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ABSTRACT 

Background. Although the kidney failure risk equation ( KFRE) , a well-known predictive model for predicting dialysis 
dependency, is useful, it remains unclear whether the addition of biomarker changes to the KFRE model in patients with 

an estimated glomerular filtration rate ( eGFR) < 30 ml/min/1.73 m2 will improve its predictive value. 
Methods. We retrospectively identified adults with eGFR < 30 ml/min/1.73 m2 without dialysis dependency, and available 
health checkup data for two successive years using a large Japanese claims database ( DeSC, Tokyo, Japan) . We 
dichotomized the entire population into a training set ( 50%) and a validation set ( the other half) . To assess the 
incremental value in the predictive ability for dialysis dependency by the addition of changes in eGFR and proteinuria, 
we calculated the difference in the C-statistics and net reclassification index ( NRI) . 
Results. We identified 4499 individuals and observed 422 individuals ( incidence of 45.2 per 1000 person-years) who 
developed dialysis dependency during the observation period ( 9343 person-years) . Adding biomarker changes to the 
KFRE model improved C-statistics from 0.862 to 0.921, with an improvement of 0.060 ( 95% confidence intervals ( CI) of 
0.043–0.076, P < .001) . The corresponding NRI was 0.773 ( 95% CI: 0.637–0.908) , with an NRI for events of 0.544 ( 95% CI of 
0.415–0.672) and NRI for non-events of 0.229 ( 95% CI of 0.186–0.272) . 
Conclusions. The KFRE model was improved by incorporating yearly changes in its components. The added information 

may help clinicians identify high-risk individuals and improve their care. 
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GRAPHICAL ABSTRACT 

P value95% CIPoint 
estimate

Item

NRI

<.0010.415–0.672 0.544 NRI for events

<.0010.186–0.272 0.229 NRI for non-events

<.0010.637–0.908 0.773 Total NRI

C-statistics

0.836–0.887 0.862 KFRE model

0.905–0.938 0.921 Modified KFRE model

<.0010.043–0.076 0.060 Difference in C-statistics
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aokada@m.u-tokyo.ac.jp
@CKJsocial

Conclusion: The predictive ability of the KFRE model for dialysis dependency was 
improved by incorporating changes in eGFR and urinary protein, which was particularly 
useful among individuals who subsequently underwent kidney replacement therapy.

Adding biomarker change information to the kidney failure risk 
equation improves predictive ability for dialysis dependency in 
eGFR <30 ml/min/1.73 m2

It remains unknown whether the addition of biomarker changes to the Kidney Failure Risk Equation (KFRE)
for predicting dialysis dependency will improve its predictive value among individuals with an estimated

glomerular filtration rate (eGFR) of <30 ml/min/1.73 m2.

Methods Results

DeSC database, Japan, 2014–21
4499 adults with eGFR
<30 ml/min/1.73 m2

Two models were compared:
1. Control model: KFRE model
•Age, sex, eGFR, and urinary
    protein
2. Modified KFRE model 
•KFRE model + changes in
    eGFR and urinary protein

Incremental prediction
evaluated using:
•C-statistics 
•Net reclassification index (NRI)
•Decision curve analysis

Biomarker addition to the KFRE
improved the predictive ability for the

initiation of kidney replacement therapy

The modified KFRE provided superior benefit
in predicting patients who needed to be

prepared for kidney replacement therapy

Improvement of prediction Decision curve analysis in preparation
for dialysis dependency
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KEY LEARNING POINTS 

What was known : 

• Individuals with an estimated glomerular filtration rate 
dialysis dependency, and several models have been develo

• The kidney failure risk equation has been useful for predi
• It remains unknown whether the addition of biomarker c

This study adds : 

• The addition of changes in eGFR and proteinuria improve
initiation of kidney replacement therapy.

• Analyses using decision curve analysis suggested that th
with the original kidney failure risk equation.

Potential impact : 

• This model will help prepare adequate care, advance ca
kidney failure with dialysis dependency.

