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Abstract

Pregnant women are advised to take folic acid (FA) supplements before conception

and during the first trimester of pregnancy. Many women continue FA supplemen-

tation throughout pregnancy, and concerns have been raised about associations

between excessive FA intake and adverse maternal and child health outcomes.

Unmetabolized folic acid (UMFA) is found in serum after high FA intakes and is

proposed as a biomarker for excessive FA intake. We aimed to determine if

removing FA from prenatal micronutrient supplements after 12 weeks of pregnancy

reduces serum UMFA concentrations at 36 weeks gestation. In this double‐blind,

randomized controlled trial conducted in South Australia, 103 women with a

singleton pregnancy were randomly assigned at 12–16 weeks gestation to take a

micronutrient supplement containing no FA or 800 µg/day FA from enrollment until

36 weeks gestation. Ninety women (0 µg/day FA n = 46; 800 µg/day FA n = 44)

completed the study. Mean, UMFA concentration was lower in the women

randomized to the 0 µg/day group compared to the 800 µg/day FA group,
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0.6 ± 0.7 and 1.4 ± 2.7 nmol/L, respectively. The adjusted mean difference (95% CI)

in UMFA between the groups was [‐0.85 (−1.62, −0.08) nmol/L, p = 0.03]. Maternal

serum and red blood cell folate concentrations were lower in the 0 µg/day FA group

than in the 800 µg/day group (median 23.2 vs. 49.3 and 1335 vs. 1914 nmol/L,

respectively; p < 0.001). Removing FA at 12–16 weeks gestation from prenatal

micronutrient supplements reduced the concentration of UMFA at 36 weeks

gestation.

K E YWORD S

folic acid, periconception, pregnancy, prenatal supplementation, red blood cell folate,
unmetabolized folic acid

1 | INTRODUCTION

Neural tube defects (NTDs) are birth defects caused by the failure of

the neural tube to close properly, which occurs ~28 days

postconception (Botto et al., 1999). Folic acid (FA) taken before

conception and during early pregnancy reduces a woman's risk of

having an NTD‐affected pregnancy (Berry et al., 1999; Czeizel &

Dudás, 1992; MRC Vitamin Study Research Group, 1991). In

response, health authorities in many countries recommend women

take an FA‐containing supplement before conception (Royal Austra-

lian and New Zealand College of Obstetricians and Gynaecologists,

2016; World Health Organization, 2016). In Australia, women are

advised to take a supplement containing 500 µg of FA daily for at

least 1 month before trying to conceive and for the first 3 months of

pregnancy (Royal Australian and New Zealand College of Obstetri-

cians and Gynaecologists, 2016). Although there is no conclusive

evidence for any overall benefit of FA supplementation beyond

12 weeks gestation (31 trials involving 17,771 women) (De‐Regil et al.,

2015), many women continue to take FA supplements throughout their

whole pregnancy, typically at amounts up to 800µg/day or higher

(Shand et al., 2016). In addition, as NTDs occur in the first month of

pregnancy and many pregnancies are unplanned, more than 80

countries, including Australia, Canada and the USA, have mandated

fortification of staple foods with FA, further increasing FA intakes of

pregnant women (Murphy & Westmark, 2020).

The common practice of continuing FA supplementation beyond

the first trimester, especially in countries with staple foods FA

fortification, is concerning due to increasing reports suggesting

excessive FA intakes in late pregnancy may be associated with

adverse maternal and child health outcomes, including an increased

risk of gestational diabetes (Karaçil Ermumcu & Acar Tek, 2023;

Kintaka et al., 2020; Li et al., 2019), allergic disease (McGowan et al.,

2020; Ogawa et al., 2018; Roy et al., 2018), and obesity and

metabolic dysfunction in the child later on (Yajnik et al., 2008).

Although findings from observational studies have been inconsistent,

evidence from randomized controlled trials (RCTs) is lacking. The

suggestion of risk necessitates further exploration of excessive FA

intake beyond the first trimester.

FA is a synthetic form of folate not found naturally in food.

Because of its high bioavailability and stability, it is the form of

folate used in supplements and to fortify food (Greenberg et al.,

2011). When consumed, FA is reduced and methylated to

5‐methyltetrahydrofolate (5‐MTHF) in the enterocyte or liver.

