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Abstract
Knowledge graphs, powerful tools that explicitly transfer knowledge to machines, 
have significantly advanced new knowledge inferences. Discovering unknown re-
lationships between diseases and genes/proteins in biomedical knowledge graphs 
can lead to the identification of disease development mechanisms and new treat-
ment targets. Generating high-quality representations of biomedical entities is es-
sential for successfully predicting disease-gene/protein associations. We developed 
a computational model that predicts disease-gene/protein associations using the 
Precision Medicine Knowledge Graph, a biomedical knowledge graph. Embeddings 
of biomedical entities were generated using two different methods—a large language 
model (LLM) and the knowledge graph embedding (KGE) algorithm. The LLM utilizes 
information obtained from massive amounts of text data, whereas the KGE algorithm 
relies on graph structures. We developed a disease-gene/protein association predic-
tion model, “Cross-Modal Embedding Integrator (CMEI),” by integrating embeddings 
from different modalities using a multi-head attention mechanism. The area under 
the receiver operating characteristic curve of CMEI was 0.9662 (± 0.0002) in predict-
ing disease-gene/protein associations. In conclusion, we developed a computational 
model that effectively predicts disease-gene/protein associations. CMEI may con-
tribute to the identification of disease development mechanisms and new treatment 
targets.
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1  |  INTRODUC TION

Discovering unknown associations between diseases and genes/
proteins can reveal novel mechanisms of disease development and 
potential therapeutic targets.1 Therefore, it is a critical starting point 
for drug development; however, it requires expensive and time-
consuming biological experiments.2,3 A computational model that 
predicts unknown associations between diseases and genes/pro-
teins can aid the development of new drugs.

Knowledge graphs express knowledge as “head entity, relation, 
and tail entity,” which explicitly transfer knowledge to machines.4 
They have led to major advances in inferring new knowledge and 
have found utility in various fields. A biomedical knowledge graph 
comprises entities such as diseases, genes, proteins, drugs, and bio-
logical processes, and their relationships. Knowledge that is yet to be 
discovered remains a missing link in knowledge graphs. New knowl-
edge can be created by identifying the missing links. For instance, 
identifying unknown relationships between drugs and diseases may 
facilitate drug repurposing.5 Discovering unknown associations be-
tween diseases and genes/proteins may help in drug discovery.6 
Biomedical knowledge graphs could be a good database for identi-
fying unknown associations between diseases and genes/proteins.

Inferring new knowledge requires representations that preserve 
the meaning of each entity and the relationships between them. 
Generating high-quality representations of biomedical entities is es-
sential for successfully performing downstream tasks, such as link 
prediction and node classification. The representations of biomedi-
cal entities can be generated using the graph structure, including the 
relationships between biomedical entities. Various knowledge graph 
embedding (KGE) algorithms have been developed.7–9 Among these, 
DistMult represents relational embeddings as diagonal matrices, 
which facilitates the learning by reducing the parameter space.7,10 
Holographic embeddings (HolE) utilize circular correlation to acquire 
various interactions.8,10 RotatE considers the relation from head en-
tity to tail entity as rotation and represents relations and entities 
to the complex latent space.9,10 Several models for predicting the 
association between biomedical entities have been developed using 
the KGEs.11,12 Another approach, graph neural networks (GNNs), has 
been used for developing disease-gene/protein association predic-
tion models.13–15 Han et  al. utilized GNN and matrix factorization 
to identify the associations between diseases and genes.13 Cinaglia 
et  al. suggested a disease-gene association prediction model con-
sisting of an encoder and a decoder using GNN.14 As these methods 
obtain information about biomedical entities based on the graph 
structures, a graph database must be established before developing 
the prediction model. Recently, a large-scale biomedical knowledge 
graph has been generated.16–20 This may further facilitate the de-
velopment of a computational model for predicting disease-gene/
protein associations.

In addition to the graph structures, biomedical entities contain 
considerable amounts of information. Therefore, a better represen-
tation may be generated by utilizing additional information that re-
flects the characteristics of biomedical entities. Zhou et al. showed 

that in predicting circular RNA-microRNA (miRNA) interactions, 
better predictive performance can be achieved by adding features 
reflecting entity characteristics to the features obtained from the 
network structure.21 Accordingly, a better performance may be 
achieved in predicting the disease-gene/protein associations by 
adding information that can reflect the disease and gene/protein 
characteristics to the features obtained from the graph structure.

