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ABSTRACT
Background and Aim: Multiparametric magnetic resonance imaging (mpMRI) is recognized as the most indicative method

for diagnosing prostate cancer. The purpose of this narrative review is to provide a comprehensive evaluation aligned with the

Prostate Imaging and Reporting Data System (PI‐RADS) guidelines, offering an in‐depth insight into the various MRI sequences

used in a standard mpMRI protocol. Additionally, it outlines the critical technical requirements necessary to perform a standard

mpMRI examination of the prostate, as defined by the PI‐RADS specifications.

Methods: European Society of Urogenital Radiology has released PI‐RADS guideline detailing its suggestions aimed at im-

proving the standards of the procedure. The purpose of this guideline is to establish a standard strategy for MRI protocols and

image interpretation, aiming to prevent variability in each of the imaging and interpretation stages.

Results: A standard mpMRI protocol comprises morphological sequences and functional sequences. Morphological sequences

which encompass T1‐ and T2‐weighted images, and various functional sequences include diffusion‐weighted imaging, and

dynamic contrast‐enhanced MRI. The PI‐RADS recommendations assert that having a standard and uniform protocol for all

MRI centers is imperative. Furthermore, the existence of a standardized checklist for interpreting MRI images can foster greater

consensus in the process of diagnosing and treating patients.

Conclusion: Standardized protocols and checklists for mpMRI interpretation are essential for achieving greater consensus

among radiologists, ultimately leading to improved diagnostic outcomes in prostate cancer.

1 | Introduction

Currently, prostate cancer holds the distinction of being the
most prevalent form of solid cancer in men [1]. Screening and
imaging efforts focus on identifying early‐stage diseases with
a high biological aggressiveness. The utilization of magnetic

resonance imaging (MRI) is currently indispensable in the
assessment of the prostate gland [2, 3]. Enhancing conven-
tional MRI with functional MRI, allows for the evaluation of
the prostate through multiparametric MRI (mpMRI), estab-
lishing itself as the standard imaging method for assessing
this organ. This imaging technique plays a vital role in the
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diagnosis, local staging, and invasive evaluation of prostate
cancer, and it is usually the first choice for doctors in the
imaging process [4–6]. The European Society of Urogenital
Radiology (ESUR) introduced a guideline known as the
Prostate Imaging and Reporting Data System (PI‐RADS) to
implement a uniform approach for conducting and doc-
umenting prostate MRI examinations [7]. This article pro-
vides in‐depth insights into the various MRI sequences
utilized in a standard mpMRI protocol. Additionally, it out-
lines the crucial technical requirements necessary for con-
ducting a standard prostate mpMRI examination, aligning
with the specifications defined in PI‐RADS.

2 | Preprocedure Considerations

Prostate mpMRI typically does not require special preparation and
follows a procedure similar to other MRI examinations. However,
having clean bowels is recommended. Additionally, it is crucial to
ascertain whether the patient has undergone a prostate biopsy and
the timing of that procedure. This is particularly important because
if the patient has recently had a biopsy and is experiencing
bleeding, the presence of blood can pose challenges to the accuracy
and interpretation of the results. As a result, PI‐RADS suggests
waiting for a minimum of 6 weeks after a biopsy before conducting
an MRI for cancer staging purposes [3]. However, there is no
necessity to postpone mpMRI following a prior biopsy. Indeed, the
primary rationale lies in the fact that the combination of sequences
used in mpMRI demonstrates a notable capability to visualize
cancerous lesions, even when there is the presence of bleeding
[8, 9]. Actually, to prevent any possible bleeding, it is recom-
mended to wait about 6 weeks after the biopsy. However, if nec-
essary and according to the physician's recommendation, this
waiting period can be skipped, and the MRI can be performed
sooner because the timing of diagnosis is very important. Even in
cases of bleeding, the diagnostic power of mpMRI remains very
high and can produce images with proper diagnostic accuracy.