At higher intakes, the enzymes required to convert FA to 5‐MTHF

are saturated, and the excess FA circulates in its unmetabolized

form (UMFA) (Kelly et al., 1997). UMFA has been proposed as a

potential biomarker of excessive FA intake (Kelly et al., 1997).

Concerns have been raised over whether high concentrations of

circulating UMFA may adversely affect the developing fetus (Smith

et al., 2008). In acute dosing studies in nonpregnant individuals,

UMFA rises rapidly after FA ingestion and falls over the following

hours (Kelly et al., 1997; Sweeney et al., 2007). The greater the

dose of FA, the higher the UMFA concentration and the longer it is

detected in serum. The effect of chronic excessive intake of FA on

UMFA concentrations is less clear.

Key messages

• Folic acid (FA) supplementation is needed before

pregnancy and during the first trimester to reduce neural

tube defects.

• After the first trimester, FA has no proven benefit, but

many women continue FA supplementation throughout

pregnancy.

• There are concerns excessive FA supplementation later

in pregnancy may increase risk of adverse pregnancy and

child outcomes. Unmetabolized FA is a biomarker of

excessive FA intakes.

• We have shown that discontinuing FA supplementation

after 12 weeks of gestation results in lower maternal

unmetabolized FA concentrations.

• Larger studies are required to determine how continuing

FA beyond the first trimester affects maternal and child

health outcomes.
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Unmetabolized FA has been detected in maternal blood samples

in several population studies (Best et al., 2020; Obeid et al., 2010;

Plumptre et al., 2015; West et al., 2012) and one RCT in a country

without mandatory fortification (Pentieva et al., 2016). However,

there are no published RCTs investigating the effect of prolonged

intake of commonly used higher‐dose prenatal FA‐containing

supplements combined with background intakes from mandatory

fortification of staple foods on UMFA concentration.

Without a doubt, it is crucial to take FA supplements in early

pregnancy to reduce NTDs. However, supplementation beyond

this time is in question. We aimed to investigate the effect of

removing FA from prenatal supplements after 12 weeks gestation

compared with the common practice of continuing FA supplemen-

tation of 800 µg/day throughout pregnancy on maternal serum

UMFA at 36 weeks gestation.

2 | METHODS

This trial was a multicenter, double‐blind, placebo‐controlled,

parallel‐group (1:1 allocation ratio) RCT. The trial protocol,

published previously (Sulistyoningrum et al., 2020) was developed

by the authors and approved by the Women's and Children's

Health Network Research Ethics Committee—HREC/19/WCHN/

018 and Flinders Medical Centre—SSA/20/SAC/61. The trial was

conducted according to the 2007 National Statement on Ethical

Conduct in Human Research and the Note for Guidance on Good

Clinical Practice (CPMP/ICH/135/95) and prospectively regis-

tered with the Australia New Zealand Clinical Trials Registry—

ACTRN12619001511123.

2.1 | Study participants and setting

Pregnant women living in South Australia were recruited to the trial

between December 2019 and November 2020. Women with a

singleton pregnancy between 12+0 and 16+0 weeks gestation who

were taking a FA‐containing supplement and planned to continue it

throughout pregnancy were eligible to participate. Women were

excluded if they were carrying a fetus with a confirmed or suspected

fetal abnormality, had a prior history of an NTD‐affected preg-

nancy or were taking medications that interfere with folate

metabolism. Women were recruited in person at their first antenatal

clinic appointment or remotely through a Trial Recruitment Company

(TrialFacts Australia), which utilizes an online digital marketing

campaign and an electronic pre‐screening survey.

2.2 | Randomization, blinding and masking

After obtaining written informed consent, women were randomized

by research personnel using a secure web‐based randomization

service and stratified by gestational age at trial entry 12+0 to ≤14+0

weeks or >14+0 to 16+0 weeks gestation. Allocation followed a

computer‐generated randomization schedule using randomly per-

muted blocks of sizes 4 and 6 (1:1 ratio), prepared by an independent

statistician not involved with trial participants or data analysis. A

unique and uninformative four‐digit study identification number

(Study ID) was assigned to each participant. The intervention and

control supplements were identical in size, shape, color, packag-

ing and labeling and identified by a colored label only. Four colors

were used to optimize blinding to group assignments (blue, pink,

yellow and green). Color matching to the unique study ID was

prepared by an independent statistician not involved with trial

participants or data analysis. Participants, researchers and laboratory

personnel remained blinded to the group assignments until the data

analysis was complete.