NTRODUCTION 

hronic kidney disease ( CKD) , a noncommunicable disease, has 
ecome a global problem as its prevalence increases due to 
ocietal aging [1 ]. Although the age-standardized prevalence of 
0 ml/min/1.73 m2 are at a high risk for kidney failure with 
to predict the transition to dialysis dependency.
 the initiation of kidney replacement therapy.
es to the model will improve its predictive value.

 predictive ability of the kidney failure risk equation for the 

dified model potentially improved clinical utility compared 

nning, and follow-up among individuals at a high risk for 

KD has remained the same since 1997, the age-standardized 
ncidence of kidney failure with dialysis dependency has 
ncreased by > 40% [2 ]. Therefore, efforts should focus on man- 
ging individuals at imminent risk for kidney replacement 
herapy. Individuals with severe kidney dysfunction, namely 
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hose with an estimated glomerular filtration rate ( eGFR) of 
 30 ml/min/1.73 m2 , are among the high-risk populations [3 ].
uch populations should be carefully followed up because the 
nadequate timing of dialysis initiation may lead to increased 
ortality [4 ]. To facilitate appropriate patient care, the decision

o prepare suitable patients for the development of dialysis 
ependency should be based on the findings of individualized 
isk assessment [5 ]. Therefore, constructing an accurate and 
ndividualized risk-predictive model for dialysis dependency 
ay improve the prognosis of patients with severe kidney 
ysfunction [5 ]. 
Currently, only a few models are used to predict the pro-

ression to dialysis-dependent kidney failure in patients with 
idney dysfunction [5 –7 ]. Of these, the kidney failure risk
quation ( KFRE) is the most extensively used, and its predictive 
ower has been validated in studies involving global populations 
8 –13 ]. The four-variable KFRE comprises age, sex, eGFR, and
rinary albumin [9 ], and the simplicity of this model facilitated
he incorporation in electronic medical record [14 ]. Furthermore,
he KFRE can predict not only the progression to dialysis depen-
ency, but also increased cost due to kidney care [15 ]. Therefore,
FRE was used for the selection of high-risk populations regard-
ng clinical decision-making [16 , 17 ]. Indeed, the use of the KFRE
quation for referral to kidney specialist or decision-making in 
dvanced CKD could improve patient care [18 ]. 

Although the KFRE model is widely used and well-validated,
hether the observation of any changes in components can im-
rove the model’s ability to predict progression to kidney failure
mong individuals with an eGFR of < 30 ml/min/1.73 m2 remains
nclear. Considering that changes in urinary protein levels and 
GFRs are useful in predicting CKD progression [19 –23 ], examin-
ng whether the addition of such information will increase the
redictive ability of KFRE is important. Improving the predictive 
bility of KFRE will contribute to the advancement of effec- 
ive intervention strategies in individuals with severe kidney 
ysfunction. 
This study aimed to assess the incremental predictive 

alue of biomarker alterations in the KFRE model for predict-
ng dialysis-dependent kidney failure. Moreover, we assessed 
hether changes in proteinuria levels, and eGFRs will enhance 
he predictive ability of the model. 

ATERIALS AND METHODS 

tudy design and data source 

his population-based cohort study was conducted using 
nformation retrieved from the DeSC administrative claims 
atabase ( DeSC Healthcare Inc., Tokyo, Japan) . The DeSC 

atabase contains claims data submitted to health insurers 
t clinics, hospitals, and pharmacies. It contains information 
n the entire Japanese population, including people across all 
ges, and the details of the DeSC database have been described
reviously [24 ]. 
For claims data, we used diagnoses recorded according to the

nternational Classification of Diseases, 10th revision ( ICD-10) 
odes. The DeSC database contains annual health checkup data 
or ∼30% of the population. The checkup data included indi-
idual demographics ( e.g. height, weight, and blood pressure) ,
esults of clinical laboratory tests ( e.g. serum creatinine and 
rinary protein semi-quantitative tests) , and responses to a 
uestionnaire-based survey on lifestyle factors ( e.g. smoking 
nd ischemic heart disease history) . 
nclusion and exclusion criteria 

