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ABSTRACT
Post-traumatic epilepsy (PTE) is a debilitating neurological disorder that develops after traumatic brain injury (TBI). Despite 
the high prevalence of PTE, current methods for predicting its occurrence remain limited. In this study, we aimed to identify 
imaging-based markers for the prediction of PTE using machine learning. Specifically, we examined three imaging features: 
Lesion volumes, resting-state fMRI-based measures of functional connectivity, and amplitude of low-frequency fluctuation 
(ALFF). We employed three machine-learning methods, namely, kernel support vector machine (KSVM), random forest, and an 
artificial neural network (NN), to develop predictive models. Our results showed that the KSVM classifier, with all three feature 
types as input, achieved the best prediction accuracy of 0.78 AUC (area under the receiver operating characteristic (ROC) curve) 
using nested cross-validation. Furthermore, we performed voxel-wise and lobe-wise group difference analyses to investigate the 
specific brain regions and features that the model found to be most helpful in distinguishing PTE from non-PTE populations. 
Our statistical analysis uncovered significant differences in bilateral temporal lobes and cerebellum between PTE and non-PTE 
groups. Overall, our findings demonstrate the complementary prognostic value of MR-based markers in PTE prediction and 
provide new insights into the underlying structural and functional alterations associated with PTE.

1   |   Introduction

Traumatic brain injury (TBI) survivors often carry a tremen-
dous burden of disability as a result of their injuries (Parikh, 
Koch, and Narayan 2007). Such injuries can have wide-ranging 
physical and psychological effects with some signs or symp-
toms that appear immediately after the traumatic event, while 
others appear days or weeks later. TBI is one of the major causes 
of epilepsy (Agrawal et al. 2006) yet the link between TBI and 
epilepsy is not fully understood. Post-traumatic epilepsy (PTE) 

refers to recurrent and unprovoked post-traumatic seizures 
occurring after 1 week (Verellen and Cavazos 2010). Patients 
with PTE perform worse across several clinical and perfor-
mance metrics such as independence and cognitive scores and 
have a significantly reduced quality of life (Burke et al. 2021). 
They are prone to higher rates of mental illness such as de-
pression and addiction (Bushnik et al. 2012). Significant risk 
factors for the development of seizures > 1 week after TBI in-
clude seizures within the first week, acute intracerebral he-
matoma (especially subdural hematoma), brain contusion, 
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increased injury severity, and age > 65 years at the time of in-
jury (D'Ambrosio and Perucca  2004). The incidence of PTE 
ranges from 4% to 53%, with the risk approaching 50% in 
cases with direct injury to the brain parenchyma. PTE risk 
also varies with the time after injury, age range under study, 
as well as the spectrum of severity of the inciting injuries 
(D'Ambrosio and Perucca 2004; Frey 2003; Piccenna, Shears, 
and O'Brien  2017). Epidemiological studies have found that 
PTE accounts for 10%–20% of symptomatic epilepsies and 5% 
of all epilepsies (Herman 2002; Pitkänen and Bolkvadze 2012). 
It is estimated that in the United States and the European 
Union (EU), with a total population of about 800 million, at 
least 0.5 million surviving individuals live with PTE (Verellen 
and Cavazos  2010). Data on the economic burden of PTE 
are unavailable, but some idea is provided by the lifetime 
cost of TBI on average, which in the United States is around 
$200,000 per case scaled to 2004 prices (Berg, Tagliaferri, and 
Servadei  2005; Humphreys et  al.  2013). Thus, in addition to 
the personal burden, the economic burden caused by PTE is 
also substantial. Therefore, prediction and if possible, preven-
tion of PTE remains an important challenge.

Biomarkers for PTE can vary from imaging and electrophysi-
ologic measurements to changes in gene expression and me-
tabolites in blood or tissues. MRI provides a non-invasive and 
powerful approach for marker development, without the use of 
ionizing radiation. While a wealth of biomarkers exists when the 
epilepsy condition is already established, these markers can only 
reveal mechanisms that exist after the epileptogenic process, 
which can allow partial or full pharmacoresistance to be estab-
lished before treatment starts (Perucca 1998; Piccenna, Shears, 
and O'Brien 2017; Potschka and Brodie 2012). Prognostic mark-
ers and approaches to identify the risk of PTE would eliminate 
the need to wait for spontaneous epileptic seizures to occur be-
fore starting treatment. The ability to identify high-risk subjects 
can enable the mitigation of risks to subjects whose seizures 
could result in serious injury or death.

The pathogenesis of spontaneous recurrent seizures is cer-
tainly multifactorial. Once established, seizure threshold, 
which is a measure of the balance between excitatory (glu-
taminergic) and inhibitory (GABA-ergic) forces in the brain 
(Panayiotopoulos 2005; Sackeim et al. 1987), is thought to vary 
over time depending on several factors such as periodicities in 
seizure occurrence (Baud et al. 2018). Current anti-seizure med-
ications raise the seizure threshold and thus reduce the propen-
sity for seizures to occur. An individualized prognostic marker 
for the development of PTE could be used in clinical trials to 
study compounds that may have true anti-epileptic potential. 
Current medications used for epilepsy only treat the symptoms, 
not the underlying pathophysiology that leads to epilepsy. The 
value of individualized prognostic markers is fivefold (Engel Jr 
et al. 2013). (i) Prediction of the development of an epilepsy con-
dition: Prognostic markers that eliminate the need to wait for 
spontaneous epileptic seizures to occur would reduce the time 
and cost required for TBI patients to start participation in clini-
cal trials, and also the risks to subjects whose seizures could re-
sult in serious injury or death. (ii) Identification of the presence 
and severity of tissue capable of generating spontaneous sei-
zures: An imaging-based marker can identify anomalous brain 
regions; which could help in surgical as well as noninvasive 

treatment planning even before the condition is established. 
(iii) Measuring progression after the condition is established: 
MR imaging-based markers can help in quantifying the pro-
gression of epilepsy and understanding pharmacoresistance. 
Identification of localized biomarkers of epileptogenic brain ab-
normalities would allow longitudinal tracking of seizure thresh-
old at later time points and would presumably reveal the time 
points when the epileptogenic process reaches a critical point 
so that clinical seizures would likely occur. (iv) Creating animal 
models of PTE: The identified markers can be used to create an-
imal models, and prediction algorithms can be used for more 
cost-effective screening of animal models for treatment with 
potential anti-epileptogenic and antiseizure drugs and devices. 
(v) Cost reduction in clinical trials by screening patients: PTE 
risk prediction can be used for recruitment into clinical trials 
for potential anti-epileptogenic interventions by enriching the 
trial population with identified patients who are at higher risk 
for developing epilepsy.