2.3 | Trial interventions

Women in the intervention group received multivitamins and mineral

supplements without FA (0 µg FA/day). Women in the control group

were assigned the same formulation with 800 µg of FA/day

(Supporting Information: Table 1), as standard practice is to take a

prenatal supplement containing FA and the most common brand of

supplements used in Australia contains this dose. Following

randomization, women were given two bottles containing 125

caplets and advised to cease any other FA‐containing supplements

for the duration of the trial. The assigned study supplements were

taken once daily from trial entry (12–16 weeks gestation) until the

day before the clinic visit and blood draw at 36 weeks gestation.

Intervention and control supplements (PreNuro®) were formulated to

provide daily multivitamin and mineral levels for prenatal supplemen-

tation. They were manufactured in a licensed facility following the

Code of Good Manufacturing Practice of Medicinal Products

(Therapeutic Goods Administration, 2018) by The Factors Group of

Nutritional Companies Inc. The company had no other role in the

trial.

2.4 | Data collection

Baseline characteristics were collected at enrollment and included

gestational age, maternal age, height and weight, race, education,

pre‐pregnancy and current supplement use, annual household

income, parity, and alcohol intake and smoking in the 3 months

leading up to pregnancy. Women were asked to complete an

electronic 80‐item food frequency questionnaire (FFQ) (The Dietary

Questionnaire for Epidemiological Studies v3.2, Cancer Council,

Victoria) at enrollment (baseline) and 34 weeks gestation to estimate

folate intakes from foods. Adherence to the trial regimen and the

occurrence of any adverse events were assessed by monthly

electronic surveys sent by short message surveys or phone calls by

study staff. Women returned for an in‐person visit at 36 weeks

gestation so that the number of unused caplets could be recorded
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and trained research personnel could obtain a venous blood sample.

Women were asked to refrain from taking their study supplements

and consuming foods high in FA on the day of sample collection. Birth

data, including gestational age, weight, length and head circumfer-

ence, were extracted from maternal and infant medical records or

parental reports.

2.5 | Blood sample collection

A 10mL non‐fasting venous blood sample was collected into two

evacuated containers containing no anticoagulant and ethylenedia-

minetetraacetic acid (EDTA) (BD Vacutainer®). The EDTA vacutainer

was inverted 10 times, and an aliquot was placed in a cryovial, diluted

1 in 11 with 1% ascorbic acid and incubated for 30min at 37°C. The

serum vacutainer was left to clot at room temperature for at least

30min. Vacutainers were centrifuged at 1500 g for 15min at 4°C,

and serum and plasma were aliquoted into cryovials and stored at
‐80°C until analyzed.

2.6 | Blood analysis

A complete blood count was performed using an automated

hematology analyzer by SA Pathology. Serum UMFA was measured

using the liquid chromatography–tandem mass spectrometry‐based

method of Hannisdal et al. (2009) at Bevital (www.bevital.no). The

limit of detection (LOD) for serum UMFA was 0.27 nmol/L, and both

within‐ and between‐day coefficient of variance (CV) was 7%. The

method uses an isotope‐labeled FA internal standard, and a robotic

workstation performs all sample processing.

Whole blood and serum folate concentrations were determined

using the microbiological method, using standardized kits from the

U.S. Centers for Disease Control and Prevention (US CDC) (US

Centers for Disease Control and Prevention, 2018). This method is

based on the technique of O'Broin and Kelleher (1992), uses 96‐well

microplates, 5‐methyl tetrahydrofolate (Merck Eprova) as a calibra-

tor, and chloramphenicol‐resistant Lactobacillus rhamnosus (ATCC

27773TM) as the test organism. High‐ and low‐quality controls (QC)

provided by the US Centers for Disease Control and Prevention,

whole blood and plasma folate, were run in quadruplets on every

plate. RBC folate was calculated by subtracting plasma from whole

blood folate and correcting for hematocrit. As per instructions (US

Centers for Disease Control and Prevention, 2018), if all QC results

were within mean (2 SD) limits, the assay was accepted; if more than

one of the QC results were outside of the mean (2 SD) limits or any of

the QC results were outside of the mean (3 SD) limits, then the assay

was rejected. Results from assay runs that passed QC were used

when the quadruplets were below 15%. If the quadruplets’

coefficient of variation (CV) was above 15%, the largest outlier was

removed. The results were recorded if the CV of the remaining

triplicates was below 10%; otherwise, the sample measurement was

repeated.