Recently, with the rapid development of large language models 
(LLMs), such as ChatGPT,22,23 LLMs have played a role in comple-
menting knowledge graphs. In LLM-augmented knowledge graphs, 
the LLM plays a role in generating embeddings, structuring knowl-
edge graphs, and generating text from knowledge graphs,24 thereby 
reducing its limitations and increasing usefulness. In the node classi-
fication task using graph datasets, it has been reported that embed-
dings obtained by the LLM can be used as the initial embeddings of 
the nodes in the GNN to improve performance.25 Therefore, lever-
aging information from two different modalities—information from 
an LLM, which is obtained from massive text data, and information 
from the graph structure—may contribute to a better performance. 
We developed a disease-gene/protein association prediction model, 
“Cross-Modal Embedding Integrator (CMEI),” which integrated the 
embeddings, obtained using an LLM26 and the KGE algorithm,7–9 
via a multi-head attention mechanism.27 CMEI integrated various 
embeddings with appropriate weights using a multi-head attention 
mechanism and showed favorable performance.

2  |  MATERIAL S AND METHODS

2.1  |  Knowledge graph

Prediction models were developed with Precision Medicine 
Knowledge Graph (PrimeKG),19,20 which is available in Harvard 
Dataverse at https://​doi.​org/​10.​7910/​DVN/​IXA7BM.19,20 
PrimeKG19,20 is a heterogeneous graph and has the following 10 
node types: gene/protein (n = 27 671), drug (n = 7957), effect/pheno-
type (n = 15 311), disease (n = 17 079), biological process (n = 28 642), 
molecular function (n = 11 169), cellular component (n = 4176), ex-
posure (n = 818), pathway (n = 2498), and anatomy (n = 14 035). A 
total of 26 types of relationships between nodes were as follows: 
disease-gene/protein, gene/protein-effect/phenotype, gene/
protein-anatomy, gene/protein-biological process, gene/protein-
cellular component, gene/protein-molecular function, gene/protein-
pathway, drug-disease, drug-gene/protein, drug-effect/phenotype, 
disease-effect/phenotype, exposure-disease, exposure-gene/
protein, exposure-biological process, exposure-cellular compo-
nent, exposure-molecular function, gene/protein-gene/protein, 
drug–drug, disease-disease, effect/phenotype-effect/phenotype, 
anatomy-anatomy, exposure-exposure, biological process-biological 
process, cellular component-cellular component, molecular 
function-molecular function, and pathway-pathway. Among these, 
the relationships between drugs and genes/proteins were subdi-
vided into carriers, enzymes, targets, and transporters; however, all 
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these were considered to have the same relationships in the present 
study. The relationships between drugs and diseases were divided 
into indications, contraindications, and off-label use, of which only 
indications were used in this study. Relationships between diseases 
and phenotypes were divided into positive and negative relation-
ships, and only positive relationships were used in the current study. 
The relationships between anatomies and genes/proteins were di-
vided into present and absent, and only present relationships were 
used in this study.

2.2  |  Construction of dataset

A total of 80 411 edges between diseases and genes/proteins 
were randomly assigned to four groups—message passing data-
set (n = 45 031), training dataset (n = 19 298), validation dataset 
(n = 8041), and testing dataset (n = 8041) using “RandomLinkSplit” 
of PyTorch Geometric.28 Other edges, except for edges between 
diseases and genes/proteins, were assigned to the message-passing 
dataset. The training, validation, and testing datasets consisted 
only of edges between diseases and genes/proteins. Some edges 
between diseases and genes/proteins were adjusted to ensure that 
there were no isolation nodes in the message-passing dataset. The 
number of edges in each dataset remained the same after the ad-
justment. The ratio of the number of edges between diseases and 
genes/proteins belonging to the message passing and training data-
sets was 7:3. The validation and test datasets included 10% of the 
total edges between the diseases and genes/proteins.