Prediction and if possible, prevention of the development of PTE is 
a major unmet challenge. Animal studies in adult male Sprague–
Dawley rats have shown the potential of using MRI-based image 
analysis for finding biomarkers for PTE (R. Immonen et al. 2013; 
Pitkänen et al. 2016). These studies point toward the involvement 
of the perilesional cortex, hippocampus, and temporal lobe in 
PTE (Pitkänen and Bolkvadze 2012). Despite important progress, 
brain imaging is still underexploited in the context of PTE bio-
marker research. Numerous human neuroimaging studies have 
provided important insights into TBI (Dennis et al. 2016; Farbota 
et al. 2012; Kim et al. 2008) and epilepsy (W. Li et al. 2009; Mo 
et al. 2019; Sollee et al. 2022), but imaging-based PTE prediction 
work is scarce.

Group analyses of TBI patients compared to controls revealed 
volume reductions in several brain regions, including cortical 
areas like the cingulate gyrus, precuneus, and parahippocam-
pal gyrus (Farbota et al. 2012; Gale et al. 2005; Kim et al. 2008; 
Sidaros et al. 2009; Yount et al. 2002). Additionally, reductions 
were observed in white matter structures, including the cor-
pus callosum and corona radiata, as well as subcortical regions 
like the hippocampus, amygdala, putamen, globus pallidus, 
caudate, and midbrain (Dennis et al. 2016; Farbota et al. 2012; 
Gale et al. 2005; Sidaros et al. 2009; Tasker et al. 2005; Wilde 
et al. 2007).

Clinical and research studies in epilepsy often include both ana-
tomical (MRI and CT) and functional (PET, EEG, MEG, ECoG, 
depth electrodes, and fMRI) mapping. While epileptogenic zones 
can be found in almost any location in the brain, the temporal 
lobe and the hippocampus are the most common sites causing 
focal epileptic seizures (Sollee et al. 2022). Multimodal MRI and 
PET imaging have been used to predict the laterality of temporal 
lobe epilepsy (Pustina et al. 2015; Sollee et al. 2022). Extensive 
changes in brain networks due to epilepsy were reported using 
PET, fMRI, and diffusion imaging (W. Li et al. 2009; Pitkänen 
et  al.  2016; Pustina et  al.  2015; Akrami et  al.  2021; Sollee 
et al. 2022).

Research using resting-state fMRI (rs-fMRI) over the last 
two decades has uncovered important properties of brain dy-
namics and network organization by revealing the existence 
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of patterns of spontaneous neural activity that occur in the 
absence of a specific task or stimulus. These patterns, known 
as resting-state networks, have been found to be consistent 
across individuals and are thought to reflect the underlying 
functional organization of the brain (Arslan et al. 2018). The 
presence of lesions in TBI patients is expected to alter these 
resting-state brain dynamics either locally, through changes 
in the lesioned area, or at the level of networks affected by 
the lesion (Palacios et  al.  2013). In addition, previous work 
has shown that cases of focal epilepsy are often associated 
with changes in network activity extending beyond the sei-
zure onset zone (Yamazoe et al.  2019; Pedersen et al.  2015). 
Interestingly, Zhou et al. (2020) trained a support vector ma-
chine (SVM) classifier on brain imaging data for the diagnosis 
of mesial temporal lobe epilepsy, and found that combining 
fMRI and structural MRI features provided better classifica-
tion than either modality alone. Taken together, these studies 
motivate the exploration of local and network-level brain ab-
normalities as potential predictive markers of PTE in patients 
who have suffered from a TBI.

A few recent studies have employed machine learning to iden-
tify functional brain changes that may serve as PTE biomark-
ers (Rocca et  al.  2019; Akrami et  al.  2021; Cui et  al.  2023). 
Common features used in such brain-based prediction ap-
proaches are the pair-wise correlation patterns observed 
between rs-fMRI signals. However, because of the high di-
mensionality of such connectivity metrics, using them as 
features in a machine-learning framework can quickly lead 
to model overfitting. A standard approach to dealing with 
this issue is to use a dimensionality reduction method such 
as principal components analysis (PCA) to reduce the dimen-
sion of the feature space to a subset of principal components 
that represents nevertheless most of the information in the 
data. Moreover, regularized models (Hastie, Tibshirani, and 
Friedman  2001; Toloşi and Lengauer  2011) with a ridge or 
lasso penalty can also be used to select a subset of features and 
prevent overfitting by penalizing the weights. In the specific 
case of exploiting brain connectivity features in a dataset with 
a limited number of subjects, the presence of groups of highly 
correlated features leads to an ill-conditioned feature space. 
As a result, methods that use simple penalties that discard 
most of the correlated features can become unstable (Toloşi 
and Lengauer 2011).

The goal of the present study was to probe the utility of mul-
tiple structural and functional features extracted from MR 
imaging in characterizing PTE, as well as predicting its oc-
currence. We explored both classical group-level statistics and 
cross-validated machine-learning methods. Our main hy-
pothesis is that we will find biomarkers for PTE in anatomical 
and functional maps. Furthermore, we hypothesize that MRI-
derived features can be used to predict PTE on an individual 
basis. Our working hypothesis is that we will find markers 
for PTE within the TBI population that will be a combina-
tion of (a) the lesion features, detected automatically using 
a machine-learning method and (b) local resting functional 
connectivity-based features. We expect to find regions and 
networks indicating a higher chance that the subject is predis-
posed to developing PTE, including the cerebellum, temporal 
lobe, frontal lobe, hippocampus, and thalamus. Our results 

extend previous reports by uncovering key MR-based differ-
ences between TBI patients who develop PTE and those who 
do not. In addition, we were able to leverage machine learning 
analyses to assess the relative contribution of different types 
of structural and functional features to the out-of-sample pre-
diction of PTE.