sing the DeSC database, individuals ( i) with an eGFR of
 30 ml/min/1.73 m2 during the health checkup performed
etween 2014 and 2021, and ( ii) with data on proteinuria and
erum creatinine levels obtained in two successive checkups
nd with a look-back period of 6 months before the first checkup,
ere included in the study ( Fig. S1) . Individuals undergoing 
ialysis or kidney transplantation before the second checkup
ere excluded. 
This study was approved by the Institutional Review Board

f the Graduate School of Medicine at the University of Tokyo
 2021010NI) . The requirement for informed consent was waived
wing to the use of anonymized data. 

tudy variables 

he following data were obtained and used in the KFRE used
n this study: age, sex, eGFR, and semi-quantitative proteinuria
evels recorded as five levels ( negative, trace, 1 + , 2 + , and 3 +) . We
lso calculated albuminuria predicted by the five-level protein-
ria, sex, and comorbidities of diabetes and hypertension [9 , 25 ].
he inclusion of predicted albuminuria in the KFRE model was
alidated, supporting its use in the calculation [9 , 25 ]. Moreover,
e obtained information on biomarkers such as low-density

ipoprotein cholesterol and HbA1c, comorbid diabetes or hy-
ertension, and smoking history. We also collected information
n systolic blood pressure and history of cardiocerebrovascular 
isease, the addition of which to the four-variable KFRE leads
o a six-variable KFRE [9 ]. We utilized data obtained during the
rst health checkup to prepare the four-variable KFRE. We also
etrieved information on proteinuria levels and eGFR measured
uring both the first and second health checkup to monitor
hanges in the markers. 

tudy outcome 

he primary outcome was the development of dialysis depen-
ency, defined as the earliest date of hemodialysis, peritoneal
ialysis, or kidney transplantation. Individuals were followed 
rom the second checkup until the earliest date of dialysis
nitiation, kidney transplant, or censoring. 

tatistical analyses 

e summarized the background characteristics of eligible 
ndividuals based on whether the outcome was reached or not.
ategorical variables were compared using the chi-square test,
nd continuous variables were compared using Student’s t -test.
e described an incidence rate per 1000 person-years for the
evelopment of dialysis dependency. 
We divided the participants into two sets: a training set,

omprising a randomly selected 50% of the participants, and a
alidation set, comprising the remaining 50%. This method was
dopted to avoid overfitting [26 ]. 

To prepare the models used for predicting the development
f dialysis dependency, we estimated the risk of kidney failure
sing flexible parametric survival models ( the Royston–Parmar 
odels) using the training set [27 , 28 ]. We used this parametric
odel in the survival analysis, which is useful in evaluating

he prediction for event development [27 , 28 ], instead of a
emi-parametric model ( i.e. Cox regression) . To assess the incre-
ental predictive ability of biomarker changes, we constructed

wo models: one was the KFRE model, and the other used the

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
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FRE model with the incorporation of changes in eGFR and 
roteinuria levels ( modified KFRE model) . In both the KFRE and 
odified KFRE models, age and eGFR were treated as continuous 
ariables, sex was a binary variable ( male or female) , and urinary 
rotein was a five-level categorical variable ( negative, trace, 1 + ,
 + , and 3 +) . In the modified KFRE model, the annual change 
n eGFR was represented as a continuous variable, indicating 
he yearly slope of eGFR change ( expressed as ml/min/1.73 m2 

er year, calculated by dividing the eGFR change by the interval 
etween the two checkups) , and the change in proteinuria was 
epresented as a binary variable, indicating whether the dipstick 
roteinuria results underwent no or worse change across the 
ve proteinuria categories. We observed “no or worse” change 
nstead of improvement in proteinuria levels to avoid potential 
eiling effects because individuals with the best proteinuria 
ategory ( i.e. negative) in the first checkup could not have a 
etter proteinuria result in the second checkup. The same 
ataset was used for both models, which were recalibrated 
or our study population using coefficients derived from para- 
etric regression within the training set. The performance 
f the two models was evaluated by comparing the predicted 
robabilities at the 2-year mark with the actual occurrence of 
vents. This corresponds to the evaluation of the original 2-year 
FRE model. 
The predictive ability of these models was evaluated. To 