The training, validation, and testing datasets require negative 
pairs for model learning and evaluation, which in this study were dis-
ease and gene/protein combinations with no edges. Negative pairs 
were generated through the following process: pairs were generated 
by combining diseases and genes/proteins from the dataset and pairs 
with edges removed. Finally, from the remaining ones, some pairs 
were selected and used as negative pairs. However, the frequencies 
of diseases and genes/proteins in the positive pairs comprising the 
edges of the training, validation, and testing datasets were uneven. 
For example, “hereditary breast-ovarian cancer syndrome” was in-
cluded in 280 edges, whereas “asthma” was included in 16 edges of 
the training datasets. Among the genes/proteins, “interleukin 6 (IL6)” 
was included in 63 edges of the training datasets, whereas “growth 
differentiation factor 1 (GDF1)” was included in only 3 edges. This 
indicates that if the disease and gene/protein pairs are randomly se-
lected to form negative pairs, biased predictions may occur because 
of differences in disease and gene/protein frequencies between the 
positive and negative pairs. To avoid this, if the frequency of diseases 
and genes/proteins in positive pairs constituting the entire edge of 
the training, validation, and testing dataset or negative pairs in the 
whole dataset were 20 or more, negative pairs were constructed to 
ensure that the frequency ratio of disease or gene/protein between 
the positive and negative pairs was more than 0.5 and less than 
2. This rule also applies to positive pairs that constitute the edges 
of the training dataset as well as to negative pairs of the training 

dataset. Thus, 59 359 negative pairs were constructed. Based on the 
edge ratio, 32 377 negative pairs were assigned to the training data-
set, whereas 13 491 pairs each were assigned to the validation and 
testing datasets. Finally, the training dataset comprised 19 298 pos-
itive and 32 377 negative pairs, whereas the validation and testing 
datasets comprised 8041 positive and 13 491 negative pairs.

Embeddings by the KGE algorithm were generated using the 
message-passing dataset. Prediction models using the KGE algorithm 
or LLM embeddings were developed using the training and valida-
tion datasets. The performances of the prediction models were eval-
uated using the testing dataset. The message-passing edges used to 
develop a GNN-based prediction model were constructed using the 
message-passing, training, and validation datasets. The message-
passing edges during the training process were constructed using 
the message-passing datasets. The message-passing edges during 
the validation process were constructed using the message passing 
and training datasets. The message passing edges during the test-
ing process were constructed using the message passing, training, 
and validation datasets. The training, validation, and testing datasets 
were used as supervision edges during the training, validation, and 
testing process, respectively.

2.3  |  Development of the prediction model

We developed CMEI, a prediction model integrating embeddings ob-
tained using both the LLM26 and KGE algorithm7–9 via a multi-head 
attention mechanism.27 In addition to CMEI, we further developed a 
prediction model in the following three ways for model performance 
comparison:

1.	 Using only embeddings obtained via the KGE algorithms7–9

2.	 Using only embeddings obtained via the LLM26

3.	 Using embeddings obtained via the LLM26 as the initial embed-
dings of the nodes in GNN14,25

The embedding model of OpenAI26 was used to obtain the LLM 
embeddings. DistMult,7 HolE,8 and RotatE9 were used as the KGE 
algorithms. Experiments were conducted on five different seeds for 
representative models.

2.3.1  |  Integrating the embeddings generated 
by the KGE algorithms and LLM using a multi-head 
attention mechanism

Embeddings reflecting the graph structure were generated using 
the following representative KGE algorithms: DistMult,7 HolE,8 and 
RotatE.9 The PyKEEN package was used to generate the embed-
dings.29 The embedding dimension was set as 1536 to match the 
embedding model of OpenAI26 and was generated by changing the 
number of epochs by 50 from 200 to 300. Prediction models for 
associations between diseases and genes/proteins were developed 
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using the generated embeddings. Input data for developing predic-
tion models, that is, disease-gene/protein pairs, were obtained by 
combining disease and gene/protein embeddings generated by the 
KGE algorithms via a vector operation—concatenation, element-
wise averaging, or element-wise product.30 The prediction model 
comprised two or three multilayer perceptron (MLP) layers.31,32 The 
models were developed by modifying the model structure and ad-
justing the hyperparameters. Their performance was assessed using 
the area under the receiver operating characteristic curve (AUC), 
area under the precision-recall curve (AUPR), accuracy, recall, preci-
sion, specificity, and the F1 score.