3 | Technical Specifications

3.1 | MRI Scanners

In prostate mpMRI, scanners with either 3 or 1.5 Tesla magnet
strength are utilized. However, choosing a 3T scanner can result
in a higher signal‐to‐noise (SNR) ratio compared to a 1.5 Tesla
scanner, ultimately enhancing the resolution in imaging.
Although contingent upon the pulse sequence and specific
implementation details, there could be potential drawbacks at
3 Tesla, including increased power deposition, susceptibility‐
related artifacts, and signal heterogeneity [10–12]. Tackling
these issues might lead to a minor uptick in imaging duration
and/or a decrease in SNR. Nevertheless, modern 3 Tesla MRI
scanners have demonstrated the capability to effectively tackle
these challenges. The PI‐RADS committee recommend that the
advantages provided by 3 Tesla MRI significantly outweigh
these potential concerns [11].

A study shows that 3T mpMRI offers better image resolution
and clarity for detecting prostate cancer than 1.5T MRI, with its

higher magnetic field strength allowing for more accurate
tumor detection, especially in challenging areas like the ante-
rior prostate [13]. In another clinical case study, 3 T mpMRI
was able to reveal a significant tumor in the prostate's periph-
eral zone, which was missed by the lower resolution 1.5T MRI,
demonstrating the enhanced diagnostic power of 3 T scanners
in locating smaller or more subtle lesions [14].

3.2 | Coils

To achieve a high SNR, it is preferable to utilize a combination
of an external phased array coil with an endorectal coil. This
combination allows for enhanced resolution, particularly when
employing 1.5 Tesla scanners. While endorectal coils contribute
to a better SNR ratio, they may lead to dissatisfaction in some
patients. Moreover, for patients who have recently had a biopsy,
the use of endorectal coils is not recommended due to the
potential risk of bleeding [15, 16]. Hence, it might still be
preferable to choose a coil equipped with a high number of
receiver channels (16 or more) at 1.5 Tesla, rather than an en-
dorectal coil. For 3 Tesla scanners as well, a single array coil is
considered sufficient [17]. Discomfort and pain, along with
psychological distress, can be a significant reason for patients'
discomfort when using endorectal coils. Therefore, other
potential alternatives can be considered. There are a few alter-
natives to endorectal coils for mpMRI of the prostate [18, 19],
including:

• Fully balanced steady‐state free precession (bSSFP): This
technique can be used to acquire MRI scans without an
endorectal coil, and can offer advantages like better patient
tolerance and lower costs.

• Nonendorectal coil MRI is less invasive than endorectal
coil MRI, but it may not be an equal substitute. None-
ndorectal coil MRI images can be larger due to lower in‐
plane resolution.

• Multichannel surface coil imaging

• An 8 channel pelvic phased array

3.3 | Computer‐Aided Diagnosis (CAD) and
Artificial Intelligence

Using CAD technology via specialized software is not man-
datory for interpreting mpMRI images. However, it can prove
beneficial for post‐processing or image‐filtering purposes. The
goal of CAD is to overcome variations between different
observers by employing machine learning algorithms that
depend on quantitative data analyses [16, 20, 21]. However,
incorporating CAD can improve multiple facets of the work-
flow, such as display, analysis, interpretation, reporting, and
communication. Furthermore, CAD can furnish quantitative
pharmacodynamics data and improve the ability to detect and
differentiate lesions. This is particularly beneficial for radiol-
ogists who may have limited experience in interpreting
mpMRI images [22]. In recent years, the use of artificial
intelligence in the evaluation of medical images has expanded
significantly. In the field of mpMRI imaging, machine learning
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and deep learning algorithms, along with neural networks,
have significantly assisted physicians by extracting and cate-
gorizing quantitative data [23–25], including:

• Increasing the MRI images quality

• Improving the diagnosis process

• Enhancing diagnostic accuracy

• Reducing human errors

• Decreasing false negatives

• Shortening the interpretation time

4 | MpMRI Protocols and Technical Aspects

A standard mpMRI protocol comprises morphological
sequences and functional sequences. Morphological
sequences which encompass T1‐ and T2‐weighted images,
and various functional sequences include diffusion‐
weighted imaging (DWI), dynamic contrast‐enhanced
(DCE) MRI, and proton spectroscopy. It's important to
mention that according to PI‐RADS guidelines, MR Spec-
troscopy (MRS) is no longer advised as a routine component
of prostate mpMRI [26, 27]. The protocol selection is gen-
erally influenced by factors such as the physician's prefer-
ences and the patient's physical condition, although a
standard framework exists. In the following sections, we
will delve into the sequences utilized in mpMRI, with a
focus on their technical specifications.