2   |   Materials And Methods

2.1   |   Data

We extracted functional and structural features from two 
datasets:

1.	 The Maryland TBI MagNeTs dataset (Gullapalli 2011): Of 
the 113 individual datasets, 72 (36 PTE and 36 non-PTE 
groups) were used for group-level difference comparisons 
as well as for supervised training and testing of a machine-
learning algorithm (i.e., constructing a model from training 
samples to predict the presence of PTE in previously unseen 
data). The remaining 41 non-PTE subjects (a total of 113) 
were used to train an artificial neural network for automatic 
lesion delineation, using a method recently developed by 
our group (Akrami et al. 2020).

2.	 The TRACK-TBI Pilot dataset (Yue et al. 2013): 97 subjects 
from this dataset, in addition to the 41 non-PTE subjects 
from MagNeTS, were used to train the artificial neural 
network for automated delineation of lesions as described 
briefly below in Section 2.2.2. A more detailed description 
can be found in (Akrami et al. 2020).

2.1.1   |   Maryland MagNeTs Data

This is our main dataset for group comparisons as well as for 
PTE prediction. The dataset was collected as a part of a pro-
spective study that includes longitudinal imaging and behav-
ioral data from TBI patients with Glasgow Coma Scores (GCS) 
in the range of 3–15 (mild to severe TBI). Injury mechanisms 
included falls, bicycle or sports accidents, motor vehicle colli-
sions, and assaults. The individual or group-wise GCS, injury 
mechanisms, and clinical information is not shared. The im-
aging data are available from FITBIR (https://​fitbir.​nih.​gov), 
with FLAIR, T1, T2, fMRI, diffusion, and other modalities 
available for download. In this study, we used imaging data 
acquired within 10 days after injury, and seizure information 
was recorded using follow-up appointment questionnaires. 
Exclusion criteria included a history of white matter disease 
or neurodegenerative disorders including multiple sclerosis, 
Huntington's disease, Alzheimer's disease, Pick's disease, and 
a history of stroke or brain tumors.

The imaging was performed on a 3T Siemens TIM Trio scan-
ner (Siemens Medical Solutions, Erlangen, Germany) using 
a 12-channel receiver-only head coil. For statistical anal-
ysis, we used 36 fMRI subjects with PTE (25M/11F) from 
this dataset and 36 randomly selected fMRI subjects without 
PTE (28M/8F) (Gullapalli 2011; Y. Zhou et al. 2012). The age 
range for the epilepsy group was 19–65 and 18–70 years for 

https://fitbir.nih.gov
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the non-epilepsy group. Our analysis of population differences 
was performed using T1-weighted, T2-weighted, and FLAIR 
MRI as well as resting fMRI (Gullapalli 2011). The remaining 
41 subjects with TBI but without PTE were used for training 
the automatic lesion detection algorithm. Standard gradient-
echo echo-planar resting-state functional MR imaging (rep-
etition time ms/echo time ms, 2000/30; flip angle, 75°; field 
of view, 220 × 220 mm; matrix, 128 × 128; 153 volumes) was 
performed in the axial plane, parallel to a line through the 
anterior and posterior commissures (section thickness, 5 mm; 
section gap, 1 mm) and positioned to cover the entire cere-
brum (spatial resolution, 1.72 × 1.72 × 6.00 mm) with an ac-
quisition time of 5 min 6 s. The individuals were instructed to 
close their eyes for better relaxation but to stay awake during 
the imaging protocol.

2.1.2   |   TRACK-TBI Pilot Dataset

This is a multi-site study with data across the injury spec-
trum, along with CT/MRI, blood biospecimens, and detailed 
clinical outcomes (Yue et al. 2013). Here, we use 3T MRI data 
in addition to information collected according to the 26 core 
Common Data Elements (CDEs) standard developed by the 
TrackTBI Neuroimaging Working Group (Meeuws et al. 2020). 
The 3T MRI protocols (implemented on systems from General 
Electric, Phillips, and Siemens) complemented those used in 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) with 
TR ∕TE = 2200∕2.96 ms, an effective TI of 880 ms, an echo spac-
ing time of 7.1 ms, a bandwidth 240Hz∕pixel, and a total scan 
time of 4 min and 56 s. The data are available for download from 
https://​fitbir.​nih.​gov.

To train the unsupervised deep learning model, a variational au-
toencoder for lesion delineation as described in Section 2.2.2, we 
used 2D slices of brain MRIs from a combined group of 41 TBI 
subjects (33 M/8F, age range 18–82 years) from the Maryland TBI 
MagNeTs study (Gullapalli 2011) and 97 TBI subjects (70 M/27F, 
age range 11–73 years) from the TRACK-TBI Pilot study (Yue 
et al. 2013). These TBI data were taken from patients without 
PTE, and are strictly distinct from the set of 72 subjects which 
we subsequently used for statistical testing and PTE prediction.

2.2   |   Methods

2.2.1   |   Preprocessing

Pre-processing of the MR datasets was performed using the 
BrainSuite software (https://​brain​suite.​org) (Shattuck and 
Leahy  2002). The three modalities (T1, T2, and FLAIR) were 
coregistered with each other by registering T2 and FLAIR to 
T1, and the result was co-registered to the MNI atlas (Colin 27 
Average Brain) (Collins et al. 1995) by registering T1 images to 
the MNI atlas using a rigid (translation, scaling, and rotation) 
transformation model. As a result, all three image modalities 
were registered to a common MNI space at 1 mm3 resolution. 
Skull and other non-brain tissue were removed using BrainSuite 
(Joshi et al. 2018), and brain extraction was performed by strip-
ping away the skull, scalp, and any non-brain tissue from the 
image. This was followed by tissue classification and generation 

of the inner and pial cortex surfaces. Subsequently, for training 
and validation of the lesion detection model, all images were re-
shaped into 128 × 128 pixel images and histogram-equalized to 
a lesion-free subject.

The extracted cortical surface representations and brain image 
volumes for each subject were jointly registered to the BCI-
DNI Brain Atlas (http://​brain​suite.​org/​svreg_​atlas_​descr​ip-
tion/​) (Joshi et  al.  2022) using BrainSuite's Surface-Volume 
Registration (SVReg18a) module (Joshi et al.  2007, 2005). The 
BCI-DNI brain atlas is from a single subject with parcellation 
defined by anatomical landmarks. SVReg uses anatomical infor-
mation from both the surface and volume of the brain for accu-
rate automated co-registration, which allows consistent surface 
and volume mapping to a labeled atlas. This co-registration 
establishes a one-to-one correspondence between individual 
subjects' T1 MRIs and the BCI-DNI brain atlas. The deformation 
map between the subject and the atlas encodes the deformation 
field that transforms images between the subject and the atlas.