For each KGE algorithm, the prediction model with the best AUC 
value in the validation dataset was selected as the final model. The 
performance of the final model was assessed using the testing data-
set. Their performance was compared with that of CMEI. The em-
beddings generated by the KGE algorithm, which exhibited the best 
AUC value in the testing dataset, were used to develop CMEI.

Next, the LLM embeddings were obtained using the embedding 
model of OpenAI, “text-embedding-ada-002.”26 A combination of 
two words, the type and name of the biomedical entity, was used as 
the input. For instance, for “osteogenesis imperfecta,” the embed-
ding was obtained by entering “disease, osteogenesis imperfecta.” 
The number of embedding dimensions was 1536. As mentioned ear-
lier, pairs of disease and gene/protein embeddings were combined 
using a vector operation30 and passed through two or three MLP 
layers.31,32 The associations between diseases and genes/proteins 
were predicted. The performance of the model was evaluated using 
the AUC, AUPR, accuracy, recall, precision, specificity, and the F1 
score. The performance of the final model established using the LLM 
embeddings was compared with that of CMEI. These embeddings 
were also used for the development of CMEI.

CMEI was developed by integrating the embeddings generated 
by the selected KGE algorithm7 with those from the OpenAI26 em-
bedding model using a multi-head attention mechanism (Figure 1).27 
The following embeddings were sequentially entered into the pre-
diction model: gene/protein embedding by the LLM, disease em-
bedding by the LLM, disease embedding by the KGE, and gene/

protein embedding by the KGE. The prediction model was devel-
oped in two ways: adding a classification (CLS) token33 as the first 
sequence or not. The embeddings were processed using the pre-
diction module, including the multi-head attention layer,27,34 skip 
connection,35 layer normalization,36,37 feed-forward layer,31,32 skip 
connection,35 and layer normalization.36,37 One or two prediction 
modules were used. Learnable positional embeddings were ap-
plied.27,33 The prediction value was obtained from the CLS token 
using an MLP layer31,32 when the CLS token was used. The predic-
tion value was obtained from the last output sequence when the 
CLS token was not used. The models were developed by varying the 
input order of embeddings, model structure, and hyperparameters. 
The input order of the embeddings, structure, and hyperparame-
ters of the final model was determined based on the AUC value 
in the validation dataset. The performance of the final model was 
evaluated using the test dataset. PyTorch frameworks38 was used 
to develop the prediction model. The “MultiheadAttention”27,34 
and “Linear”31,32 of PyTorch were used as multi-head attention and 
MLP layers, respectively. The “Adam” of PyTorch39,40 was used as 
the optimizer, and the “Dropout” of PyTorch41,42 was used for reg-
ularization. The learning rate was reduced by a factor of 0.1 if the 
AUC value did not improve in the validation dataset during 30 ep-
ochs using the “ReduceLROnPlateau” of PyTorch.43 Learning was 
stopped if the AUC value in the validation dataset did not improve 
for 60 consecutive epochs.

2.3.2  |  GNN-based model established using 
embeddings generated by the LLM

To evaluate the performance of CMEI, a GNN-based prediction 
model consisting of an encoder and a decoder was developed.14,25 
In the encoder, the embeddings generated by the LLM were used 
as the initial node embeddings. The initial embeddings were pro-
cessed through GNN layers44,45 to capture the graph structure. 

Accuracy =
True positive + True negative

True positive + Flase positive + True negative + False negative

Recall =
True positive

True positive + Flase negative

Precision =
True positive

True positive + Flase positive

Specificity =
True negative

Flase positive + True negative

F1 score =
2∗True positive

2∗True positive + Flase positive + False negative

F I G U R E  1 Structure of CMEI. CMEI, Cross-Modal Embedding 
Integrator; LLM, large language model; KGE, knowledge graph 
embedding.



    |  5 of 10CHANG et al.

