
Pharmacol Res Perspect. 2024;12:e70034.	 		 	 | 1 of 10
https://doi.org/10.1002/prp2.70034

wileyonlinelibrary.com/journal/prp2

Received:	20	March	2024  | Accepted:	28	October	2024
DOI:	10.1002/prp2.70034		

O R I G I N A L  A R T I C L E

Cross- modal embedding integrator for disease- gene/protein 
association prediction using a multi- head attention mechanism

Munyoung Chang1  |   Junyong Ahn2,3 |   Bong Gyun Kang3 |   Sungroh Yoon1,3,4

This is an open access article under the terms of the Creative	Commons	Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any	medium,	provided	the	original	work	is	properly	cited,	the	use	is	non-commercial	and	no	modifications	or	adaptations	are	made.
©	2024	The	Author(s).	Pharmacology Research & Perspectives	published	by	British	Pharmacological	Society	and	American	Society	for	Pharmacology	and	
Experimental Therapeutics and John Wiley & Sons Ltd.

Abbreviations:	AUC,	area	under	the	receiver	operating	characteristic	curve;	AUPR,	area	under	the	precision-	recall	curve;	CMEI,	cross-	modal	embedding	integrator;	GDF1,	growth	
differentiation	factor	1;	GNN,	graph	neural	network;	HolE,	holographic	embeddings;	IL6,	interleukin	6;	KGE,	knowledge	graph	embedding;	LLM,	large	language	model;	lncRNA,	long	
non-	coding	RNA;	miRNA,	microRNA;	MLP,	multilayer	perceptron;	PPI,	protein–protein	interaction;	PrimeKG,	precision	medicine	knowledge	graph.

1Education and Research Program for 
Future	ICT	Pioneers,	Department	of	
Electrical and Computer Engineering, 
Seoul	National	University,	Seoul,	South	
Korea
2Institute	of	Molecular	Biology	and	
Genetics,	Seoul	National	University,	Seoul,	
South	Korea
3Interdisciplinary	Program	in	Artificial	
Intelligence,	Seoul	National	University,	
Seoul,	South	Korea
4Department of Electrical and Computer 
Engineering,	Seoul	National	University,	
Seoul,	South	Korea

Correspondence
Sungroh Yoon, Department of Electrical 
and	Computer	Engineering,	Seoul	National	
University,	1	Gwanak-	ro,	Gwanak-	gu,	
Seoul	08826,	South	Korea.
Email: sryoon@snu.ac.kr

Funding information
BK21	FOUR	program	of	the	Education	
and	Research	Program	for	Future	ICT	
Pioneers;	AI-	Bio	Research	Grant;	Institute	
of	Information	&	Communications	
Technology	Planning	&	Evaluation	(IITP)	
grant;	National	Research	Foundation	of	
Korea

Abstract
Knowledge	 graphs,	 powerful	 tools	 that	 explicitly	 transfer	 knowledge	 to	machines,	
have significantly advanced new knowledge inferences. Discovering unknown re-
lationships between diseases and genes/proteins in biomedical knowledge graphs 
can lead to the identification of disease development mechanisms and new treat-
ment	 targets.	Generating	 high-	quality	 representations	 of	 biomedical	 entities	 is	 es-
sential	for	successfully	predicting	disease-	gene/protein	associations.	We	developed	
a	 computational	 model	 that	 predicts	 disease-	gene/protein	 associations	 using	 the	
Precision	Medicine	Knowledge	Graph,	 a	biomedical	 knowledge	graph.	Embeddings	
of biomedical entities were generated using two different methods—a large language 
model	(LLM)	and	the	knowledge	graph	embedding	(KGE)	algorithm.	The	LLM	utilizes	
information	obtained	from	massive	amounts	of	text	data,	whereas	the	KGE	algorithm	
relies	on	graph	structures.	We	developed	a	disease-	gene/protein	association	predic-
tion	model,	“Cross-	Modal	Embedding	Integrator	(CMEI),”	by	integrating	embeddings	
from	different	modalities	using	 a	multi-	head	attention	mechanism.	The	area	under	
the	receiver	operating	characteristic	curve	of	CMEI	was	0.9662	(± 0.0002)	in	predict-
ing	disease-	gene/protein	associations.	In	conclusion,	we	developed	a	computational	
model	 that	 effectively	 predicts	 disease-	gene/protein	 associations.	 CMEI	may	 con-
tribute to the identification of disease development mechanisms and new treatment 
targets.

K E Y W O R D S
disease,	gene,	knowledge	graph	embedding,	large	language	model,	multi-	head	attention,	
protein

https://doi.org/10.1002/prp2.70034
www.wileyonlinelibrary.com/journal/prp2
https://orcid.org/0000-0003-0136-3893
mailto:
https://orcid.org/0000-0002-2367-197X
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sryoon@snu.ac.kr


2 of 10  |     CHANG et al.

1  |  INTRODUC TION

Discovering unknown associations between diseases and genes/
proteins can reveal novel mechanisms of disease development and 
potential therapeutic targets.1 Therefore, it is a critical starting point 
for	 drug	 development;	 however,	 it	 requires	 expensive	 and	 time-	
consuming biological experiments.2,3	 A	 computational	 model	 that	
predicts unknown associations between diseases and genes/pro-
teins can aid the development of new drugs.

