX tumour volume data is included in the GitHub repository. Baseline
transcriptomics data are available upon request from our academic colla-
borators at Vall d’Hebron Institute of Oncology (VHIO) who are also
authors on this paper. Combination pharmacology data used in this study
has been included in another study from these authors (Serra et al., Clin
Cancer Res (2022) 28 (20): 4536–4550).

Single agent timeseries data have been published in “Cruz C,
Castroviejo-Bermejo M, Gutiérrez-Enríquez S, Llop-Guevara A, Ibrahim

YH, Gris-Oliver A, Bonache S, Morancho B, Bruna A, Rueda OM, Lai Z.
RAD51 foci as a functional biomarker of homologous recombination repair
and PARP inhibitor resistance in germline BRCA-mutated breast cancer.
Annals of Oncology (2018)”.

All other data used and results generated are included in the submis-
sion as supplementary data.

Code Availability
All code (NONMEMmodel, jupyter notebook for ML models) is included
in GitHub repository.
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