In the decoder, the associations between diseases and genes/
proteins were predicted using the embeddings obtained from 
the encoder. The embeddings of the diseases and genes/pro-
teins were combined using a vector operation—concatenation, 
element-wise averaging, or element-wise product.30 The pre-
diction value was obtained by passing them through the MLP 
layers.31,46 The models were developed by changing the model 
structure and hyperparameters. The structure and hyperparam-
eters of the final GNN-based model were determined based on 
the AUC values of the validation dataset. The performance of the 
final model was evaluated using the test dataset. The PyTorch38 
and PyTorch Geometric47 frameworks were used to develop 
the prediction model. The “SAGEConv”44,45 and “Linear”31,46 of 
PyTorch Geometric were used as GNN and MLP layers, respec-
tively. The “Adam” of PyTorch39,40 was used as the optimizer, and 
the “Dropout” of PyTorch41,42 was used for regularization. A mini-
batch was not utilized. The learning rate was reduced by a factor 
of 0.1 if the AUC value did not improve in the validation dataset 
during 30 epochs using the “ReduceLROnPlateau” of PyTorch.43 
Learning was stopped if the AUC value in the validation dataset 
did not improve for 60 consecutive epochs.

2.4  |  Case study

Case studies have been conducted on breast, lung, colorectal, and 
prostate cancers, hepatocellular carcinoma, schizophrenia, anxiety 
disorders, and neurotic disorders. CMEI was applied to the testing 
dataset, and 30 genes/proteins predicted to be associated with each 
disease were selected based on the highest probability. The number 
of genes/proteins not identified in the knowledge graph used as the 
dataset was checked.

2.5  |  Ablation study

The ablation study was conducted such that the following four types 
of embedding were not used to develop prediction models individu-
ally: gene/protein embedding by the LLM, disease embedding by 
the LLM, disease embedding by the KGE, and gene/protein embed-
ding by the KGE. Using the three types of embeddings, a prediction 
model was developed with the same structure as that of the final 
model, CMEI. The importance of each embedding in predicting the 
disease-gene/protein association was evaluated by comparing the 
performances of all models.

3  |  RESULTS

3.1  |  Performance of the prediction models

Figure 2 and Table 1 present information about the performances of 
the prediction models for the testing dataset. The prediction mod-
els were established using only embeddings obtained by DistMult,7 
HolE,8 and RotatE9 performed the best when they consisted of two 
MLP layers31,32 (size of each output sample: 1024 and 1) and used 
concatenations of disease and gene/protein embeddings30 as the 
input data. Among KGE algorithms, DistMult7 performed the best. 
Embeddings generated by DistMult7 were used to develop CMEI. 
The prediction models established using only embeddings obtained 
by the LLM26 performed the best when they consisted of two MLP 
layers31,32 (size of each output sample: 1024 and 1) and used con-
catenations of disease and gene/protein embeddings30 as the input 
data. GNN-based models performed the best when they consisted 
of three GNN44,45 (size of output sample: 256, 128, and 128) and 
four MLP31,46 (size of output sample: 1024, 512, 256, and 1) layers 

F I G U R E  2 ROC curves of CMEI and 
baseline prediction models. Results of 
the representative models among the 
five trials performed by changing the 
seed number. DistMult, Rotate, HolE, 
and LLM refer to the prediction models 
established using the embeddings 
obtained from DistMult, RotatE, HolE, 
and the LLM, respectively. GNN refers 
to the GNN-based model. CMEI, Cross-
Modal Embedding Integrator; GNN, 
graph neural network; HolE, holographic 
embeddings; LLM, large language model; 
ROC, receiver operating characteristic.
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and used element-wise products of disease and gene/protein em-
beddings14,30 as input data.

The final structure of CMEI is shown in Figure  1 (Data  S1). 
Embedding was entered into the prediction model in the following 
order: gene/protein embedding by the LLM, disease embedding 
by the LLM, disease embedding by the KGE, and gene/protein em-
bedding by the KGE. The CLS token was not used. CMEI has one 
prediction module, including a multi-head attention layer,27,34 skip 
connection,35 layer normalization,36,37 feed-forward layer,31,32 skip 
connection,35 and layer normalization.36,37 An initial learning rate of 
0.001 and minibatch size of 32 were used. The AUC value of CMEI 
for predicting disease-gene/protein associations in the testing data-
set was 0.9662 (± 0.0002). Among the prediction models, CMEI 
showed the best AUC value.