Knowledge	graphs	express	knowledge	as	“head	entity,	relation,	
and	 tail	 entity,”	which	 explicitly	 transfer	 knowledge	 to	machines.4 
They have led to major advances in inferring new knowledge and 
have	found	utility	 in	various	fields.	A	biomedical	knowledge	graph	
comprises entities such as diseases, genes, proteins, drugs, and bio-
logical	processes,	and	their	relationships.	Knowledge	that	is	yet	to	be	
discovered	remains	a	missing	link	in	knowledge	graphs.	New	knowl-
edge	can	be	created	by	 identifying	the	missing	 links.	For	 instance,	
identifying unknown relationships between drugs and diseases may 
facilitate drug repurposing.5 Discovering unknown associations be-
tween diseases and genes/proteins may help in drug discovery.6 
Biomedical knowledge graphs could be a good database for identi-
fying unknown associations between diseases and genes/proteins.

Inferring	new	knowledge	requires	representations	that	preserve	
the meaning of each entity and the relationships between them. 
Generating	high-	quality	representations	of	biomedical	entities	is	es-
sential for successfully performing downstream tasks, such as link 
prediction and node classification. The representations of biomedi-
cal entities can be generated using the graph structure, including the 
relationships between biomedical entities. Various knowledge graph 
embedding	(KGE)	algorithms	have	been	developed.7–9	Among	these,	
DistMult represents relational embeddings as diagonal matrices, 
which facilitates the learning by reducing the parameter space.7,10 
Holographic	embeddings	(HolE)	utilize	circular	correlation	to	acquire	
various interactions.8,10 RotatE considers the relation from head en-
tity to tail entity as rotation and represents relations and entities 
to the complex latent space.9,10 Several models for predicting the 
association between biomedical entities have been developed using 
the	KGEs.11,12	Another	approach,	graph	neural	networks	(GNNs),	has	
been	used	for	developing	disease-	gene/protein	association	predic-
tion models.13–15	Han	 et	 al.	 utilized	GNN	 and	matrix	 factorization	
to identify the associations between diseases and genes.13 Cinaglia 
et	 al.	 suggested	 a	 disease-	gene	 association	prediction	model	 con-
sisting	of	an	encoder	and	a	decoder	using	GNN.14	As	these	methods	
obtain information about biomedical entities based on the graph 
structures, a graph database must be established before developing 
the	prediction	model.	Recently,	a	large-	scale	biomedical	knowledge	
graph has been generated.16–20 This may further facilitate the de-
velopment	of	 a	 computational	model	 for	 predicting	disease-	gene/
protein associations.

In	addition	to	the	graph	structures,	biomedical	entities	contain	
considerable amounts of information. Therefore, a better represen-
tation	may	be	generated	by	utilizing	additional	information	that	re-
flects the characteristics of biomedical entities. Zhou et al. showed 

that	 in	 predicting	 circular	 RNA-	microRNA	 (miRNA)	 interactions,	
better predictive performance can be achieved by adding features 
reflecting entity characteristics to the features obtained from the 
network structure.21	 Accordingly,	 a	 better	 performance	 may	 be	
achieved	 in	 predicting	 the	 disease-	gene/protein	 associations	 by	
adding information that can reflect the disease and gene/protein 
characteristics to the features obtained from the graph structure.

Recently, with the rapid development of large language models 
(LLMs),	 such	as	ChatGPT,22,23 LLMs have played a role in comple-
menting	knowledge	graphs.	 In	LLM-	augmented	knowledge	graphs,	
the LLM plays a role in generating embeddings, structuring knowl-
edge graphs, and generating text from knowledge graphs,24 thereby 
reducing	its	limitations	and	increasing	usefulness.	In	the	node	classi-
fication task using graph datasets, it has been reported that embed-
dings obtained by the LLM can be used as the initial embeddings of 
the	nodes	in	the	GNN	to	improve	performance.25 Therefore, lever-
aging information from two different modalities—information from 
an LLM, which is obtained from massive text data, and information 
from the graph structure—may contribute to a better performance. 
We	developed	a	disease-	gene/protein	association	prediction	model,	
“Cross-	Modal	 Embedding	 Integrator	 (CMEI),”	which	 integrated	 the	
embeddings, obtained using an LLM26	 and	 the	 KGE	 algorithm,7–9 
via	 a	 multi-	head	 attention	 mechanism.27	 CMEI	 integrated	 various	
embeddings	with	appropriate	weights	using	a	multi-	head	attention	
mechanism and showed favorable performance.

2  |  MATERIAL S AND METHODS

2.1  |  Knowledge graph

Prediction models were developed with Precision Medicine 
Knowledge	 Graph	 (PrimeKG),19,20	 which	 is	 available	 in	 Harvard	
Dataverse at https://	doi.	org/	10.	7910/	DVN/	IXA7BM.19,20 
PrimeKG19,20 is a heterogeneous graph and has the following 10 
node	types:	gene/protein	(n = 27 671),	drug	(n = 7957),	effect/pheno-
type	(n = 15 311),	disease	(n = 17 079),	biological	process	(n = 28 642),	
molecular	 function	 (n = 11 169),	 cellular	 component	 (n = 4176),	 ex-
posure	 (n = 818),	 pathway	 (n = 2498),	 and	 anatomy	 (n = 14 035).	 A	
total	of	26	 types	of	 relationships	between	nodes	were	as	 follows:	
disease-	gene/protein,	 gene/protein-	effect/phenotype,	 gene/
protein-	anatomy,	 gene/protein-	biological	 process,	 gene/protein-	
cellular	component,	gene/protein-	molecular	function,	gene/protein-	
pathway,	 drug-	disease,	 drug-	gene/protein,	 drug-	effect/phenotype,	
disease-	effect/phenotype,	 exposure-	disease,	 exposure-	gene/
protein,	 exposure-	biological	 process,	 exposure-	cellular	 compo-
nent,	 exposure-	molecular	 function,	 gene/protein-	gene/protein,	
drug–drug,	 disease-	disease,	 effect/phenotype-	effect/phenotype,	
anatomy-	anatomy,	exposure-	exposure,	biological	process-	biological	
process,	 cellular	 component-	cellular	 component,	 molecular	
function-	molecular	 function,	 and	pathway-	pathway.	Among	 these,	
the relationships between drugs and genes/proteins were subdi-
vided	into	carriers,	enzymes,	targets,	and	transporters;	however,	all	