etermine the predictive ability of the two different models in 
redicting the risk of kidney failure, two performance measures 
ere used: ( i) the C-statistics and the difference between the 
-statistics of the KFRE and that of the modified KFRE model 
ith 95% confidence intervals ( CIs) calculated using the jack- 
nife approach [29 ], and ( ii) the net reclassification index ( NRI) 
rom the KFRE to the modified KFRE model. The NRI was further 
ivided into NRI for events and NRI for non-events, based on 
he changes in sensitivity and specificity, respectively [30 ]. 

We also assessed the clinical utility of the two models in 
redicting individuals requiring preparation for the develop- 
ent of dialysis dependency within two years using decision 
urve analysis ( DCA) [31 ]. The DCA evaluates the trade-offs 
etween the advantages of true positives ( preparation for the 
evelopment of dialysis dependency followed by the induction 
f kidney replacement therapy) and the potential disadvantages 
ssociated with false positives ( preparation for the development 
f dialysis dependency without the subsequent induction of 
idney replacement therapy) for various threshold probabilities 
32 , 33 ]. Each model was compared in addition to the two 
efault scenarios: preparing for dialysis dependency across 
ll or no individuals ( first and second scenarios, respectively) .
his method involves analysis of the model’s discrimination 
nd calibration abilities, thereby enabling the assessment of 
he model’s potential impact on clinical decision-making. The 
rst scenario assumes that physicians would anticipate dialysis 
ependency ( i.e. requiring intensive and frequent follow-up 
isits) for all participants without making any specific predic- 
ion for dialysis dependency. In this scenario, while individuals 
ho will develop dialysis dependency during a specific period,
resumably constituting a small portion of the total population,
ould benefit, those who will not develop dialysis dependency 
uring the period, accounting for the rest of the total popula- 
ion, would incur excessive cost without tangible benefit ( i.e.
ost-exhausting) . Conversely, the second scenario presumes a 
ase wherein physicians would not perform any interventions 
or dialysis dependency for anyone, which would result in no 
et benefit for all individuals since no preparation or cost would 

e incurred. 0
We conducted additional research to determine the cut-off 
alue for the yearly eGFR slope to predict the development 
f dialysis dependency. We described the receiver operating 
haracteristic curve showing the balance of sensitivity and 
pecificity of the yearly eGFR slope. The cut-off was determined 
sing the Youden index [34 ]. 
Additionally, we performed subgroup analyses stratified 

y age ( cut-off age 75 years) and sex, and conducted three 
ensitivity analyses. First, we used the six-variable KFRE as 
he reference model, wherein the systolic blood pressure 
nd cardiocerebrovascular disease history were added to the 
our-variable KFRE model ( sensitivity analysis 1) . This analysis 
ssessed whether including changes in eGFR and proteinuria 
mproved the KFRE model, even with adjustments for systolic 
lood pressure and cardiocerebrovascular disease history. Next,
e used the predicted albuminuria levels instead of semi- 
uantitative results ( sensitivity analysis 2) . Finally, we included 
ndividuals with an eGFR of < 45 ml/min/1.73 m2 instead of those 
ith an eGFR of < 30 ml/min/1.73 m2 ( sensitivity analysis 3) . 
A two-sided P value < .05 was considered statistically signifi- 

ant. All statistical analyses were performed using Stata version 
8 ( StataCorp, College Station, TX, USA) . 

ESULTS 

aseline characteristics 

mong the population with health checkup data in the 
atabase, 4754 satisfied the inclusion criteria. We subsequently 
xcluded 255 individuals who developed dialysis dependency 
efore the second checkup, thereby including 4499 individuals 
n the analyses ( Fig. 1 ) . 