4.1 | T1‐Weighted Sequences

T1‐weighted imaging is employed to assess regional
lymph nodes and bone structures, with its primary purpose
being the detection of hemorrhages associated with biopsy,
which can potentially obscure cancerous lesions. It is impor-
tant to note that this sequence is not particularly effective in
identifying specific prostate cancer foci, as prostate cancer
typically does not produce significant alterations in T1‐
weighted imaging [28]. In this sequence, axial or coronal spin‐
echo (SE) or gradient‐echo (GE) sequences are used with a
wide field of view (FOV) to exclude potential bleeding
resulting from biopsy, as illustrated in Figure 1.

4.2 | T2‐Weighted Sequences

The T2‐weighted sequence generates anatomical images that
provide excellent soft‐tissue contrast, depicting the prostate
gland. T2‐weighted images are typically acquired in the axial,
coronal, and sagittal planes with a smaller FOV, as illustrated in
Figure 2. This sequence plays a crucial role in delineating the
zonal anatomy of the prostate, identifying abnormalities, and
assessing for seminal vesicle invasion, extraprostatic extension,
and nodal involvement [29, 30]. There are two approaches to
T2‐weighted imaging in prostate MRI. The first utilizes axial
multiplanar 2D fast spin echo (FSE) sequences with a small FOV
ranging from 12 to 20 cm, a slice thickness of 3mm, and in‐plane
dimensions of ≤ 0.7mm (phase) x≤ 0.4mm (frequency). It is
advisable to include at least one additional plane (coronal or
sagittal) [7]. These two sequences (axial + coronal or sagittal) are
employed for calculating prostate volume. The second approach
uses a single 3D FSE acquisition with isotropic voxels and
contiguous thin‐section slices of ≤ 1mm in the axial plane.
Additionally, reconstructions in the coronal and sagittal planes
are performed [31].

4.3 | Diffusion Weighted Imaging (DWI)

DWI measures the movement of water molecules in tissue. In a
healthy prostate, water molecules move freely, while prostate
cancer restricts this motion, leading to a lower apparent diffu-
sion coefficient (ADC) [32]. DWI uses different b‐values
(magnetic gradient strengths) to generate an ADC map.
Higher b‐values, starting at 1400 s/mm² for 1.5T MRI and
2000 s/mm² for 3T MRI, enhance the detection of prostate
cancer by reducing background signals from healthy tissue
[33–35]. Cancerous areas appear bright in high b‐value images
and dark on ADC maps, whereas healthy tissue shows the
opposite pattern, as illustrated in Figure 3.

For ease of interpretation, it is recommended to maintain slice
thicknesses and locations consistent with T2‐weighted images.
Adherence to specific technical parameters is essential,
including an echo time (TE) of ≤ 90ms, a repetition time (TR)
of ≥ 3000ms, a slice thickness of ≤ 4mm, a FOV ranging from
16 to 22 cm, and in‐plane dimensions of ≤ 2.5 mm for both
phase and frequency. According to PI‐RADS guidelines,
acquiring at least two b‐value images is essential for accurate
ADC calculation. These technical guidelines aim to standardize

FIGURE 1 | T1‐weighted GE image of the prostate in axial plane.
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and optimize the imaging process, ensuring the reliability of
results in prostate imaging assessments. It is advisable to con-
figure the lower b‐value within the range of 0–100 s/mm² for
optimal imaging outcomes, with a preference for values between
50 and 100 s/mm². The optimal selection for the higher b‐value
lies in the range of 800–1000 s/mm². Additionally, acquiring
ultrahigh b‐value images, specifically within the range of
1400–2000 s/mm², is recommended. This approach is particularly
advantageous for improving the visibility of cancers, especially in
prostate cancer. Including these specific b‐values in the imaging
protocol aims to maximize sensitivity and accuracy in the
detection of prostate cancers, with a particular emphasis on those
of clinical importance within the transition zone [7, 36].