https://doi.org/10.7910/DVN/IXA7BM.19
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these were considered to have the same relationships in the present 
study. The relationships between drugs and diseases were divided 
into	indications,	contraindications,	and	off-	label	use,	of	which	only	
indications were used in this study. Relationships between diseases 
and phenotypes were divided into positive and negative relation-
ships, and only positive relationships were used in the current study. 
The relationships between anatomies and genes/proteins were di-
vided into present and absent, and only present relationships were 
used in this study.

2.2  |  Construction of dataset

A	 total	 of	 80 411	 edges	 between	 diseases	 and	 genes/proteins	
were randomly assigned to four groups—message passing data-
set	 (n = 45 031),	 training	 dataset	 (n = 19 298),	 validation	 dataset	
(n = 8041),	 and	 testing	 dataset	 (n = 8041)	 using	 “RandomLinkSplit”	
of	 PyTorch	 Geometric.28	 Other	 edges,	 except	 for	 edges	 between	
diseases	and	genes/proteins,	were	assigned	to	the	message-	passing	
dataset. The training, validation, and testing datasets consisted 
only of edges between diseases and genes/proteins. Some edges 
between diseases and genes/proteins were adjusted to ensure that 
there	were	no	isolation	nodes	in	the	message-	passing	dataset.	The	
number of edges in each dataset remained the same after the ad-
justment. The ratio of the number of edges between diseases and 
genes/proteins belonging to the message passing and training data-
sets was 7:3. The validation and test datasets included 10% of the 
total edges between the diseases and genes/proteins.

The	 training,	 validation,	 and	 testing	 datasets	 require	 negative	
pairs for model learning and evaluation, which in this study were dis-
ease	and	gene/protein	combinations	with	no	edges.	Negative	pairs	
were generated through the following process: pairs were generated 
by combining diseases and genes/proteins from the dataset and pairs 
with	edges	 removed.	Finally,	 from	 the	 remaining	ones,	 some	pairs	
were	selected	and	used	as	negative	pairs.	However,	the	frequencies	
of diseases and genes/proteins in the positive pairs comprising the 
edges of the training, validation, and testing datasets were uneven. 
For	example,	 “hereditary	breast-	ovarian	cancer	syndrome”	was	 in-
cluded	in	280	edges,	whereas	“asthma”	was	included	in	16	edges	of	
the	training	datasets.	Among	the	genes/proteins,	“interleukin	6	(IL6)”	
was	included	in	63	edges	of	the	training	datasets,	whereas	“growth	
differentiation	factor	1	(GDF1)”	was	included	in	only	3	edges.	This	
indicates that if the disease and gene/protein pairs are randomly se-
lected to form negative pairs, biased predictions may occur because 
of	differences	in	disease	and	gene/protein	frequencies	between	the	
positive	and	negative	pairs.	To	avoid	this,	if	the	frequency	of	diseases	
and genes/proteins in positive pairs constituting the entire edge of 
the training, validation, and testing dataset or negative pairs in the 
whole dataset were 20 or more, negative pairs were constructed to 
ensure	that	the	frequency	ratio	of	disease	or	gene/protein	between	
the positive and negative pairs was more than 0.5 and less than 
2. This rule also applies to positive pairs that constitute the edges 
of the training dataset as well as to negative pairs of the training 

dataset.	Thus,	59 359	negative	pairs	were	constructed.	Based	on	the	
edge	ratio,	32 377	negative	pairs	were	assigned	to	the	training	data-
set,	whereas	13 491	pairs	each	were	assigned	to	the	validation	and	
testing	datasets.	Finally,	the	training	dataset	comprised	19 298	pos-
itive	and	32 377	negative	pairs,	whereas	the	validation	and	testing	
datasets	comprised	8041	positive	and	13 491	negative	pairs.

Embeddings	 by	 the	 KGE	 algorithm	 were	 generated	 using	 the	
message-	passing	dataset.	Prediction	models	using	the	KGE	algorithm	
or LLM embeddings were developed using the training and valida-
tion datasets. The performances of the prediction models were eval-
uated	using	the	testing	dataset.	The	message-	passing	edges	used	to	
develop	a	GNN-	based	prediction	model	were	constructed	using	the	
message-	passing,	 training,	 and	 validation	 datasets.	 The	 message-	
passing edges during the training process were constructed using 
the	message-	passing	 datasets.	 The	message-	passing	 edges	 during	
the validation process were constructed using the message passing 
and training datasets. The message passing edges during the test-
ing process were constructed using the message passing, training, 
and validation datasets. The training, validation, and testing datasets 
were used as supervision edges during the training, validation, and 
testing process, respectively.