The characteristics of the included individuals stratified by 
utcomes are summarized in Table 1 . During follow-up ( N = 9343 
erson-years at risk) , 422 individuals ( 45.2 per 1000 person- 
ears) developed kidney failure with dialysis dependency. Those 
ho developed dialysis dependency during the follow-up period 
ere more likely to be younger, male, have a higher systolic 
lood pressure, have a lower eGFR, have positive proteinuria 
y dipstick test, or have no history of cardiocerebrovascu- 
ar disease ( Table 1 ) . In relation to alterations in biomarkers 
ithin the components of the KFRE, individuals who devel- 
ped dialysis dependency exhibited a more intensive decrease 
n yearly change in eGFR. The characteristics of the popula- 
ions belonging to the training and test sets were comparable 
 Table S1) . 

iscrimination in the prediction of dialysis dependency 

he hazard ratios of the KFRE and the modified KFRE models 
re listed in Table S2. The hazard ratios for dialysis-dependent 
idney failure among the components of the KFRE model were 
imilar. The yearly eGFR slope was associated with dialysis 
ependency ( hazard ratio 1.30 for 1 ml/min/1.73 m2 decrease 
er year, 95% CI: 1.26–1.35) , and no improvement in proteinuria 
evels was also associated with dialysis dependency ( hazard 
atio: 2.86, 95% CI: 2.02–4.04) . Based on the regression results, we 
onstructed 2-year recalibrated KFRE and modified KFRE models 
 Table S3) . 

Table 2 summarizes the discrimination abilities of the 
wo models. The KFRE yielded a C-statistic of 0.862 ( 95% CI: 
.836–0.887) , whereas that for the modified KFRE model was 
.921 ( 95% CI: 0.905–0.938) , with a difference of 0.060 ( 95% CI: 
.043–0.076; P < .001) . 

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
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Figure 1: Flow chart of the selection process. 
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s  
et reclassification index and decision curve analysis 

ompared with the KFRE, the total NRI in the modified KFRE
odel was 0.773 ( 95% CI: 0.637–0.908) . The addition of biomarker 
hanges yielded NRIs of 0.544 for events ( 95% CI: 0.415–0.672) 
nd 0.229 for non-events ( 95% CI: 0.186–0.272) . 

Based on the findings of the clinical effectiveness evaluation 
sing DCA, the modified KFRE model provided the maximum 

enefit in predicting patients requiring preparation for dialysis 
ependency ( Fig. 2 ) . In particular, the new model provided 
 larger benefit than the KFRE in terms of clinical utility,
uggesting an improvement in predicting patients requiring 
reparation for dialysis dependency after adding the changes 
f the two biomarkers to the KFRE. 

ut-off for discrimination of development of dialysis 
ependency 

he receiver operating characteristic curve based on the yearly 
GFR slope is shown in Fig. S1. The optimal cut-off by the
ouden index was −2.6 ml/min/1.73 m2 /year. With this cut-off,
he sensitivity was 65% and specificity was 74%. 

tratified and sensitivity analyses 

hen stratified by age ( < 75 or ≥75 years) or sex ( female or male) ,
he results of the sensitivity analyses were similar ( Table S4 and 
igs S2 and S3) , supporting the findings of the main analysis 
 Table S5 and Figs S4–S6) . 

ISCUSSION 

sing real-world data from a population-based database, we 
howed that the predictive ability of the KFRE model was im-
roved by incorporating biomarker changes. The usefulness of 
hese additional data was confirmed not only based on the NRI
ut also on the results of the DCA. Thus, the incorporation of
iomarker changes in the KFRE is clinically useful for predicting
he risk of dialysis dependency. 