We used the BrainSuite fMRI Pipeline (BFP) to process the rs-
fMRI subject data and generated grayordinate representations 
of the preprocessed rs-fMRI signals (Glasser et al. 2013). BFP is 
a software workflow that processes fMRI and T1-weighted MR 
data using a combination of software that includes BrainSuite, 
AFNI (Cox  2012), FSL (Jenkinson et  al.  2012), and MATLAB 
scripts to produce processed fMRI data represented in a com-
mon grayordinate system that contains both cortical surface 
vertices and subcortical volume voxels. Starting from raw T1 and 
fMRI images, BFP produces processed fMRI data co-registered 
with BrainSuite's BCI-DNI atlas and includes both volumetric 
and grayordinate representations of the data.

2.2.2   |   MRI-Based Measures: Lesion Detection

We used multimodal MRI images (T1, T2, and FLAIR) pre-
processed using steps described in Section 2.2.1. These images 
were skull-stripped, co-registered to MNI atlas and resampled 
at 1 mm3 resolution. To extract lesions from the anatomical 
MRI data we used an unsupervised framework which we re-
cently developed to automatically detect lesions in MR data. The 
method, which has been validated on other datasets, is based 
on a variational auto-encoder (VAE), a class of auto-encoders 
where the latent representation can be used as a generative 
model (Chen and Konukoglu 2018; Kingma and Welling 2013; 
Akrami et  al.  2022b). By training the VAE using nominally 
healthy (lesion-free) imaging data, the network learns to encode 
normal brain images. As a result, applying such a model to an 
image that contains a lesion will yield a VAE-decoded image 
that does not contain anomalies: The lesions can then be iden-
tified from the differences between original and VAE-decoded 
images. One complication here is that we did not have access 
to normal imaging data with matching characteristics of the 
PTE dataset. Instead, we trained VAE using the T1-weighted, 
T2-weighted, and FLAIR MRIs in the Maryland TBI MagNeTs 
dataset (Gullapalli 2011) leveraging VAEs robustness to outliers 
(Akrami, Joshi, et al. 2022). While lesions are present in most of 
the volumetric TBI images, they are typically confined to a lim-
ited region in each brain, so that in any particular anatomical 
region (at the scale of the major gyri delineated in the BCI-DNI 
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atlas) the fraction of images with lesions is relatively low. In this 
study, the lesions were delineated based on VAE reconstruction 
error in the FLAIR images. We utilized the VAE architecture 
proposed in (Akrami et  al.  2020), which features an encoder 
composed of three consecutive blocks. Each block consists of 
a convolutional layer, a batch normalization layer, a ReLU ac-
tivation function, and two fully connected layers in the bottle-
neck. The decoder includes a fully connected layer followed by 
three consecutive blocks of deconvolutional layers, each with 
batch normalization and ReLU, and a final deconvolutional 
layer. After generating the reconstruction error map, a median 
filter of size 7 × 7 was applied to remove isolated pixels. We have 
previously evaluated the performance of this lesion detection 
algorithm using an independent validation set with delineated 
lesions (Akrami et al. 2020, Akrami, Leahy, Irimia, et al. 2022).

Statistical analyses: Once we determined the lesions using the 
methods described above, we analyzed the VAE lesion maps 
using a 1-sided nonparameteric (permutation-based) F-test to 
determine whether there were any statistically significant dif-
ferences in the variances of lesion maps across the PTE and non-
PTE TBI groups (Akrami, Leahy, Irimia, et al. 2022). The null 
hypothesis is that the variances of lesion maps across subjects in 
the PTE group is less than or equal to that of the non-PTE group. 
Our decision to use the F-test was guided by the fact that trau-
matic brain injuries affect different areas in different subjects 
across the groups, so that consistently localized differences be-
tween the two groups were expected to be very unlikely. However, 
a higher frequency of lesions in a particular region should result 
in a higher sample variance in the lesion maps. This rationale 
was in fact supported by our observation that assessing differ-
ences in the group means using a standard t-test did not show 
any significant effects. To apply an F-test with permutations, 
we computed point-wise group variances and computed their 
ratio to obtain an unpermuted F-statistic. We then permuted 
the group labels to recompute the F-statistic for nperm = 1000 
permutations. The p value was computed pointwise by com-
paring the unpermuted F-statistic to the permuted F-statistics 
(nperm = 1000). Finally, the resulting pointwise map of p values 
was corrected for multiple comparisons using false discovery 
rate (FDR) correction (Benjamini and Hochberg  1995). While 
this procedure does not explicitly account for voxel correlations, 
it allows for positive correlations among voxels, making it suit-
able for image-based analyses commonly used in neuroimaging 
(Genovese, Lazar, and Nichols 2002).

Additionally, we performed a regional analysis by quantifying 
lesion volume from binarized lesion maps in each ROI using 
the USCLobes brain atlas (Joshi et al. 2022) (Lobe-wise analy-
sis) (http://​brain​suite.​org/​usclo​bes-​descr​iption). The USCLobes 
atlas segments the brain into larger regions (lobes) than those 
provided by the default BrainSuite atlases. It has 15 ROIs delin-
eated on the volumetric labels of the atlas: (L/R) Frontal Lobe, 
(L/R) Parietal Lobe, (L/R) Temporal Lobe, (L/R) Occipital Lobe, 
(L/R) Insula, (L/R) Cingulate, Brainstem, Cerebellum, and 
Corpus Callosum. The subject MRIs were preprocessed and 
parcellated into lobes using the USCLobes atlas as described 
in Section 2.2.1. The lesion volume per lobe was computed for 
each subject using the USCLobes parcellation (Joshi et al. 2022). 
For each lobe, the lesion volumes were compared PTE and non-
PTE group using ranksum test (Mann and Whitney 1947). The 

null hypothesis was that the lesion volume in the PTE group 
was less than or equal to the lesion volume in the non-PTE 
group. Multiple comparisons across the regions were accounted 
for using the Benjamini–Hochberg procedure (Benjamini and 
Hochberg 1995).