2.3  |  Development of the prediction model

We	developed	CMEI,	a	prediction	model	integrating	embeddings	ob-
tained using both the LLM26	and	KGE	algorithm7–9	via	a	multi-	head	
attention mechanism.27	In	addition	to	CMEI,	we	further	developed	a	
prediction model in the following three ways for model performance 
comparison:

1.	 Using	 only	 embeddings	 obtained	 via	 the	 KGE	 algorithms7–9

2.	 Using	only	embeddings	obtained	via	the	LLM26

3.	 Using	embeddings	obtained	via	 the	LLM26 as the initial embed-
dings	of	the	nodes	in	GNN14,25

The	embedding	model	of	OpenAI26 was used to obtain the LLM 
embeddings. DistMult,7	HolE,8 and RotatE9	were	used	as	 the	KGE	
algorithms. Experiments were conducted on five different seeds for 
representative models.

2.3.1  |  Integrating	the	embeddings	generated	
by	the	KGE	algorithms	and	LLM	using	a	multi-	head	
attention mechanism

Embeddings reflecting the graph structure were generated using 
the	following	representative	KGE	algorithms:	DistMult,7	HolE,8 and 
RotatE.9	 The	 PyKEEN	 package	was	 used	 to	 generate	 the	 embed-
dings.29	 The	 embedding	 dimension	was	 set	 as	 1536	 to	match	 the	
embedding	model	of	OpenAI26 and was generated by changing the 
number of epochs by 50 from 200 to 300. Prediction models for 
associations between diseases and genes/proteins were developed 
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using	the	generated	embeddings.	Input	data	for	developing	predic-
tion	models,	 that	 is,	 disease-	gene/protein	 pairs,	were	obtained	by	
combining disease and gene/protein embeddings generated by the 
KGE	 algorithms	 via	 a	 vector	 operation—concatenation,	 element-	
wise	 averaging,	 or	 element-	wise	 product.30 The prediction model 
comprised	two	or	three	multilayer	perceptron	(MLP)	layers.31,32 The 
models were developed by modifying the model structure and ad-
justing the hyperparameters. Their performance was assessed using 
the	 area	 under	 the	 receiver	 operating	 characteristic	 curve	 (AUC),	
area	under	the	precision-	recall	curve	(AUPR),	accuracy,	recall,	preci-
sion,	specificity,	and	the	F1	score.

For	each	KGE	algorithm,	the	prediction	model	with	the	best	AUC	
value in the validation dataset was selected as the final model. The 
performance of the final model was assessed using the testing data-
set.	Their	performance	was	compared	with	that	of	CMEI.	The	em-
beddings	generated	by	the	KGE	algorithm,	which	exhibited	the	best	
AUC	value	in	the	testing	dataset,	were	used	to	develop	CMEI.

Next,	the	LLM	embeddings	were	obtained	using	the	embedding	
model	 of	 OpenAI,	 “text-	embedding-	ada-	002.”26	 A	 combination	 of	
two words, the type and name of the biomedical entity, was used as 
the	 input.	For	 instance,	 for	“osteogenesis	 imperfecta,”	 the	embed-
ding	was	obtained	by	entering	 “disease,	osteogenesis	 imperfecta.”	
The	number	of	embedding	dimensions	was	1536.	As	mentioned	ear-
lier, pairs of disease and gene/protein embeddings were combined 
using a vector operation30 and passed through two or three MLP 
layers.31,32 The associations between diseases and genes/proteins 
were predicted. The performance of the model was evaluated using 
the	AUC,	AUPR,	accuracy,	 recall,	 precision,	 specificity,	 and	 the	F1	
score. The performance of the final model established using the LLM 
embeddings	was	 compared	with	 that	of	CMEI.	These	embeddings	
were	also	used	for	the	development	of	CMEI.

CMEI	was	developed	by	integrating	the	embeddings	generated	
by	the	selected	KGE	algorithm7	with	those	from	the	OpenAI26 em-
bedding	model	using	a	multi-	head	attention	mechanism	(Figure 1).27 
The	following	embeddings	were	sequentially	entered	into	the	pre-
diction model: gene/protein embedding by the LLM, disease em-
bedding	 by	 the	 LLM,	 disease	 embedding	 by	 the	 KGE,	 and	 gene/

protein	embedding	by	 the	KGE.	The	prediction	model	was	devel-
oped	in	two	ways:	adding	a	classification	(CLS)	token33 as the first 
sequence	or	not.	The	embeddings	were	processed	using	 the	pre-
diction	module,	 including	 the	multi-	head	 attention	 layer,27,34 skip 
connection,35	layer	normalization,36,37	feed-	forward	layer,31,32 skip 
connection,35	 and	 layer	normalization.36,37	One	or	 two	prediction	
modules were used. Learnable positional embeddings were ap-
plied.27,33 The prediction value was obtained from the CLS token 
using an MLP layer31,32 when the CLS token was used. The predic-
tion	value	was	obtained	 from	the	 last	output	sequence	when	the	
CLS token was not used. The models were developed by varying the 
input order of embeddings, model structure, and hyperparameters. 
The input order of the embeddings, structure, and hyperparame-
ters	 of	 the	 final	model	was	 determined	 based	 on	 the	AUC	 value	
in the validation dataset. The performance of the final model was 
evaluated using the test dataset. PyTorch frameworks38 was used 
to	 develop	 the	 prediction	 model.	 The	 “MultiheadAttention”27,34 
and	“Linear”31,32	of	PyTorch	were	used	as	multi-	head	attention	and	
MLP	 layers,	 respectively.	The	“Adam”	of	PyTorch39,40 was used as 
the	optimizer,	and	the	“Dropout”	of	PyTorch41,42 was used for reg-
ularization.	The	learning	rate	was	reduced	by	a	factor	of	0.1	if	the	
AUC	value	did	not	improve	in	the	validation	dataset	during	30	ep-
ochs	 using	 the	 “ReduceLROnPlateau”	 of	 PyTorch.43 Learning was 
stopped	if	the	AUC	value	in	the	validation	dataset	did	not	improve	
for	60	consecutive	epochs.