3.2  |  Case studies

Genes/proteins associated with breast, lung, colorectal, and pros-
tate cancers, hepatocellular carcinoma, schizophrenia, anxiety dis-
orders, and neurotic disorders were predicted using the testing 
dataset (Table  2). In breast cancer, hepatocellular carcinoma, and 
anxiety disorders, all the top 30 genes/proteins were identified in 
the knowledge graph used as the dataset. In lung cancer, colorectal 
cancer, prostate cancer, schizophrenia, and neurotic disorder, two, 
two, one, one, and one of the top 30 genes/proteins, respectively, 
were not identified in the knowledge graph used as the dataset.

3.3  |  Ablation study

The results of the ablation study are presented in Table 3. Excluding 
gene/protein embeddings by KGE resulted in the most significant 
deterioration in the performance of the model, while excluding 
gene/protein embeddings by LLM caused the least deterioration.

4  |  DISCUSSION

Interaction prediction research has been conducted in vari-
ous fields of computational biology, including the prediction of 
various biological associations such as long non-coding RNA 
(lncRNA)–miRNA interactions,48 lncRNA-protein interactions,49 
metabolite-disease associations,50,51 and drug-toxicity associa-
tions.52–54 Analyzing interactions among various biomedical en-
tities, such as genes, diseases, drugs, and metabolites, is pivotal 
in medicine, as it contributes to a systemic understanding of dis-
eases and facilitates the development of innovative therapeutic 
strategies. Recent research has increasingly focused on depicting 
these interactions within networks and analyzing them to un-
cover previously unknown interactions. For instance, Hulovatyy 
et al. predicted links by calculating the number of shared neigh-
boring nodes or common pathways.55 However, this approach 
has the disadvantage of showing significant performance varia-
tions depending on the dataset owing to the noisy nature of bio-
medical graphs. This method has evolved into a more advanced 
technique that utilizes diffusion kernels to model the interactions 
between individual entities, thereby enhancing our understanding 
of the representation of each node. Notably, research suggests 
that genes contributing to the same phenotype are likely to in-
teract.56 Furthermore, Kovács et  al. have explored the possibil-
ity of predicting protein interactions through their similarity with 
connected nodes.57 Recently, the prediction of miRNA-disease 
associations has emerged as a vibrant area of graph-based link 
prediction research employing large-scale heterogeneous net-
works comprising miRNAs and diseases.58,59 Additionally, various 
methodologies have been employed to predict disease-associated 
proteins. For example, extracting disease-related graph structures 
from protein–protein interaction (PPI) networks has proven to be 
a promising approach.60,61 Chen et al. leveraged the PPI, expres-
sion data, subcellular localization, and orthology information to 
develop transfer neural networks to predict disease-associated 

TA B L E  1 Results of the prediction models.

CMEI

Prediction model 
established using 
the embeddings 
obtained from 
DistMult.7

Prediction model 
established using 
the embeddings 
obtained from 
HolE.8

Prediction model 
established using 
the embeddings 
obtained from 
RotatE.9

Prediction model 
established using 
the embeddings 
obtained from 
the LLM.28 GNN-based model

AUC 0.9662 ± 0.0002 0.9604 ± 0.0001 0.9149 ± 0.0004 0.9518 ± 0.0002 0.8560 ± 0.0016 0.9545 ± 0.0014

AUPR 0.9469 ± 0.0007 0.9377 ± 0.0004 0.8836 ± 0.0009 0.9324 ± 0.0005 0.7983 ± 0.0025 0.9286 ± 0.0027

F1 score 0.8799 ± 0.0010 0.8716 ± 0.0014 0.8010 ± 0.0014 0.8606 ± 0.0005 0.7169 ± 0.0007 0.8602 ± 0.0029

Accuracy 0.9080 ± 0.0011 0.9043 ± 0.0010 0.8518 ± 0.0006 0.8964 ± 0.0004 0.8004 ± 0.0014 0.8944 ± 0.0021

Recall 0.9030 ± 0.0056 0.8699 ± 0.0026 0.7987 ± 0.0042 0.8564 ± 0.0042 0.6770 ± 0.0037 0.8696 ± 0.0078

Precision 0.8581 ± 0.0059 0.8734 ± 0.0025 0.8033 ± 0.0018 0.8648 ± 0.0035 0.7620 ± 0.0052 0.8510 ± 0.0062

Specificity 0.9110 ± 0.0048 0.9248 ± 0.0018 0.8834 ± 0.0019 0.9202 ± 0.0028 0.8739 ± 0.0042 0.9092 ± 0.0050

Note: Experiments were conducted using five different seeds. The results are reported as average ± standard deviation.
Abbreviations: AUC, area under the receiver operating characteristic curve; AUPR, area under the precision-recall curve; CMEI, Cross-Modal 
Embedding Integrator; GNN, graph neural network; HolE, Holographic embeddings; LLM, large language model.
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proteins.62 Nevertheless, although these studies offer valuable 
insights, they are limited by their dependence on PPI networks.