To identify lesions as binary masks, a one-class SVM (Zhang 
et al. 2004) was applied to the VAE lesion maps at each voxel 
and across subjects to identify subjects with abnormally large 
errors (i.e., discrepancies between the original input image and 
VAE-decoded image) at that voxel (Zhang et  al.  2004; Duda, 
Hart, and Stork  2012). We defined the outliers marked by the 
one-class SVM as lesions and computed lesion volumes per ROI 
by counting the number of outlier voxels in each ROI for each 
subject. In the following, we consider this measure to be a proxy 
for an ROI-wise lesion volume, which we use for PTE prediction.

2.2.3   |   fMRI Based Measures: Connectivity

We compute ROI-wise connectivity using rs-fMRI data and the 
USCLobes ROIs. The BFP fMRI pipeline produces a standard-
ized fMRI signal in the grayordinate system that is in point-wise 
correspondence across subjects. Using the USCLobes parcella-
tion with respect to the grayordinates, we computed the ROI-
wise signal by averaging over each ROI. A 15 × 15 matrix was 
then computed from the Pearson correlations of averaged fMRI 
signals between each of the 15 ROIs in the USCLobes atlas. We 
used the elements of the upper triangle of the correlation matrix 
as a feature vector and applied the Fisher z transform to nor-
malize the feature distribution. This feature vector was subse-
quently used for classification.

2.2.4   |   fMRI-Based Measures: ALFF

The ALFF (Zuo et al. 2010; Wang et al. 2019) is an rs-fMRI-based 
metric that measures the magnitude of spontaneous fluctuations 
in BOLD-fMRI signal intensity for a given region. We calculated 
the ALFF metric (Wang et al. 2019) as the signal power in a fre-
quency band defined by a low- and high-frequency cutoff, which 
we set to 0.01 and 0.1 Hz, respectively. The ALFF measure was 
first computed in the native fMRI space and then mapped to 
the mid-cortical surface of the USCBrain atlas (Joshi et al. 2022) 
using the BrainSuite registration method described above.

Statistical analyses: Similar to the statistical assessment of le-
sion differences, we used a 1-sided F-test (null hypothesis var. 
in PTE < = var. in nonPTE populations). We tested for signifi-
cance using a permutation method (nperm = 1000), for voxel-
wise group-level comparison of variance across the PTE and 
non-PTE groups. These resulting p values were corrected for 
multiple comparisons using the FDR (Benjamini Hochberg pro-
cedure) (Benjamini and Hochberg 1995). As a result, we end up 
with a voxelwise p value map in the USCBrain atlas space, indi-
cating local differences in slow-frequency fluctuations of BOLD 
between PTE and non-PTE groups.

In addition to the voxel-wise analysis, we also performed lobe-
wise analysis, similar to Section 2.2.2. The subject MRIs were 
preprocessed and parcellated into lobes using the USCLobes 

http://brainsuite.org/usclobes-description


6 of 16 Human Brain Mapping, 2024

atlas as described in Section 2.2.1. The average ALFF over each 
lobe was computed for each subject using the USCLobes par-
cellation (Joshi et al. 2022). For each lober region, the average 
ALFF scores were compared to PTE and non-PTE groups using 
the F-test. The null hypothesis was that the variance of ALFF in 
the PTE group was less than or equal to the variance of ALFF 
in the non-PTE group. Multiple comparisons across the regions 
were accounted for using the Benjamini–Hochberg procedure 
(Benjamini and Hochberg 1995).

2.2.5   |   PTE Prediction Using Machine Learning

In addition to the statistical analyses described above, we ex-
amined the same brain features using a supervised machine-
learning framework (Akrami et al.  2021). This was motivated 
by several factors. The machine-learning framework allows us 
to implement an out-of-sample analysis that assesses the ability 
of the features extracted from the data to classify individual sub-
jects. This is particularly important when searching for potential 
biomarkers. Second, tools such as multi-feature classification 
and feature importance quantification readily provide useful 
insights into the significance, complementarity, or redundancy 
across the set of explored features. This is also key when seeking 
to identify the most efficient prognostic biomarkers. Finally, the 
diversity of available machine-learning algorithms opens novel 
opportunities to tease apart variable distributions that may be 
harder to separate using standard statistical tools.

In the machine-learning pipeline implemented in the pres-
ent study, we used the anatomical and functional features de-
scribed above (i.e., lesion information, connectivity, and ALFF) 
that were extracted from MR imaging data collected during the 
early (acute) phase prior to the onset of PTE. The goal of the 
data-driven classifier approach is to build a model that learns to 
distinguish between PTE and non-PTE subjects using labeled 
training data. We use a leave-one-out stratified cross-validation 
scheme to reduce risks of selection bias and overfitting. To 
fine-tune model hyperparameters while adhering to a strict 
separation of training and test data, we used a standard nested 
cross-validation procedure.

To assess the feasibility of building models that can predict PTE 
from structural and functional MR data, we implemented a 
multi-feature binary classification framework using three dis-
tinct types of algorithms (details below). We concatenated the ex-
tracted features into an input vector, to which we applied PCA to 
reduce the dimensionality of the feature space (Dunteman 1989; 
Ringnér  2008). We use the area under the receiver operating 
characteristic curve (AUC) as the primary performance evalu-
ation metric.

We applied the following three machine-learning algorithms:

Random Forests (Breiman  2001): We used a random forest 
classifier which is an ensemble learning method that works by 
training multiple decision trees on random subsets of the data 
and then averaging the predictions of each tree to make a final 
prediction. This technique reduces overfitting and improves the 
overall accuracy of the model compared to using a single deci-
sion tree. At each iteration, a random subsample of the data is 

taken, and a new decision tree is fit. This process is repeated 
multiple times, and the final output is the majority vote of all the 
decision trees.