2.3.2  |  GNN-	based	model	established	using	
embeddings generated by the LLM

To	 evaluate	 the	 performance	 of	CMEI,	 a	GNN-	based	 prediction	
model consisting of an encoder and a decoder was developed.14,25 
In	the	encoder,	the	embeddings	generated	by	the	LLM	were	used	
as the initial node embeddings. The initial embeddings were pro-
cessed	 through	GNN	 layers44,45 to capture the graph structure. 

Accuracy =
True positive + True negative

True positive + Flase positive + True negative + False negative

Recall =
True positive

True positive + Flase negative

Precision =
True positive

True positive + Flase positive

Specificity =
True negative

Flase positive + True negative

F1 score =
2∗True positive

2∗True positive + Flase positive + False negative

F I G U R E  1 Structure	of	CMEI.	CMEI,	Cross-	Modal	Embedding	
Integrator;	LLM,	large	language	model;	KGE,	knowledge	graph	
embedding.



    |  5 of 10CHANG et al.

In	 the	 decoder,	 the	 associations	 between	 diseases	 and	 genes/
proteins were predicted using the embeddings obtained from 
the encoder. The embeddings of the diseases and genes/pro-
teins were combined using a vector operation—concatenation, 
element-	wise	 averaging,	 or	 element-	wise	 product.30 The pre-
diction value was obtained by passing them through the MLP 
layers.31,46 The models were developed by changing the model 
structure and hyperparameters. The structure and hyperparam-
eters	 of	 the	 final	GNN-	based	model	were	 determined	based	on	
the	AUC	values	of	the	validation	dataset.	The	performance	of	the	
final model was evaluated using the test dataset. The PyTorch38 
and	 PyTorch	 Geometric47 frameworks were used to develop 
the	 prediction	 model.	 The	 “SAGEConv”44,45	 and	 “Linear”31,46 of 
PyTorch	Geometric	were	 used	 as	GNN	and	MLP	 layers,	 respec-
tively.	The	“Adam”	of	PyTorch39,40	was	used	as	the	optimizer,	and	
the	“Dropout”	of	PyTorch41,42	was	used	for	regularization.	A	mini-
batch	was	not	utilized.	The	learning	rate	was	reduced	by	a	factor	
of	0.1	if	the	AUC	value	did	not	improve	in	the	validation	dataset	
during	30	epochs	using	 the	 “ReduceLROnPlateau”	of	PyTorch.43 
Learning	was	stopped	 if	 the	AUC	value	 in	the	validation	dataset	
did	not	improve	for	60	consecutive	epochs.

2.4  |  Case study

Case studies have been conducted on breast, lung, colorectal, and 
prostate	 cancers,	 hepatocellular	 carcinoma,	 schizophrenia,	 anxiety	
disorders,	and	neurotic	disorders.	CMEI	was	applied	to	the	testing	
dataset, and 30 genes/proteins predicted to be associated with each 
disease were selected based on the highest probability. The number 
of genes/proteins not identified in the knowledge graph used as the 
dataset was checked.

2.5  |  Ablation study

The ablation study was conducted such that the following four types 
of embedding were not used to develop prediction models individu-
ally: gene/protein embedding by the LLM, disease embedding by 
the	LLM,	disease	embedding	by	the	KGE,	and	gene/protein	embed-
ding	by	the	KGE.	Using	the	three	types	of	embeddings,	a	prediction	
model was developed with the same structure as that of the final 
model,	CMEI.	The	importance	of	each	embedding	in	predicting	the	
disease-	gene/protein	 association	was	 evaluated	 by	 comparing	 the	
performances of all models.

3  |  RESULTS

3.1  |  Performance of the prediction models

Figure 2 and Table 1 present information about the performances of 
the prediction models for the testing dataset. The prediction mod-
els were established using only embeddings obtained by DistMult,7 
HolE,8 and RotatE9 performed the best when they consisted of two 
MLP layers31,32	 (size	of	each	output	sample:	1024	and	1)	and	used	
concatenations of disease and gene/protein embeddings30 as the 
input	data.	Among	KGE	algorithms,	DistMult7 performed the best. 
Embeddings generated by DistMult7	were	 used	 to	 develop	CMEI.	
The prediction models established using only embeddings obtained 
by the LLM26 performed the best when they consisted of two MLP 
layers31,32	 (size	of	each	output	sample:	1024	and	1)	and	used	con-
catenations of disease and gene/protein embeddings30 as the input 
data.	GNN-	based	models	performed	the	best	when	they	consisted	
of	 three	GNN44,45	 (size	of	output	 sample:	256,	128,	 and	128)	 and	
four MLP31,46	(size	of	output	sample:	1024,	512,	256,	and	1)	layers	

F I G U R E  2 ROC	curves	of	CMEI	and	
baseline prediction models. Results of 
the representative models among the 
five trials performed by changing the 
seed	number.	DistMult,	Rotate,	HolE,	
and LLM refer to the prediction models 
established using the embeddings 
obtained	from	DistMult,	RotatE,	HolE,	
and	the	LLM,	respectively.	GNN	refers	
to	the	GNN-	based	model.	CMEI,	Cross-	
Modal	Embedding	Integrator;	GNN,	
graph	neural	network;	HolE,	holographic	
embeddings; LLM, large language model; 
ROC,	receiver	operating	characteristic.
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and	used	element-	wise	products	of	 disease	 and	gene/protein	 em-
beddings14,30 as input data.