While several studies have sought to represent entities through 
the various interrelationships among them, recently developed 
LLMs have made significant strides in comprehending the mean-
ings of individual entities within vast contexts across diverse fields 
of expertise. Models such as ChatGPT22,23 encode the meaning 
of each text into a representation vector endowed with common 
knowledge and robust semantic comprehension. Attempts have 
been made to leverage this ability to effectively capture the char-
acteristics of each text to improve the representation of nodes 
in GNNs.25,63 One fundamental approach utilizes embedding 
vectors derived by LLMs in the initial node embedding, consti-
tuting a form of feature-level enhancement.25 Another strategy 

is to use text-to-text LLM to generate additional texts with more 
profound and richer information, thereby creating relationships 
between these texts and the original ones.25,63 This enriches the 
graph being learned, making it more comprehensive. LLM-derived 
feature embeddings are widely used to learn from tabular data. 
Approaches such as TabLLM64 and LIFT65 aim to leverage LLMs to 
convert column features into embeddings for each row by utilizing 
the context awareness inherent in LLMs for tabular data learning. 
Models like CAAFE66 utilize LLMs to generate new features with 
a high correlation with labels from column names. Additionally, 
TransTab proposed a method to convert each column name into an 
embedding vector using word embeddings.67

Embeddings using the KGE algorithm include information 
on the relationships between biomedical entities. Embeddings 

TA B L E  2 Results of case studies using CMEI.