SVMs and Kernel-SVMs (KSVMs): The basic idea underly-
ing the SVM is to find the hyperplane in a high-dimensional 
space that maximally separates the different classes (Cortes and 
Vapnik 1995). The data points that are closest to the hyperplane 
are called support vectors and have the greatest impact on the 
position of the hyperplane. Once the hyperplane is found, new 
data can be easily classified by determining on which side of 
the hyperplane they fall. By contrast, a KSVM, is an extension 
of the basic SVM algorithm that uses a kernel operator to map 
the input data into a higher-dimensional space, in which they 
can be more easily separated. The use of a kernel allows the 
SVM to handle non-linearly separable data by finding a higher-
dimensional space in which they are linearly separable. One of 
the most popular kernels for this purpose, and that used here, is 
the radial basis function (RBF).

Multi-Layer Perceptron: We also used a multilayer perceptron 
(MLP) which is a feedforward artificial neural network where 
the input is passed through multiple layers of artificial neurons. 
Each layer applies a non-linear transformation to the input 
before passing to the next layer (X. Li et  al.  2019). MLPs are 
trained using back-propagation and stochastic gradient descent. 
The MLP model we used here consisted of three hidden layers 
(32, 16, and 16 neurons, respectively). While more complex and 
deeper neural network architectures are available, we chose 
to use a simple MLP given the limited size of the data at hand 
(N = 72). We expected the RF and SVM algorithms to be more 
suitable for our classification task, but included the MLP method 
for the sake of comparison.

3   |   Results

3.1   |   Lesion Analysis

To compare lesion patterns across the PTE and non-PTE pa-
tients, we assessed group differences in lesion scores, defined as 
the difference between the grayscale values in the original ana-
tomical MR images and the VAE-decoded versions thereof (see 
methods). Statistical assessment using the F-test revealed statis-
tically significant differences (p < 0.05, corrected) between the 
two groups in multiple brain areas (Figure 1). These differences 
were prominent in the left and right temporal lobes, the right 
occipital lobe, and the cerebellum, reflecting higher variability 
of lesion scores in these areas in PTE patients.

Our lobe-wise analysis (Table 1) yielded results consistent with 
voxel-wise analysis, confirming an increased variance in the 
PTE population relative to non-PTE subjects in the same regions 
identified in the grayordinate-wise analysis.

3.2   |   PTE-Related Modulations of ALFF

A point-wise group difference analysis of ALFF is shown in 
Figure 2. The results of the lobar analysis of ALFF (Table 1) are 
consistent with the grayordinate-wise analysis (Figure 1), both 
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FIGURE 1    |    Voxel-based PTE versus non-PTE group comparison of lesion maps overlaid on the USCBrain atlas. The color code depicts F-values, 
shown in a region where p value < 0.05, resulting from the F-test (with permutations). Prominent significant clusters are located in the left temporal 
lobe, bilateral occipital lobe, cerebellum, and right parietal lobe. The un-thresholded maps of F-values for the lesion comparisons are shown in the 
Figure S1.
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showing an increased variance in the PTE population relative 
to non-PTE subjects in the right temporal lobe, both occipital 
lobes, right parietal lobe. The asymmetry in the lobe-based anal-
ysis is possibly due to the limited sample size.

The glass brain renderings of F-values for lesion and ALFF com-
parisons of PTE versus non-PTE groups are shown in Figure 3. 
The unthresholded F-value maps of lesion and ALFF compar-
isons are shown in the (Figures S1,S2). The lesion comparison 
shows significantly higher F-values compared to the ALFF com-
parison, indicating that at early stages of TBI, lesion distribution 
is a stronger focal predictor of PTE relative to ALFF.

3.3   |   Classification of PTE and Non-PTE Subjects 
Using Machine Learning

To test the feasibility of training an ML model to distinguish 
PTE and non-PTE data, we performed leave-one-pair-out 
nested stratified cross-validation over 1000 iterations. Nesting 
was used for parameter tuning (the number of PCA components 
and model hyperparameter). Single-feature classification using 
either the lesion, connectivity, or ALFF metrics was followed 
by a multi-feature classification approach combining all three 
features. The input features were computed for distinct ROIs, 
based on the USCLobes atlas, and were normalized to unit vari-
ance, zero mean. From Table 2, we can see that combining all 
three feature types yields the best model performance in terms 
of the AUC scores. This is likely a reflection of the complemen-
tarity of the information about PTE captured across the lesion, 
connectivity, and ALFF data. Among the four ML methods we 
used, KSVM achieved the best performance. This is probably 
due to high variability in the feature space and improved fea-
ture separation through mapping to a higher dimensional space. 
The neural network performed relatively poorly on this classi-
fication, which given the moderate training sample size, is not 
surprising.

To check the significance of the AUC values, and to compare 
the performance of the ML methods to “chance” level classi-
fication, we performed permutation tests for all the classifiers 
by randomly permuting the subject labels at each of the 1000 
cross-validation folds. A null distribution of AUC computed for 
chance level is shown in Figure 4. The distribution of AUCs was 
estimated using kernel density estimation from the histograms 
for the null AUC and the AUC for KSVM using all the features. 
We performed the rank-sum test to rule out the null hypothesis 
that the AUC null has the same mean as the AUC for the un-
permuted classification. The p value for the classifier was below 

the numerical precision, supporting the claim that this AUC is 
significantly better than the AUC that could be obtained by ran-
dom chance.

In addition to determining the feature space based on the 
USCLobes atlas, we also computed ROI-based features using 
atlases with a large number of parcels. To this end we used the 
USCBrain atlas, BCI-DNI atlas (Joshi et  al.  2022), and AAL3 
atlas (Rolls et  al.  2020). Running the classification pipeline 
based on these atlases did not lead to any significant improve-
ments in PTE prediction.

To gain further insights and improve the interpretability of 
these ML results, we sought to assess the distinct spatial con-
tributions of the lesion features to the overall prediction score. 
To this end, we computed feature importance maps derived 
from the positive SVM model coefficients. Figure 5 shows the 
lesion variability maps (in non-PTE and PTE subjects), fol-
lowed by the SVM feature importances across the USCBrain 
atlas. Comparison between the lesion and feature importance 
maps points toward a reasonable spatial overlap between the 
two. But, most importantly, this analysis suggests that the le-
sion volume data that contribute most to distinguishing PTE 
and non-PTE subjects are located in the right temporal and left 
prefrontal cortices. Additionally, in the supplemental material 
(Figures S3 and S4), we also show the corresponding SVM fea-
ture importance maps for USCLobes and Brainnetome atlases 
(Joshi et al. 2022; Fan et al. 2016), which have lower and higher 
density parcellations compared to USCBrain atlas. These maps 
show a similar regional distribution of feature importance for 
PTE versus non-PTE classification.