The	 final	 structure	 of	 CMEI	 is	 shown	 in	 Figure 1	 (Data	 S1).	
Embedding was entered into the prediction model in the following 
order: gene/protein embedding by the LLM, disease embedding 
by	the	LLM,	disease	embedding	by	the	KGE,	and	gene/protein	em-
bedding	by	 the	KGE.	The	CLS	 token	was	not	used.	CMEI	has	one	
prediction	module,	 including	a	multi-	head	attention	 layer,27,34 skip 
connection,35	 layer	normalization,36,37	 feed-	forward	 layer,31,32 skip 
connection,35	and	layer	normalization.36,37	An	initial	learning	rate	of	
0.001	and	minibatch	size	of	32	were	used.	The	AUC	value	of	CMEI	
for	predicting	disease-	gene/protein	associations	in	the	testing	data-
set	 was	 0.9662	 (± 0.0002).	 Among	 the	 prediction	 models,	 CMEI	
showed	the	best	AUC	value.

3.2  |  Case studies

Genes/proteins	 associated	with	 breast,	 lung,	 colorectal,	 and	 pros-
tate	 cancers,	 hepatocellular	 carcinoma,	 schizophrenia,	 anxiety	dis-
orders, and neurotic disorders were predicted using the testing 
dataset	 (Table 2).	 In	 breast	 cancer,	 hepatocellular	 carcinoma,	 and	
anxiety disorders, all the top 30 genes/proteins were identified in 
the	knowledge	graph	used	as	the	dataset.	In	lung	cancer,	colorectal	
cancer,	prostate	cancer,	 schizophrenia,	and	neurotic	disorder,	 two,	
two, one, one, and one of the top 30 genes/proteins, respectively, 
were not identified in the knowledge graph used as the dataset.

3.3  |  Ablation study

The results of the ablation study are presented in Table 3. Excluding 
gene/protein	 embeddings	 by	KGE	 resulted	 in	 the	most	 significant	
deterioration in the performance of the model, while excluding 
gene/protein embeddings by LLM caused the least deterioration.

4  |  DISCUSSION

Interaction	 prediction	 research	 has	 been	 conducted	 in	 vari-
ous fields of computational biology, including the prediction of 
various	 biological	 associations	 such	 as	 long	 non-	coding	 RNA	
(lncRNA)–miRNA	 interactions,48	 lncRNA-	protein	 interactions,49 
metabolite-	disease	 associations,50,51	 and	 drug-	toxicity	 associa-
tions.52–54	 Analyzing	 interactions	 among	 various	 biomedical	 en-
tities, such as genes, diseases, drugs, and metabolites, is pivotal 
in medicine, as it contributes to a systemic understanding of dis-
eases and facilitates the development of innovative therapeutic 
strategies. Recent research has increasingly focused on depicting 
these	 interactions	 within	 networks	 and	 analyzing	 them	 to	 un-
cover	 previously	 unknown	 interactions.	 For	 instance,	Hulovatyy	
et al. predicted links by calculating the number of shared neigh-
boring nodes or common pathways.55	 However,	 this	 approach	
has the disadvantage of showing significant performance varia-
tions depending on the dataset owing to the noisy nature of bio-
medical graphs. This method has evolved into a more advanced 
technique	that	utilizes	diffusion	kernels	to	model	the	interactions	
between individual entities, thereby enhancing our understanding 
of	 the	 representation	 of	 each	 node.	 Notably,	 research	 suggests	
that genes contributing to the same phenotype are likely to in-
teract.56	 Furthermore,	 Kovács	 et	 al.	 have	 explored	 the	 possibil-
ity of predicting protein interactions through their similarity with 
connected nodes.57	 Recently,	 the	 prediction	 of	 miRNA-	disease	
associations	 has	 emerged	 as	 a	 vibrant	 area	 of	 graph-	based	 link	
prediction	 research	 employing	 large-	scale	 heterogeneous	 net-
works	comprising	miRNAs	and	diseases.58,59	Additionally,	various	
methodologies	have	been	employed	to	predict	disease-	associated	
proteins.	For	example,	extracting	disease-	related	graph	structures	
from	protein–protein	interaction	(PPI)	networks	has	proven	to	be	
a promising approach.60,61	Chen	et	al.	 leveraged	the	PPI,	expres-
sion	 data,	 subcellular	 localization,	 and	 orthology	 information	 to	
develop	 transfer	 neural	 networks	 to	 predict	 disease-	associated	

TA B L E  1 Results	of	the	prediction	models.