4.4 | Dynamic Contrast‐Enhanced (DCE)‐MRI

In prostate imaging, DCE sequences are employed to investigate
tumor angiogenesis. This involves the analysis of variations in
the rates and levels of contrast agent absorption and elimination
between malignant and nonmalignant prostate tissue. By cap-
turing the dynamic changes in contrast enhancement
throughout the imaging procedure, DCE‐MRI sequences pro-
vide crucial insights into the vascular patterns within the
prostate. This information aids in distinguishing cancerous
from noncancerous tissues based on their angiogenic char-
acteristics [36]. DCE‐MRI involves rapidly acquiring a series of
T1‐weighted images following the intravenous administration
of a gadolinium‐based contrast agent. This sequence allows for

assessing contrast enhancement's intensity and temporal
dynamics [37]. The hallmark of cancer is characterized by a
distinguishing feature of early enhancement accompanied by
heightened intensity in T1‐weighted images. DCE‐MRI alone
has demonstrated sensitivity and specificity for prostate cancer
detection, falling within 46%–90% and 74%–96% [38].

DCE‐MRI is typically performed utilizing a T1‐weighted GE
sequence and prefers 3D sequences over 2D sequences to achieve
comprehensive volumetric coverage In DCE‐MRI, it is essential to
ensure craniocaudal coverage that matches that of T2‐weighted
and DWI images, even if there is a possibility of a reduction in in‐
plane resolution. PI‐RADS guidelines recommend a high temporal
resolution, with rapid and repeated scanning of the entire prostate
every 7–10 s, with at least 2min of continuous scanning con-
sidered necessary. A temporal resolution of < 15 s is deemed suf-
ficient. Additionally, fat suppression is recommended to enhance
lesion visibility [39–41]. In addition, the quality of the obtained
images is crucial. Therefore, studies that assess image quality
across different protocols and scanners, using standardized com-
parisons, can be highly valuable. For instance, in a study ex-
amining 71 different scanners, DCE‐MRI sequences demonstrated
the lowest concordance with PI‐RADS criteria [42].

5 | Interpretation and Reporting

According to Table 1, PI‐RADS assessment employs a 5‐point
scale based on the likelihood that a combination of mpMRI

FIGURE 2 | T2‐weighted with small FOV high resolution of prostate axial plane.

FIGURE 3 | DWI acquired at b‐value 50 s/mm2 (A), b‐value 1400 s/mm2 (B) with ADC map (C). High b‐values result in the suppression of the

background normal prostate signal, enabling the visualization of cancerous lesions as bright areas.
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findings correlates with the presence of clinically significant
cancer in each lesion within the prostate gland [7]. The scale
aids in categorizing identified lesions, thereby guiding clinical
decision‐making regarding the need for further evaluation or
intervention. The report must comprise a description of PI‐RADS
lesions, along with location‐based scoring as depicted on the
39‐sector map, as illustrated in Figure 4 [7], measurements of the
lesion and prostate gland volume, T1‐weighted analysis, assess-
ment of extra‐glandular extension, evaluation of lymph nodes
and bones, lesion description, evaluation of pelvic bones. Addi-
tionally the final PI‐RADS score, spanning from 1 to 5, signifies
the likelihood of clinically relevant prostate cancer, along
with the included conclusion and recommendations. Certainly,
to enhance the diagnostic process, CAD technology can function
as an intelligent assistant, process imaging data, offer quantita-
tive information, and thereby improve the accuracy and effi-
ciency of radiologists [43, 44].

6 | Accuracy of mpMRI Protocols

Before the implementation of the scoring system by the PI‐
RADS committee to evaluate mpMRI, numerous investigations
had already been conducted to explore the significance of
mpMRI in the identification and categorization of prostate
cancer. In these studies, the T2‐weighted sequence was assessed
independently, followed by its combination with DWI and
DCE‐MRI, and ultimately as a combination of all three
sequences. The results of the patient's biopsy were considered
the gold standard for an accurate comparison [45, 46]. The
results of most of these studies showed that the combination of
T2‐weighted with DWI is more effective than other protocols
[47–50]. A meta‐analysis showed that this approach was found
to have a specificity of 0.88 and a sensitivity of 0.74 [50]. In
summary, the addition of DWI enhances both sensitivity and
specificity for detection.