4   |   Discussion

The complex pathophysiology as well as the variability in the 
degree of severity of TBI poses a significant challenge to any re-
search in this field. TBI with the resultant coup, focal cortical 
injury, and contrecoup injury, secondary contusion opposite 
to the coup injury, results in a great variety of cortical lesion 
sites, which then gives rise to a diversity of neurocognitive im-
pairments (Ng and Lee 2019). The cortical injury inflicted by 
TBI is well known to have some predilection to the polar re-
gions of the brain, particularly the temporal and frontal lobes 
(Fordington and Manford 2020). This is related to adjacency 
to the bony structures of the skull. However, the presence of 
cortical lesions in specific regions has not been consistently 
linked to the development of PTE. In one study, a left pari-
etal lobe lesion and the presence of hemosiderin staining were 

TABLE 1    |    Classification accuracy of PTE versus non-PTE subjects using different classifiers and feature types.

Method Lesion Connectivity ALFF Combined

KSVM 0.55 (0.04) 0.61 (0.07) 0.62 (0.04) 0.78 (0.04)

SVM 0.63 (0.03) 0.51 (0.04) 0.63 (0.02) 0.64 (0.03)

RF 0.58 (0.05) 0.55 (0.08) 0.67 (0.03) 0.64 (0.06)

NN 0.50 (0.04) 0.61 (0.08) 0.50 (0.05) 0.56 (0.02)

Note: The mean and standard deviation of AUC are shown for KSVM, SVM, RF, and NN. The last column shows the performance obtained when the models were 
trained simultaneously on all three feature types.
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FIGURE 2    |    Differences in ALFF between the PTE and non-PTE groups. The results are color-coded F-statistic thresholded by FDR-corrected p 
values (p < 0.05) derived using a permutation test. Significant clusters are visible in the left temporal lobe, bilateral occipital lobes, cerebellum, and 
right parietal lobe. The un-thresholded maps of F-values for the ALFF comparisons are shown in the Figure S2.
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linked to the development of PTE (Raymont et al. 2010). Yet 
in other studies, rather than a specific cortical region, the 
degree of leakage by the blood–brain barrier around cortical 
sites after TBI was a prognostic marker for the development of 
PTE (Pitkänen et al. 2016). Due to the extreme heterogeneity 
of PTE, the need for a reliable biomarker to enhance the pre-
diction of PTE is highly desirable. There have been a number 
of promising and novel therapeutic interventions targeting 
the complex pathophysiology of TBI shown to have promise 
in preclinical phase I/II trial, yet have gone on to fail in phase 

III clinical trials (Ng and Lee 2019). Some reasons for failure 
could be the large sample required to determine benefit if the 
effect size of the intervention is small. The use of biomarkers 
could enrich the target population so as to maximize the like-
lihood of the discovery of potential therapeutic intervention.

Previous imaging studies that have studied epileptogene-
sis have shown that the progression of pathology has dif-
ferent temporal courses in the cortex and hippocampus (R. 
J. Immonen et  al.  2009). Long-term alterations of the brain 

FIGURE 3    |    (a) Glass brain rendering of the F- value for lesion comparison between PTE and non-PTE. (b) Glass brain rendering of the F-value for 
ALFF comparison between PTE and non-PTE. The higher F-values in lesions compared to ALFF comparisons show that lesions could be a stronger 
focal marker of PTE compared to functional changes at an early stage after TBI.

TABLE 2    |    PTE versus non-PTE group comparison of lesion and ALFF measures (p values obtained using an F-test).

Lobe p value (lesion) permutation test p value (ALFF) permutation test

Right temporal 0.010 0.003

Left temporal 0.021 0.081

Right occipital 0.031 0.035

Left occipital 0.127 0.009

Right frontal 0.221 0.243

Left frontal 0.326 0.177

Right parietal 0.574 0.003

Left parietal 0.654 0.069

Right insula 0.347 0.226

Left insula 0.546 0.724

Cerebellum 0.047 0.072

Note: Bold values denote statistically significant (p < 0.05).
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involve neuronal loss, white matter injury, and altered cere-
bral blood flow as well as metabolism. The data available from 
human studies have shown evidence for hippocampal neuro-
degeneration and mossy fiber sprouting (Swartz et al. 2006). 
As a result, about half of patients with PTE develop mesial tem-
poral lobe sclerosis on MRI (Hudak et al. 2004), a pathology 
in drug-resistant epilepsy that is highly amenable to epilepsy 
surgery. However, the challenge is that these patients often 
have other coexisting pathologies (Diaz-Arrastia et al. 2000) 
which tends to lower the success of epilepsy surgery in these 
patients (Dhamija et  al.  2011). One of the key determinants 
of success in epilepsy surgery is the early detection of drug-
resistant epilepsy and offering surgery in the early stages of 
the illness (Engel et al. 2012). The findings that we show as-
sociating the detections of lesions and functional connectivity 
abnormalities in the temporal lobe may be a manifestation of 
the underlying process of epileptogenesis that takes place in 
patients with PTE.

In this study, we explored the feasibility of predicting PTE using 
functional and structural imaging features, which consisted of 
fMRI connectivity, lesion volumes, and the ALEF in FMRI data. 
In particular, we assessed the performance of widely employed 
machine-learning algorithms in predicting PTE using these fea-
tures. The aim was twofold: (1) to assess the feasibility of build-
ing predictive ML algorithms for PTE based on functional and 
structural brain features and (2) to leverage this data-driven 
framework to pinpoint discriminant brain features that may 
provide useful mechanistic insights into the clinical underpin-
nings of PTE.

Among the machine-learning models examined here, KSVM 
combined with a standard PCA approach for feature di-
mensionality reduction led to the highest prediction score. 
Additionally, our results suggest that combining all three 
feature types (connectivity, lesion, and ALFF data) leads to 
better prediction than only using one of the three types of 
features. The feasibility of successfully training a model to 

discriminate PTE from non-PTE subjects demonstrates that 
complementary brain features extracted from multi-spectral 
MRI can collectively capture anatomo-functional alterations 
that underpin PTE. The ability of the ML approach to gen-
eralize to data from individuals that were not used in train-
ing the classifier (i.e., using cross-validation) indicates the 
feasibility of using the identified features to predict with a 
reasonable degree of accuracy whether a patient who suffers 
a traumatic brain injury is likely to go on to develop PTE or 
not. Our results show a maximum AUC of 0.78 using KSVM. 
Improvements in this value may result from the use of larger 
training sets, as we discuss below.