CMEI

Prediction model 
established using 
the embeddings 
obtained from 
DistMult.7

Prediction model 
established using 
the embeddings 
obtained from 
HolE.8

Prediction model 
established using 
the embeddings 
obtained from 
RotatE.9

Prediction model 
established using 
the embeddings 
obtained from 
the LLM.28 GNN- based model

AUC 0.9662 ± 0.0002 0.9604 ± 0.0001 0.9149 ± 0.0004 0.9518 ± 0.0002 0.8560 ± 0.0016 0.9545 ± 0.0014

AUPR 0.9469 ± 0.0007 0.9377 ± 0.0004 0.8836 ± 0.0009 0.9324 ± 0.0005 0.7983 ± 0.0025 0.9286 ± 0.0027

F1	score 0.8799 ± 0.0010 0.8716 ± 0.0014 0.8010 ± 0.0014 0.8606 ± 0.0005 0.7169 ± 0.0007 0.8602 ± 0.0029

Accuracy 0.9080 ± 0.0011 0.9043 ± 0.0010 0.8518 ± 0.0006 0.8964 ± 0.0004 0.8004 ± 0.0014 0.8944 ± 0.0021

Recall 0.9030 ± 0.0056 0.8699 ± 0.0026 0.7987 ± 0.0042 0.8564 ± 0.0042 0.6770 ± 0.0037 0.8696 ± 0.0078

Precision 0.8581 ± 0.0059 0.8734 ± 0.0025 0.8033 ± 0.0018 0.8648 ± 0.0035 0.7620 ± 0.0052 0.8510 ± 0.0062

Specificity 0.9110 ± 0.0048 0.9248 ± 0.0018 0.8834 ± 0.0019 0.9202 ± 0.0028 0.8739 ± 0.0042 0.9092 ± 0.0050

Note:	Experiments	were	conducted	using	five	different	seeds.	The	results	are	reported	as	average ± standard	deviation.
Abbreviations:	AUC,	area	under	the	receiver	operating	characteristic	curve;	AUPR,	area	under	the	precision-	recall	curve;	CMEI,	Cross-	Modal	
Embedding	Integrator;	GNN,	graph	neural	network;	HolE,	Holographic	embeddings;	LLM,	large	language	model.
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proteins.62	 Nevertheless,	 although	 these	 studies	 offer	 valuable	
insights,	they	are	limited	by	their	dependence	on	PPI	networks.

While several studies have sought to represent entities through 
the various interrelationships among them, recently developed 
LLMs have made significant strides in comprehending the mean-
ings of individual entities within vast contexts across diverse fields 
of	 expertise.	Models	 such	 as	 ChatGPT22,23 encode the meaning 
of each text into a representation vector endowed with common 
knowledge	 and	 robust	 semantic	 comprehension.	 Attempts	 have	
been made to leverage this ability to effectively capture the char-
acteristics of each text to improve the representation of nodes 
in	 GNNs.25,63	 One	 fundamental	 approach	 utilizes	 embedding	
vectors derived by LLMs in the initial node embedding, consti-
tuting	 a	 form	 of	 feature-	level	 enhancement.25	 Another	 strategy	

is	to	use	text-	to-	text	LLM	to	generate	additional	texts	with	more	
profound and richer information, thereby creating relationships 
between these texts and the original ones.25,63 This enriches the 
graph	being	learned,	making	it	more	comprehensive.	LLM-	derived	
feature embeddings are widely used to learn from tabular data. 
Approaches	such	as	TabLLM64	and	LIFT65 aim to leverage LLMs to 
convert	column	features	into	embeddings	for	each	row	by	utilizing	
the context awareness inherent in LLMs for tabular data learning. 
Models	like	CAAFE66	utilize	LLMs	to	generate	new	features	with	
a	 high	 correlation	 with	 labels	 from	 column	 names.	 Additionally,	
TransTab proposed a method to convert each column name into an 
embedding vector using word embeddings.67

Embeddings	 using	 the	 KGE	 algorithm	 include	 information	
on the relationships between biomedical entities. Embeddings 

TA B L E  2 Results	of	case	studies	using	CMEI.