Although the KFRE has been used worldwide to predict 
idney failure, studies aimed at improving its predictive ability,
uch as ours, are limited. Studies have shown conflicting results
n the utility of additional information to the KFRE model in
redicting dialysis dependency. For example, among patients 
ith diabetic nephropathy and eGFR < 60 ml/min/1.73 m2 ,
he addition of the pathological information of kidney biopsy
mproved the risk for dialysis dependency calculated by the
FRE model, with an improvement of C-statistis by 0.0019 and
RI of 0.40 [35 ]. Another study revealed that among individuals
ith eGFR of 15–90 ml/min/1.73 m2 , renal resistive index, an
ltrasound maker of kidney, improved the KFRE model but the
dded model did not outperform the original KFRE model in
he validation cohort [36 ]. Meanwhile, a recent study has shown
hat among individuals with eGFR of < 60 ml/min/1.73 m2 , the
ddition of information on an eGFR slope and cardiovascular co-
orbidity did not improve the KFRE model [37 ]. The discrepancy
etween the results of these studies and ours may be attributed
o the different eGFR ranges of the included populations; our
tudy included eGFR < 30 ml/min/1.73 m2 ; however, these stud-
es included individuals with milder kidney dysfunction. The
nclusion of this sample demographic may have led to a high
aseline C-statistic ( ∼0.90) , as shown in our sensitivity analysis
( Table S4) , ther eby making it difficult to detect a differ ence in
-statistics. Our inclusion criterion for eGFR ( < 30 ml/min/1.73
2 ) could be justified because we focused on individuals at
 high risk for dialysis dependency, wherein individualized
ecision-making is necessary. This study aimed to address the
anagement strategies for this specific population. 
The addition of changes in urinary protein levels and eGFR,

oth of which reportedly function as surrogate markers for
KD progression [19 –23 ], improved the predictive ability of
he KFRE in our study. The decrease in eGFR was shown to be
seful in predicting kidney failure ∼10 years ago, whereas the
ncremental predictive value by incorporating information on 
he albuminuria/proteinuria change has been confirmed just re-
ently [20 –22 ]. A previous study also showed that incorporating
he data on the ≥30% increase of albuminuria to that of the ≥30%
ecrease of eGFR after a multivariable adjustment resulted in
he improvement in C-statistics ( 0.019) in the prediction of kid-
ey failure [21 ]. Our study also detected the cut-off eGFR slope
f −2.6 ml/min/1.73 m2 per year in predicting the development
f dialysis dependency, which is consistent with a recent article
howing that an eGFR slope of < −3 ml/min/1.73 m2 per year was
onsistently associated with increased risk for dialysis depen-
ency while a slope of ≥−3 ml/min/1.73 m2 per year did not [37 ].
Beyond the KFRE models, recent studies have explored

trategies for predicting dialysis dependency. For example,

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
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Table 1: Baseline characteristics of the eligible individuals. 

Without dialysis 
dependency 
development 

With dialysis 
dependency 
development 

Variable Category N = 4077 N = 422 P value 

Sex ( male) 1938 ( 47.5%) 277 ( 65.6%) < .001 
Age ( years) 78 ( 10) 69 ( 11) < .001 
Body mass index ( kg/m2 ) 23.8 ( 3.7) 24.5 ( 4.5) < .001 
Body mass index category ( kg/m2 ) < 18.5 237 ( 5.8%) 23 ( 5.5%) < .001 

18.5–24.99 2466 ( 60.5%) 231 ( 54.7%) 
25.00–29.99 1117 ( 27.4%) 120 ( 28.4%) 
≥30.00 252 ( 6.2%) 48 ( 11.4%) 
Missing 5 ( 0.1%) 0 ( 0.0%) 

Systolic blood pressure at initial checkup ( mmHg) 132 ( 18) 138 ( 18) < .001 
Diastolic blood pressure at initial checkup ( mmHg) 72 ( 12) 76 ( 12) < .001 
Smoking status Non/past smoker 3476 ( 85.3%) 367 ( 87.0%) < .001 

Current smoker 292 ( 7.2%) 50 ( 11.8%) 
Missing 309 ( 7.6%) 5 ( 1.2%) 