Although we employed several methods to compare the PTE 
and non-PTE groups, we observed reasonable consistency 
across the results. The results from the group difference anal-
yses based on F-tests and the ML classifier results, as well as 
the feature importance maps (based on the SVM coefficients), 
provide converging evidence for alterations in temporal and 
occipital cortices, and to some extent in the cerebellum, in 
both functional and structural features. We note that the dis-
crepancy between some of the structural and functional pat-
terns observed in the right parietal regions may be due to the 
functional connectivity between parietal areas and epilepsy-
related networks.

Furthermore, it is noteworthy that while the findings from 
lesion-based analysis were largely left–right symmetric, the 
ALFF-based analysis results showed a certain degree of asym-
metry. To probe this further, we compared lesion volumes in left-
hemisphere ROIs and in the corresponding right-hemisphere 
ROIs. This revealed that the left–right lesion volume differences 
were not significant for any of the ROIs. In the ALFF-based 
analysis, the region-wise results were largely symmetric, but in 
the left temporal and left parietal lobes, the p values approached 
significance. The p value in the ALFF analysis for the cerebel-
lum also approached significance.

The AUC metric is a commonly used performance criterion in 
binary classification. While performance requirements vary 
across tasks and application domains, an AUC score of 0.7 is 
frequently used to indicate a minimally acceptable discrimi-
nation (Schummers et  al.  2016; Steyerberg  2019; Swets  1988). 
However, a higher AUC is often necessary to stratify a signif-
icant portion of the population into high-risk or low-risk sub-
jects. Schummers et  al.  (2016) suggested that to classify the 
majority of the population into a clinically distinct risk group 
(high or low risk), an AUC of 0.85 was needed. In our analysis, 
the highest performance (AUC = 0.78) was obtained with the 
KSVM algorithm in a total sample size of 72 individuals (36 
PTE and 36 non-PTE subjects). Due to the small study popu-
lation, as a precaution, we verified that the AUCs were signifi-
cantly better than the chance-level classifiers. To understand 
the impact of the number of subjects on the AUC, we repeated 
the ML analysis for different subsets of subjects (maintaining 
balanced sample sizes for PTE and non-PTE subjects). Figure 6 
depicts the AUC's mean and variance based on stratified cross-
validation as a function of the number of training subjects. Our 
results suggest that the AUC starts to increase monotonically 
after 26 subjects. A quadratically fit curve that extrapolates this 
trend is shown as a dotted red line. We fit a curve to the last 6 

FIGURE 4    |    The distribution of AUC computed for the random 
chance classifier and the KSVM classifier with all the features is 
computed using a permutation test. The ranksum test showed that the 
two classifiers have significantly different AUCs.
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FIGURE 5    |    (a) Brain-wide mean lesion volume variability is shown for non-PTE (upper row) and PTE subjects (lower row). (b) The feature 
importance map is shown as color-coded ROIs overlaid on the USCBrain atlas. Both cortical surface and volumetric ROIs are shown.
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data points to obtain an over-optimistic estimate of 0.98 AUC for 
50 PTE subjects. By fitting the last 10 points we obtain a more 
conservative AUC value of 0.85 for 50 PTE subjects. Assuming 
a 15% prevalence of PTE in TBI subjects, this analysis shows 
that N = 300 would yield the desired AUC with the existing al-
gorithm. This is, of course, an attempt to extrapolate our results 
to outline a pragmatic and clinically relevant approach to using 
our method for the prediction of PTE. Of course, there are a 
number of unknown variables and factors that can influence 
this analysis. These include the heterogeneity of TBI and a wide 
range of properties of TBI patients (incl. demographics, types, 
the severity of injuries, treatment at the acute stage, etc.). In 
particular, the properties of the Maryland data used for this 
analysis can be quite different from those of other datasets.

4.1   |   Limitations

Despite the encouraging and clinically relevant observations re-
ported here, the PTE prediction method proposed is a first step 
that paves the way for more efficient and elaborate prediction 
approaches. Among relevant future steps, we believe that in-
creasing the size of the training data and the addition of more 
features such as diffusion imaging data may lead to an improved 
AUC. Similarly, prediction is likely to benefit from incorporating 
non-imaging clinical data such as scores on the Glasgow Coma 
Scale (GCS), which classifies Traumatic Brain Injuries, along-
side demographics and injury mechanisms. As noted earlier, 
this information was unfortunately not available in the pub-
lic domain for the cohort we used in this study. Furthermore, 
including information on the type of epilepsy may turn out to 
be useful for training the ML models. This and other clinical 
information can also be used to further sub-group the clinical 
population. Another limitation of our study is its relatively small 

population size (N = 72). A larger study using the TrackTBI data-
set might be possible in the future. The results from leave-one-
out cross-validation show the relatively stable performance of 
the prediction methods. However, the AUC score may be further 
improved with a larger dataset.

5   |   Conclusion

In this paper, we investigated the efficiency of functional and 
structural brain features as PTE biomarkers. Leveraging a 
machine-learning framework, we compared PTE prediction 
performance across an array of standard classifiers and a variety 
of brain features. The best results were obtained with KSVM, 
which is possibly partly due to the heterogeneity of the alter-
ations in the PTE group around the mean feature. Our results 
using kernel-based methods show promising results. In both 
lesion and ALFF comparison studies, bilateral temporal lobes 
and cerebellum show significance. Moreover, there is potential 
involvement of the parietal and occipital lobes. Cross-sectional 
studies of children with chronic localization-related epilepsy 
(LRE) using traditional volumetric and voxel-based morphom-
etry have revealed abnormalities in the cerebellum, frontal 
and temporal lobes, hippocampus, amygdala, and thalamus 
(Cormack et al. 2005; Daley et al. 2008; Guimaraes et al. 2007; 
Lawson et al. 1998, 2000, 1997; Tosun et al. 2011). The temporal 
lobe findings from our study further support this evidence.
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