At the population level, WHO recommends RBC folate concen-

trations be >906 nmol/L in women of reproductive age to prevent

NTDs. This RBC folate value was generated using FA as the calibrator

(Daly, 1995). We used a newer method recommended by the US

CDC that uses 5‐methyl tetrahydrofolate as the calibrator. Since

5‐methyl tetrahydrofolate gives lower RBC folate concentrations

than FA, we used a cutoff of >748 nmol/L to define the optimal RBC

folate concentration for NTD risk reduction (Zhang et al., 2018).

2.7 | Outcome measures

The primary outcome was the concentration of UMFA in maternal

serum at 36 weeks gestation. Secondary outcomes included maternal

serum and RBC folate concentrations at 36 weeks gestation and birth

outcomes, including gestational age, birth weight, length and head

circumference.

2.8 | Changes to outcomes and trial design

We adapted some aspects of our methodology due to the COVID‐19

pandemic. As per the CONSERVE statement (Orkin et al., 2021), we

have described our original methods (Sulistyoningrum et al., 2020)

and our adaptations as follows (Gould et al., 2021). When the trial

commenced in December 2019, women were recruited from

antenatal clinics, and a baseline blood sample was collected at

enrollment. In March 2020, due to COVID‐19 restrictions in South

Australia, in‐person enrollment was suspended, and we could no

longer collect the baseline blood sample. Eighteen women were

recruited before in‐person enrollment was suspended. Screening

methods were modified to include online screening, a digital

marketing campaign and e‐consent using Research Electronic Data

Capture (REDCap, Vanderbilt University). REDCap is a secure web

application for building and managing online surveys and databases.

Enrollment and all study visits up to 36 weeks gestation were

conducted via telephone, and supplements were couriered to

participants. Birth data could no longer be extracted from medical

records and were obtained by maternal reports. Maternal and infant

birth characteristics, such as gestational age, weight, length and head

circumference, were collected to compare treatment groups, as this

study was not powered to evaluate clinical outcomes. We would

caution about concluding these outcomes due to the small sample

size and lack of control for multiple testing.

2.9 | Sample size and statistical analysis

A target sample of 90 women (45 per group) was chosen

to provide >90% power to detect a standardized difference

in mean UMFA concentration at 36 weeks gestation between

groups of 0.60 (two‐tailed alpha = 0.05, correlation between

UMFA concentrations at baseline and 36 weeks gestation = 0.60)
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(Pentieva et al., 2016). Calculations were performed based on a

standardized mean difference (mean difference divided by SD of

the outcome at 36 weeks gestation) due to considerable

variability in the literature in the reported SD for UMFA

concentration in pregnancy (McGowan et al., 2020; Pentieva

et al., 2016).

All analyses were undertaken on an intention‐to‐treat basis

(i.e., participants were analyzed as randomized, irrespective of

compliance). UMFA values were compared between groups using

linear regression, with a robust variance estimator employed to

allow for unequal variances between groups. Values below the

detection limit were treated as a 0 in the analysis. Secondary

outcomes were analyzed using linear regression models, with log

transformations applied where appropriate to satisfy model

assumptions better. All analyses were adjusted for gestational

age at trial entry (12 to ≤14 weeks or >14 weeks) since this was

used to stratify the randomization, with analyses of birth

anthropometrics adjusted for infant sex. Analyses were based

on participants with available data (complete case analysis),

with estimation of the intention to treat effect proceeding

under the assumption that outcome data were missing at random

conditional on treatment group and covariates for adjustment.

Statistical calculations were performed using Stata v18

(StataCorp LP).

3 | RESULTS

3.1 | Trial participants

A total of 103 women were randomized: 51 to the 0 µg FA/day

supplement group (intervention) and 52 to the 800 µg FA/day

supplement (control) group. After withdrawal of consent (n = 7), loss

to follow‐up (n = 4), inability to attend the clinic visit (n = 1) and

preterm birth before 36 weeks gestation (n = 1), primary outcome

data were available for 90/103 (87%) of women (Figure 1).