Estimated glomerular filtration rate ( ml/min/1.73 m2 ) 24.1 ( 5.3) 18.7 ( 5.9) < .001 
Estimated glomerular filtration rate category 
( ml/min/1.73 m2 ) 

15–29 3787 ( 92.9%) 288 ( 68.2%) < .001 

< 15 290 ( 7.1%) 134 ( 31.8%) 
Negative 1774 ( 43.5%) 36 ( 8.5%) < .001 

Proteinuria by dipstick test Trace 528 ( 13.0%) 26 ( 6.2%) 
+ 769 ( 18.9%) 77 ( 18.2%) 
2 + 651 ( 16.0%) 152 ( 36.0%) 
3 + 355 ( 8.7%) 131 ( 31.0%) 

Predicted albumin-creatinine ratio ( mg/gCr) 181.8 ( 346.3) 516.8 ( 502.0) < .001 
HbA1c ( %) 5.9 ( 0.7) 6.0 ( 1.1) < .001 

< 5.7 2100 ( 51.5%) 210 ( 49.8%) < .001 
5.7–6.4 1361 ( 33.4%) 115 ( 27.3%) 

HbA1c category ( %) 6.5–7.9 500 ( 12.3%) 70 ( 16.6%) 
≥8.0 68 ( 1.7%) 16 ( 3.8%) 
Missing 48 ( 1.2%) 11 ( 2.6%) 

Low-density lipoprotein cholesterol ( mg/dl) 109.1 ( 31.0) 108.0 ( 34.3) .50 
Comorbid diabetes 1784 ( 43.8%) 229 ( 54.3%) < .001 
Comorbid hypertension 3829 ( 93.9%) 412 ( 97.6%) .002 
History of cardiocerebrovascular disease Without 

cardiocerebrovascular 
disease history 

2026 ( 49.7%) 238 ( 56.4%) .009 

With cardiocerebrovascular 
disease history 

2051 ( 50.3%) 184 ( 43.6%) 

Yearly change in estimated glomerular filtration 
rate ( mL/min/1.73m2 /year) 

2.1 ( 11.8) −4.2 ( 4.2) < .001 

No or worse change in proteinuria level 1141 ( 28.0%) 131 ( 31.0%) .18 

Data are presented as the means ( standard deviations) for continuous measures and N ( %) for categorical measures. 
*Body mass index, HbA1c, and low-density lipoprotein cholesterol were summarized after excluding 5, 59, and 10 patients without the corresponding information, 

respectively. 

Table 2: Model diagnostics for the prediction of dialysis dependency. 

Item 

Point 
estimate 95% confidence interval P value 

NRI 
NRI for events 0.544 0.415 – 0.672 < .001 
NRI for non-events 0.229 0.186 – 0.272 < .001 
Total NRI 0.773 0.637 – 0.908 < .001 
C-statistics 
KFRE model 0.862 0.836 – 0.887 
Modified KFRE model 0.921 0.905 – 0.938 
�C-statistics 0.060 0.043 – 0.076 < .001 

T
v
a
t
m
a
c  

r
t  

u
i
r
i
s  
angri et al. developed a dynamic prediction model using time- 
arying biomarker changes, similar to our approach, achieving 
n integrated discrimination improvement of 0.73% by adding 
ime-dependent covariates to baseline biomarker levels [38 ]. The 
ost influential time-dependent variable was eGFR, followed by 
lbuminuria, whereas albumin, phosphate, bicarbonate, and cal- 
ium levels were not significant determinants [38 ]. Additionally,
ecent studies have incorporated machine learning techniques 
o improve prediction accuracy. For example, Klamrowski et al.
sed a machine learning model to predict unplanned dialysis 
n patients at imminent risk of dialysis dependency [39 ]. Their 
andom forest model incorporated age and time-varying trends 
n serum creatinine and albuminuria levels, achieving a C- 
tatistic of up to 0.88 [39 ]. Another study, using the super learner
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achine learning algorithm [40 ], with information only on age,
ex, eGFR, and albuminuria, outperformed the four-variable 
FRE model in predicting dialysis dependency and death among 
atients with eGFR of 30–45 ml/min/1.73 m² [41 ]. Thus, these
tudies underscore the importance of time-dependent changes 
n serum creatinine and albuminuria as strong predictors of 
ialysis initiation and highlight the potential of advanced 
achine learning models to improve predictive accuracy. 
Our study is novel in that the addition of biomarker changes