7 | Limitations

While the mpMRI technique has therapeutic capabilities and
widespread use in recent years, it is not without limitations.

If mpMRI testing is performed with a field strength < 1.5 Tesla
[51], then there could be a technical obstacle to achieving the
recommended parameters according to the PIRADS guidelines.
In addition, DWI and DCE‐MRI are highly susceptible to
motion artifacts from prostate spasms and muscle movements.
This might compromise the image quality. Severely obese pa-
tients can pose additional limitations due to the sheer thickness
of the adipose tissue. This may cause greater coil‐to‐prostate
distance resulting in deterioration of the image quality.
Excessive rectal gas can hinder the interpretation of diffusion‐
weighted sequences, making the scan challenging to analyze.
Moreover, the effectiveness of mpMRI studies highly depends
on the radiologist's expertise. A complete patient profile is
required to properly interpret the morphological data obtained
through mpMRI procedures.

8 | Challenges and Suggestions

In the process of mpMRI for prostate cancer, challenges are
categorized into two main groups. The first category relates to
the acquisition of images. Typically, when conducting the T2‐
weighted sequence, a wrap artifact may occur, and this can be
avoided by expanding the FOV. Additionally, minimizing
imaging time and increasing the echo train length can be
effective in reducing movement artifacts in this sequence. In the
DWI sequence, there is a notable risk of susceptibility artifact.
To prevent this, it is essential for the patient's intestines, par-
ticularly the rectum, to be empty before imaging. If gas is
present in the intestine, using an endorectal coil can displace it.
The most noteworthy imaging challenge is associated with the
DCE‐MRI sequence, where rectal motion artifact is common,
and the use of left‐right phase encoding can help alleviate this
problem.

The second category pertains to the interpretation of images.
Irrespective of a radiologist's expertise, diagnosing prostate
cancer can be intricate due to factors like prostate size, cancer
type, and grade. Imaging symptoms may vary, posing chal-
lenges, particularly for less experienced radiologists. Therefore,
having a highly accurate auxiliary tool is crucial. Artificial
intelligence and machine learning can function as effective as-
sistants in this domain. By inputting image data from MRI,
along with biopsy and pathology reports for various prostate
cancer types, an intelligent model can be developed. Trained
with MRI images and biopsy results, this intelligent model will
be valuable in supporting radiologists during the interpretation
and can detect various cancers, including those in their early
stages.

9 | Conclusion

This investigation critically examined and presented a com-
prehensive evaluation of the recommendations put forth by the
ESUR, and further explored a thorough and profound analysis
of the diverse MRI sequences employed in a typical mpMRI
protocol for the detection and diagnosis of prostate cancer. All
ESUR recommendations, including patient preparation, equip-
ment, imaging protocols, and even image interpretation, are

TABLE 1 | PI‐RADS assessment categories.

PI‐RADS 1

▪ Very low risk of prostate cancer (prostate cancer is
highly unlikely)

PI‐RADS 2

▪ Low risk of prostate cancer (prostate cancer is unlikely)

PI‐RADS 3

▪ Intermediate risk of prostate cancer (the presence of
prostate cancer is equivocal)

PI‐RADS 4

▪ High risk of prostate cancer (prostate cancer is likely)

PI‐RADS 5

▪ Very high risk of prostate cancer (prostate cancer is
highly likely)
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thoroughly explained, and the challenges associated with each
are discussed. These suggestions firmly declare that mpMRI
plays a vital role in the diagnosis and treatment of prostate
cancer. While unforeseen circumstances may arise in practice
or clinical settings, and sometimes patients may present unique
cases, having a standard and uniform protocol for all MRI
centers is imperative. Furthermore, the existence of a stan-
dardized checklist for interpreting MRI images can foster
greater consensus in the process of diagnosing and treating
patients.

Author Contributions

Mohammad H. Jamshidi: conceptualization, visualization, supervi-
sion, writing–review and editing, writing–original draft, validation,
project administration. Ali Fatemi: conceptualization, writing–original
draft, validation, data curation, writing–review and editing. Aida
Karami: writing–original draft, data curation, conceptualization.
Sepehr Ghanavati: data curation, writing–original draft. Durjoy D.
Dhruba: writing–original draft. Mohammad H. Negarestanian: data
curation.
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