The average age of women entering the trial was 31 years, and

more than 80% of the participants were Caucasian. Most women

(87%) had completed secondary education, and 55% had an annual

household income higher than AUD$105,000. Overall mean total

folate intake (SD) was 585 (264) µg/day dietary folate equivalent

(DFE) at baseline and 559 ± 253 µg/day DFE at 36 weeks (Table 1).

Adherence to the trial supplements was similar between the

intervention and control groups, with 85% of women who returned

bottles consuming >80% of supplements to 36 weeks gestation.

These results were comparable with results from compliance

questioning at study visits. Similar percentages of women met the

definition of high compliance in each group, 84% in the control

group (37/52 returned bottles), compared to 85% in the no FA

intervention group (39/51 returned bottles).

F IGURE 1 Participant flowchart.
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3.2 | Outcomes

At 36 weeks, mean UMFA was significantly lower in women in the

0 µg FA/day supplement group (0.6 ± 0.7 nmol/L) than in women

who received 800 µg FA/day supplementation (1.4 ± 2.7 nmol/L,

adjusted mean difference = −0.85 (95% CI, −1.62, −0.08) nmol/L,

p = 0.03) (Figure 2). Maternal serum folate concentrations were

lower in the 0 µg FA/day supplement group compared to the

800 µg FA/day supplementation group; median 23.2 versus 49.3

nmol/L, the ratio of geometric means 0.56 (95% CI, 0.46, −0.68

nmol/L), p < 0.001 (Table 2). Similarly, median RBC folate concen-

trations were significantly lower in the 0 µg FA/day supplement

group than in the 800 µg FA/day supplementation group; 1340 ver-

sus 1910 nmol/L, the ratio of geometric means 0.69 (95% CI,

0.61–0.77), p < 0.001 (Table 2). Serum and RBC folate concentra-

tions were within normal clinical range to indicate no folate

deficiency in the intervention and control groups, >6.8 nmol/L for

serum folate and >305 nmol/L for RBC folate concentrations

(Supporting Information: Figure 1).

3.3 | Birth outcomes

There were no significant differences between the groups for birth

gestational age, weight and length, except for head circumference, which

was lower in the 0µg FA/day supplement group compared to the

800µg FA/day group (mean difference: −0.9 cm; 95% CI, −1.8, −0.1,

p= 0.04) (Table 2).

3.4 | Safety and adverse events

Adverse events were comparable between the groups, with nausea

the most common symptom overall at 1 week post‐randomization

(27%) and 20 weeks gestation (29%) (Supporting Information:

Table 2). One infant in each group was admitted to the Neonatal

Intensive Care Unit (classified as a serious adverse event). All serious

adverse events were reviewed and categorized as unlikely to be

related to the trial product or protocol.

4 | DISCUSSION

We investigated the effect of removing FA from prenatal

supplements after 12 weeks gestation on maternal UMFA

concentrations in late pregnancy in a country with mandatory FA

fortification of staple foods. UMFA concentrations were higher in

those women randomized to the 800 µg FA/day supplement group

compared to women in the 0 µg FA/day supplement group. UMFA

concentrations were below the level of detection in only a quarter

of women (11/44) in the 800 µg FA/day supplement group

compared to half (23/46) of women in the 0 µg FA/day supplement

group. Our results are dissimilar to the findings of the only other

published RCT investigating the effect of prenatal FA supplemen-

tation on maternal UMFA concentration. Pentieva et al. (2016)

reported that women randomized to FA supplements were more

likely to have detectable plasma UMFA at 36 weeks gestation

TABLE 1 Maternal baseline characteristics and folate intake at
36 weeks gestation.a

Characteristics
Intervention: no
FA (n = 51)

Control
800 µg FA/
day (n = 52)

Age, years 30.7 ± 5.2 31.4 ± 4.4

Gestational age at trial entry (weeks)

12 to <14 32 (63) 32 (62)

≥14 to 16 19 (37) 20 (38)

Maternal BMI at

enrollment (n = 94)

25.2 ± 5.0 27.0 ± 6.2

Ethnicity

European 41 (80) 44 (85)

Other 10 (20) 8 (15)

Completed secondary
education

46 (90) 44 (85)

Annual household income

AUD$70,000 or less 9 (18) 9 (17)

AUD$70,001–$105,000 12 (24) 7 (13)

AUD$105,001–$205,000 23 (45) 26 (50)