ay be useful in detecting individuals with subsequent kidney 
ailure by measuring the NRI; moreover, DCA demonstrated the 
sefulness of the added biomarkers in several threshold proba- 
ilities. Routine follow-up, especially monitoring of changes in 
roteinuria levels and eGFR, should be performed in individuals 
ith an eGFR of < 30 ml/min/1.73 m2 and at a high risk predicted
y the modified KFRE model. Monitoring serum creatinine and 
lbuminuria/proteinuria routinely is recommended in guide- 
ines [42 , 43 ], and supported by recent studies that suggest that
ime-varying changes of both markers are important [38 , 39 ]. 

The findings of the present study, aside from those regarding
he predictive models, align with previous studies. The hazard 
atios for kidney failure ( Table S2) showed that younger age,
ale sex, decreased eGFR, and severe proteinuria were asso- 
iated with progression to dialysis-dependent kidney failure 
n the KFRE model, which is consistent with the findings of
revious studies [37 , 44 –46 ]. Other studies demonstrated that
KD progression decreased with age [44 , 45 ], which is in line
ith our study reporting that advanced age had a negative
ssociation ( hazard ratio of age < 1 for the development of
ialysis dependency) with CKD progression. Furthermore, the 
tratified and sensitivity analyses results revealed modification 
ffects by sex or age, consistent with previous findings. The DCA
urves in the age-stratified analysis showed that the clinical 
tility among individuals aged ≥75 years might be inferior to
hat among those aged < 75 years. Although both groups had
imilar C-statistics, calibration among individuals aged ≥75 
ears may be less accurate, likely because the study did not
ccount for the competing risk of death, as reported previously
47 ]. A possible effect modification by sex was also observed.
espite similar C-statistics for both sexes, the DCA curves
uggested that calibration among females may be less accurate,
ikely due to the difference in the mean age ( 79.1 years in
omen vs 75.3 years in men) . Further research on sex-based
ffect modification in the KFRE model is warranted. 

Our study has several limitations. First, the absence of quan-
itative urinary protein/albumin data precluded their utilization 
n our analysis. However, considering that the semi-quantitative
ethod as in our study was also shown to be useful in the KFRE
odel [37 ], the use of the semi-quantitative method may be

ustified. Second, this study used model development and
alidation cohorts in the database. Using the modified KFRE
odel in an external cohort may have resulted in a less pro-
ounced effect from adding changes in eGFR and proteinuria.
herefore, the external validity, especially outside Japan, should
e examined in future studies. Third, due to the retrospective
ature of this study, other confounding factors, such as race, so-
ioeconomic status, or frailty, may have been present. Moreover,
he development of acute kidney injury, detailed medication
istory, or medication changes during the period might have
ffected the timing of kidney replacement therapy induction.
ourth, the original KFRE model already demonstrated high
-statistics; hence, the usefulness of the modified KFRE model
or further improvement in predictive ability might be lim-
ted. Finally, we were unable to perform an analysis using the
ine and Gray model because information on death was only
artially available for the population in the DeSC database. 
In conclusion, this retrospective cohort study using a large-

cale claims database revealed that the addition of biomarker
hanges was useful in increasing the predictive ability of the
FRE. Therefore, clinicians should pay attention to changes in
GFR and urinary protein to monitor CKD progression. 

UPPLEMENTARY DATA 

upplementary data are available at Clinical Kidney Journal online .

https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
https://academic.oup.com/ckj/article-lookup/doi/10.1093/ckj/sfae321#supplementary-data
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