Breast cancer Lung cancer
Colorectal 
cancer

Prostate 
cancer

Hepatocellular 
carcinoma Schizophrenia

Anxiety 
disorder

Neurotic 
disorder

PACC1 RPL13A ZNF569 MMP9 FABP5 ACHE HCRT HTR2C

TFAP2D MIR222 ZNF442 BCAS1 FAM180A HTR1A HTR2A HTR7

LBX1 CRP TNS4 NCOA7 ANGPTL6 HTR2C GABRA6 GRIA3

C1orf87 TP73 LRRC47 HAO1 IRF2 NCAM1 HTR7 GLO1

COL19A1 TYMS PTPRU SHBG RNF157 MTHFR GRIK3 TAC1

ACCS IL1B ZNF480 ALOX5 LCAT GRIA1 CPLX1 GRPR

FAM217B PYCARD JAKMIP2 TLR4 PYGL GABBR1 ADRA2A OXT

PCDHGB6 STN1 ACTL9 ENPP5 TCF19 HCRTR1 MAOB GRIN2A

CEP85L TFRC ALOX12B ETV4 BMPER SST GRIA1 ADCY5

MIA2 NEK2 TYMP ARG2 CLEC4G ERVW-	4 NEFM GAP43

PADI3 EGFR SH3TC1 GSTM1 MPO SNCB ADCY5 PCLO

TAFA4 MYC IPP TGFBR2 CENPW GRM4 GDNF CLOCK

KRTAP10-	8 ZNF765* CACUL1 HRAS MIR885 APOE CSMD2 HSPB3

AHSA2P MIR19A DMRTA1 HMOX1 TGM3 GRM8 PDE4D SGCE

SCGB3A2 MIR144 SLC22A9 ETV5 MRO TET1 CDH7 DBH

TLL1 TNFSF10 CHRM5* RNF130 CDCA8 NRGN CMYA5 SOD1

MFAP5 H2BC4 TNF FOXA1 PTTG1 PDE4B TG MAPK8

TBC1D9B TP63 SFRP2 CLDN9 CYP2C8 NRXN1 GAL REN

ANKEF1 RAF1 GRID1 IVL* CCN1 SLC29A1* CCL24 PDE4A

NID2 RPS6KA6 IFNG ASZ1 ACLY TF MAGI2 RNF123

LRRC37A BAP1 PAIP2 TOM1L1 HSD3B2 ESR2 RELN GNB3

WARS1 DNMT3A PTGS2 SERPINB10 MYBL2 CAV1 GAD1 NRXN1

MALAT1 EEF2 TCERG1L CDKN1B GPX3 ATF4 MMP8 GSTT1

DNAH9 ERBB3 ARHGEF10L TMSB4X IGF2BP3 DISC1 SOD1 DGKB

FBXO8 GSTM2 SLC5A8 BIRC5 IL2 DLGAP2 PRL BCL2

ARAP3 MLH1 KRT71* GSTK1 HPSE NCAN MS SFRP1

MIR10A RPL27A NQO1 HDAC6 NNMT HSPA1L NRG1 WFS1

C16orf58 FST* GUCY1A1 SLC7A1 AKR1C2 HDAC2 MAPT VEGFA

NOA1 JAG1 AKR1B10 RPN2 ATM CHAT DUSP1 ERRFI1*

KIAA1324 MIR155 FPGS ZFP36L2 TP53 ACP1 IL18 AKT1

Note:	Asterisks	in	bold	font	indicate	genes/proteins	not	identified	in	the	knowledge	graph	used	as	the	dataset.
Abbreviation:	CMEI,	Cross-	Modal	Embedding	Integrator.
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generated by the LLM include comprehensive common knowledge 
from the literature. We integrated embeddings from two different 
modalities,	graph	structure	and	text,	using	a	multi-	head	attention	
mechanism.27 This approach allowed the effective integration 
of these two types of information with appropriate weights and 
excellent	 performance	was	 achieved.	 Additionally,	we	 employed	
embeddings generated by the LLM as initial node embeddings 
for	GNN	to	integrate	the	data.25 We attempted to add the graph 
structure information by learning the embeddings obtained by the 
LLM	through	GNN.	However,	CMEI	 integrating	the	two	types	of	
information	using	a	multi-	head	attention	mechanism27 showed a 
better	 performance	 than	 the	 GNN-	based	 model.	 Additionally,	 a	
prediction model was developed using only embeddings based on 
the	KGE	algorithm	or	LLM.	CMEI	performed	better	than	the	other	
models. When comparing the performances of the models devel-
oped	using	only	KGE	embeddings	 versus	only	 LLM	embeddings,	
the	model	established	using	the	KGE	embeddings	performed	bet-
ter. This result suggests that information from biomedical entities 
may	be	extracted	more	efficiently	by	the	KGE	algorithm	than	by	
the LLM. The importance of each embedding was evaluated using 
an ablation study. When the gene/protein embeddings obtained 
by	KGE	were	excluded,	the	performance	of	the	model	deteriorated	
the most. Conversely, excluding gene/protein embeddings derived 
from the LLM led to the least deterioration in the performance 
of the model. This may be attributed to the fact that information 
about	genes/proteins	may	be	more	specialized	in	biomedical	fields	
than information about diseases; thus, they might be better ex-
tracted	by	the	KGE	algorithm	than	by	the	general-	purpose	LLM.

We developed a prediction model by integrating the embed-
dings	extracted	from	the	two	modalities.	In	this	study,	the	embed-
ding	model	of	OpenAI,26	a	general-	purpose	LLM,	was	used.	Better	
predictions	may	be	possible	using	LLMs	specialized	for	biomedical	
tasks.	 However,	 further	 studies	 are	 needed	 to	 confirm	 this	 hy-
pothesis. Case studies on several diseases have been conducted. 
Most genes/proteins predicted to be associated with each dis-
ease	in	CMEI	were	identified	in	the	knowledge	graph	used	as	the	
dataset.	 However,	 there	were	 several	 genes/proteins	whose	 as-
sociations with the diseases were not identified in the knowledge 

graph	used	as	the	dataset.	It	may	be	possible	that	the	associations	
between these genes/proteins and diseases have yet to be dis-
covered.	 This	 suggestion	 by	 CMEI	 can	 be	 the	 starting	 point	 for	
the identification of disease development mechanisms and new 
treatment	targets.	Our	study	has	limitations	in	making	inferences	
regarding diseases and genes/proteins that are not included in 
the	PrimeKG.19,20	However,	as	PrimeKG19,20 contains information 
about many diseases and genes/proteins, identifying the missing 
links between these diseases and genes/proteins will contribute 
significantly to discovering new treatment targets and identifying 
disease development mechanisms.

Comprehensive information about biomedical entities is crucial 
for predicting their associations. We obtained a wide range of in-
formation from various relationships using large biomedical knowl-
edge	graphs.	Additionally,	information	regarding	biomedical	entities	
available in a wide range of literature was obtained using the LLM. 
Subsequently,	a	multi-	head	attention	mechanism	integrated	this	in-
formation with appropriate weights to ensure an excellent predic-
tion	performance.	Further	studies	using	CMEI	to	identify	the	missing	
links between diseases and genes/proteins may contribute to the 
development of novel drugs.
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