>AUD$205,000 5 (10) 7 (13)

Prefer not to disclose 2 (4) 3 (6)

Parity

0 27 (53) 20 (38)

Smoked tobacco in 3 months
before pregnancy

5 (10) 5 (10)

Consumed alcohol in 3 months

before pregnancy

34 (67) 41 (79)

Folate intake at baseline, µg/day (n = 88)

Total dietary folateb 644 ± 298 528 ± 214

FA from fortified food 204 ± 127 155 ± 110

Natural food folate 303 ± 124 268 ± 88

Folate intake at 34 weeks, µg/day (n = 84)c

Total dietary folateb 581 ± 269 538 ± 238

FA from fortified food 179 ± 131 152 ± 100

Natural food folate 282 ± 105 281 ± 103

aValues are mean ± SD or n (%).
bAs dietary folate equivalents = 1.7 × µg FA from fortified food + µg

natural food folate.
cThe p value for the mean difference in folate intake at 34 weeks between

groups was 0.41 for total dietary folate, 0.29 for FA from fortified food
and 0.98 for natural food folate.
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than women randomized to placebo (42% vs. 16%) but found

no significant difference in the mean ± SD concentration of

UMFA between groups (0.13 ± 0.49 vs. 0.44 ± 0.80, interaction

p‐value = 0.38) (Pentieva et al., 2016). Our mean UMFA concentra-

tion was similar in the 0 µg/day FA‐supplemented group in the

Pentieva et al. study but higher in those receiving 800 µg/day FA

supplementation. The dose of FA used by Pentieva et al. (2016) was

lower than that found in common prenatal multivitamin and mineral

supplements in Australia and many other countries, which range

from 500 µg to 1000 µg/day (Parr et al., 2017; Plumptre et al.,

2015). Furthermore, the Pentieva et al. study was conducted in

Northern Ireland, which only had voluntary (rather than mandatory)

FA fortification of food (Pentieva et al., 2016). The prevalence of

detectable UMFA in our trial participant population (62%) is lower

than observational studies in pregnant women in Australia

(93%, >0.03 to 244.7 nmol/L) (Best et al., 2020), USA (81%,

0.23–1.47 nmol/L) (West et al., 2012) and Canada (97%,

0.00–0.91 nmol/L) (Plumptre et al., 2015). However, UMFA

concentrations differ substantially between studies and appear to

be influenced by recent FA intakes (including ingestion of an FA

containing supplement), which may explain the variability. Pfeiffer

et al. reported detectable levels of UMFA in nearly all National

Health and Nutrition Examination Survey (NHANES) participants

(>95%, range >0.3–397 nmol/L) (Pfeiffer et al., 2015). NHANES is a

representative sample of the US population, including men, women,

and children. Although 38% of NHANES survey participants were

fasting >8 h, Pfeiffer et al. reported that the detection of UMFA

was evident regardless of fasting status, yet concentrations

differed significantly by length of fasting (Pfeiffer et al., 2015).

We asked participants to avoid taking their study supplement on

the day of their blood collection because we were interested in the

long‐term effect of FA supplementation on UMFA, not the acute

effect, as this is well established (Kelly et al., 1997; Sweeney et al.,

2007; Zheng et al., 2015). Zheng et al. reported that following a single

dose of 800 µg FA in 20 healthy male subjects, UMFA increased,

peaking at around 2.5 h in plasma but returned to undetectable levels

within 12 h (Zheng et al., 2015). Although we could detect UMFA in

those receiving no FA from study supplements (our intervention

group), we had expected that chronic dosing of FA from early

pregnancy would result in substantially higher UMFA concentrations

in the 800 µg/day FA supplementation group.

F IGURE 2 Unmetabolized folic acid by
treatment group (triangles are for the values
below the limit of detection).

TABLE 2 Blood folate concentrations at 36 weeks and neonatal
outcome by treatment group.