Breast cancer Lung cancer
Colorectal 
cancer

Prostate 
cancer

Hepatocellular 
carcinoma Schizophrenia

Anxiety 
disorder

Neurotic 
disorder

PACC1 RPL13A ZNF569 MMP9 FABP5 ACHE HCRT HTR2C

TFAP2D MIR222 ZNF442 BCAS1 FAM180A HTR1A HTR2A HTR7

LBX1 CRP TNS4 NCOA7 ANGPTL6 HTR2C GABRA6 GRIA3

C1orf87 TP73 LRRC47 HAO1 IRF2 NCAM1 HTR7 GLO1

COL19A1 TYMS PTPRU SHBG RNF157 MTHFR GRIK3 TAC1

ACCS IL1B ZNF480 ALOX5 LCAT GRIA1 CPLX1 GRPR

FAM217B PYCARD JAKMIP2 TLR4 PYGL GABBR1 ADRA2A OXT

PCDHGB6 STN1 ACTL9 ENPP5 TCF19 HCRTR1 MAOB GRIN2A

CEP85L TFRC ALOX12B ETV4 BMPER SST GRIA1 ADCY5

MIA2 NEK2 TYMP ARG2 CLEC4G ERVW-4 NEFM GAP43

PADI3 EGFR SH3TC1 GSTM1 MPO SNCB ADCY5 PCLO

TAFA4 MYC IPP TGFBR2 CENPW GRM4 GDNF CLOCK

KRTAP10-8 ZNF765* CACUL1 HRAS MIR885 APOE CSMD2 HSPB3

AHSA2P MIR19A DMRTA1 HMOX1 TGM3 GRM8 PDE4D SGCE

SCGB3A2 MIR144 SLC22A9 ETV5 MRO TET1 CDH7 DBH

TLL1 TNFSF10 CHRM5* RNF130 CDCA8 NRGN CMYA5 SOD1

MFAP5 H2BC4 TNF FOXA1 PTTG1 PDE4B TG MAPK8

TBC1D9B TP63 SFRP2 CLDN9 CYP2C8 NRXN1 GAL REN

ANKEF1 RAF1 GRID1 IVL* CCN1 SLC29A1* CCL24 PDE4A

NID2 RPS6KA6 IFNG ASZ1 ACLY TF MAGI2 RNF123

LRRC37A BAP1 PAIP2 TOM1L1 HSD3B2 ESR2 RELN GNB3

WARS1 DNMT3A PTGS2 SERPINB10 MYBL2 CAV1 GAD1 NRXN1

MALAT1 EEF2 TCERG1L CDKN1B GPX3 ATF4 MMP8 GSTT1

DNAH9 ERBB3 ARHGEF10L TMSB4X IGF2BP3 DISC1 SOD1 DGKB

FBXO8 GSTM2 SLC5A8 BIRC5 IL2 DLGAP2 PRL BCL2

ARAP3 MLH1 KRT71* GSTK1 HPSE NCAN MS SFRP1

MIR10A RPL27A NQO1 HDAC6 NNMT HSPA1L NRG1 WFS1

C16orf58 FST* GUCY1A1 SLC7A1 AKR1C2 HDAC2 MAPT VEGFA

NOA1 JAG1 AKR1B10 RPN2 ATM CHAT DUSP1 ERRFI1*

KIAA1324 MIR155 FPGS ZFP36L2 TP53 ACP1 IL18 AKT1

Note: Asterisks in bold font indicate genes/proteins not identified in the knowledge graph used as the dataset.
Abbreviation: CMEI, Cross-Modal Embedding Integrator.
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generated by the LLM include comprehensive common knowledge 
from the literature. We integrated embeddings from two different 
modalities, graph structure and text, using a multi-head attention 
mechanism.27 This approach allowed the effective integration 
of these two types of information with appropriate weights and 
excellent performance was achieved. Additionally, we employed 
embeddings generated by the LLM as initial node embeddings 
for GNN to integrate the data.25 We attempted to add the graph 
structure information by learning the embeddings obtained by the 
LLM through GNN. However, CMEI integrating the two types of 
information using a multi-head attention mechanism27 showed a 
better performance than the GNN-based model. Additionally, a 
prediction model was developed using only embeddings based on 
the KGE algorithm or LLM. CMEI performed better than the other 
models. When comparing the performances of the models devel-
oped using only KGE embeddings versus only LLM embeddings, 
the model established using the KGE embeddings performed bet-
ter. This result suggests that information from biomedical entities 
may be extracted more efficiently by the KGE algorithm than by 
the LLM. The importance of each embedding was evaluated using 
an ablation study. When the gene/protein embeddings obtained 
by KGE were excluded, the performance of the model deteriorated 
the most. Conversely, excluding gene/protein embeddings derived 
from the LLM led to the least deterioration in the performance 
of the model. This may be attributed to the fact that information 
about genes/proteins may be more specialized in biomedical fields 
than information about diseases; thus, they might be better ex-
tracted by the KGE algorithm than by the general-purpose LLM.

We developed a prediction model by integrating the embed-
dings extracted from the two modalities. In this study, the embed-
ding model of OpenAI,26 a general-purpose LLM, was used. Better 
predictions may be possible using LLMs specialized for biomedical 
tasks. However, further studies are needed to confirm this hy-
pothesis. Case studies on several diseases have been conducted. 
Most genes/proteins predicted to be associated with each dis-
ease in CMEI were identified in the knowledge graph used as the 
dataset. However, there were several genes/proteins whose as-
sociations with the diseases were not identified in the knowledge 

graph used as the dataset. It may be possible that the associations 
between these genes/proteins and diseases have yet to be dis-
covered. This suggestion by CMEI can be the starting point for 
the identification of disease development mechanisms and new 
treatment targets. Our study has limitations in making inferences 
regarding diseases and genes/proteins that are not included in 
the PrimeKG.19,20 However, as PrimeKG19,20 contains information 
about many diseases and genes/proteins, identifying the missing 
links between these diseases and genes/proteins will contribute 
significantly to discovering new treatment targets and identifying 
disease development mechanisms.

Comprehensive information about biomedical entities is crucial 
for predicting their associations. We obtained a wide range of in-
formation from various relationships using large biomedical knowl-
edge graphs. Additionally, information regarding biomedical entities 
available in a wide range of literature was obtained using the LLM. 
Subsequently, a multi-head attention mechanism integrated this in-
formation with appropriate weights to ensure an excellent predic-
tion performance. Further studies using CMEI to identify the missing 
links between diseases and genes/proteins may contribute to the 
development of novel drugs.
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