Outcome
Intervention
no FAa

Control
800 µg
FA/daya

Treatment
effectb

(95% CI) p Value

Serum

unmetabolized
FA (n = 90)c

0.6 ± 0.7 1.4 ± 2.7 −0.85

(−1.62, −0.08)

0.03

Serum folate,

nmol/L (n = 90)

23.2

(18.0, 28.4)

49.3

(32.7, 57.7)

0.56

(0.46, 0.68)d
<0.001

Red blood cell
folate, nmol/
L (n = 90)

1340
(1150, 1510)

1910
(1530,
2300)

0.69
(0.61, 0.77)d

<0.001

Gestational age
at birth,
weeks (n = 86)

39.3 ± 1.7 39.0 ± 1.3 0.3 (−0.4, 1.0) 0.36

Birth weight,
g (n = 90)

3331 ± 519 3383 ± 473 −44
(−255, 166)

0.68

Birth length,

cm (n = 78)

49.3 ± 2.8 49.9 ± 2.7 −0.5

(−1.7, 0.8)

0.46

Birth head
circumference,
cm (n = 68)

34.1 ± 2.1 35.0 ± 1.3 −0.9
(−1.8, −0.1)

0.04

aValues are median (IQR) or mean ± SD.
bAdjusted for gestational age at trial entry for all outcomes and infant sex
for birth anthropometric outcomes. Treatment effect expressed as a mean

difference (95% CI) unless indicated otherwise.
cSerum unmetabolized FA was detected in 50% of samples in the
intervention group and 75% of samples in the control group.
dTreatment effect expressed as a ratio of geometric means (95% CI).
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The serum and RBC folate differences were as expected and

consistent with other prenatal FA supplementation trials (Crider

et al., 2014; Obeid et al., 2018; Pentieva et al., 2016). At 36 weeks

gestation, median serum folate was ~26 nmol/L lower and median

RBC folate was 600 nmol/L lower in the group receiving no FA

versus 800 µg FA/day. Importantly, all women remained above

serum and RBC folate concentrations indicative of deficiency,

>6.8 and >305 nmol/L, respectively (Institute of Medicine, 1998).

The folate metabolites at baseline are already high, possibly due to

the presence of fortified foods. Our previous study conducted in

Australia (Hunt et al., 2020) showed that contemporary levels of

RBC folates in women of reproductive age (18–44 y) are 942 (95%

CI, 887–1012) nmol/L. These findings are similar to those reported

among US women aged 12–49 y recorded during 2007–2010,

which showed levels at 995 (95% CI, 972–1020) nmol/L, and during

2011–2016, where levels were 1020 (95% CI, 998–1040) nmol/L

(Pfeiffer et al., 2019).

Maternal and neonatal birth outcomes were collected via

maternal report for the sole purpose of treatment group compari-

sons, as the study lacked sufficient power to assess clinical outcomes.

Notably, our findings indicated that infants born to mothers who

received FA supplementation had greater head circumference at birth

than those in the no FA intervention group. However, given the

limited number of participants and the absence of multiplicity

correction for secondary outcomes, this observation might be

attributed to random variation.

Our study has many strengths, including a low attrition rate and a

high rate of supplement adherence. Also, UMFA analyses were

conducted by the same laboratory in Norway as Pentieva et al.,

allowing us to compare results. We asked women to refrain from

taking their study supplement for 24 h before their blood sample

collection to reduce the variation in UMFA caused by recent high‐

dose FA exposure. A limitation of our study is the absence of a

baseline maternal blood sample at enrollment due to COVID‐19

restrictions, which meant we could not examine changes in UMFA

over time.

In conclusion, our trial showed that removing FA from prenatal

multivitamin and mineral supplements reduced the serum UMFA

concentration at 36 weeks gestation; however, UMFA concentra-

tions were low in both groups. UMFA, even when measured under

standardized conditions, has a high within‐subject variation. A

nutritional biomarker that is influenced by recent dietary intake

should be measured under standardized conditions (i.e., fasting);

however, this was not possible given our study design and taking the

safety of pregnant women into account (Gibson, 2023). Moreover,

there is no cutoff concentration based on clinical outcomes for

UMFA, above which there is increased risk of poor maternal and child

outcomes (Gibson, 2023). Thus, UMFA may not be the best

biomarker for chronic excessive FA ingestion. Our findings do not

prove that excessive maternal FA supplementation or UMFA does

not cause harm. There is no question that FA supplementation is

essential before and in early pregnancy, but investigating excess

intake, especially in countries with mandatory fortification, is

warranted. High‐quality randomized controlled trials powered with

clinical endpoints are needed to resolve concerns regarding the

potential adverse effects of excessive FA intakes in late pregnancy on

maternal and child health.
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