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Abstract

Many technological applications depend on the response of materials to electric fields, but 

available databases of such responses are limited. Here, we explore the infrared, piezoelectric 

and dielectric properties of inorganic materials by combining high-throughput density functional 

perturbation theory and machine learning approaches. We compute Γ-point phonons, infrared 

intensities, Born-effective charges, piezoelectric, and dielectric tensors for 5015 non-metallic 

materials in the JARVIS-DFT database. We find 3230 and 1943 materials with at least one far and 

mid-infrared mode, respectively. We identify 577 high-piezoelectric materials, using a threshold of 

0.5 C/m2. Using a threshold of 20, we find 593 potential high-dielectric materials. Importantly, we 

analyze the chemistry, symmetry, dimensionality, and geometry of the materials to find features 

that help explain variations in our datasets. Finally, we develop high-accuracy regression models 

for the highest infrared frequency and maximum Born-effective charges, and classification models 

for maximum piezoelectric and average dielectric tensors to accelerate discovery.

1 Introduction

The Materials Genome Initiative (MGI)1 has revolutionized the development of new 

technologically important materials, which historically has been a time-consuming task 

that was mainly dominated by trial and error strategies. Since MGI launched in 

20111,2, high-throughput computational3–23 and experimental12,24–27 techniques have 
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become a foundation for the ‘materials by design’ paradigm. Moreover, the synergy 

among multidisciplinary sciences, along with rapid advancements in the electronic-

structure methods, computational resources, and experimental techniques has made the 

process of materials design faster and far more efficient in some cases. As a result, 

the community is gradually migrating towards systematic computation-driven materials 

selection paradigms,9,10,13–19,28–35 where functional materials are screened by establishing 

a direct link between the macroscopic functionality and the atomic-scale nature of the 

material. We are in a data-rich, modeling-driven era where trial and error approaches are 

gradually being replaced by rational strategies,9,36–38 which couple predictions not only 

from specific electronic-structure calculations of a given property but also by learning from 

the existing data using machine learning. Subsequent targeted experimental synthesis and 

validation provide a means of rapid iteration to verify and improve computational models.

Applications of these computational techniques in a high-throughput manner have led to 

several databases of computed geometries and many physicochemical properties, AFLOW4, 

Materials-project3, Khazana17, Open Quantum Materials Database (OQMD)5, NOMAD7, 

Computational Materials Repository (CMR)39, NIMS databases40 and our NIST-JARVIS 

databases6,8,21–23,41–47. Despite a few systematic experimental databases of IR data (such as 

https://webbook.nist.gov/chemistry/vib-ser/), a systematic investigation of IR for inorganic 

materials is still lacking. Similarly, there have been only a few systematic databases 

developed for Piezoelectric (PZ) and dielectric (DL) materials such as by De Jong et al48, 

Petousis et al49,50, Roy et al.51, and Choudhary et al41. In this work, we significantly expand 

the scope of these previous efforts by developing systematic databases for infra-red (IR) 

absorption spectra, piezoelectric tensors, and dielectric tensors.

Vibrational spectroscopy based on infrared (IR), Raman and neutron scattering are 

ubiquitous methods to probe the chemical bonding, and thus the electronic structure of 

a material. Infrared frequencies are classified in three categories: far (30–400 cm−1), 

mid (400–4000 cm−1) and near (4000–14000 cm−1) IR frequencies. Traditionally, IR 

spectroscopy was only used to probe organic materials, but with the availability of 

instruments capable to detect frequencies 600 cm−1, IR spectroscopy has also been 

proven successful in distinguishing phases of inorganic compounds52–54, thermal imaging55, 

infrared astronomy56 and food quality control57.

The piezoelectric tensor (PZ)58 describes the change in the polarization of a material due to 

mechanical stress or strain, or conversely, the change in stress or strain due to an external 

electric field. Similarly, the dielectric tensor59,60 describes the change in polarization due to 

an electric field. A related quantity, the Born-effective charge (BEC) tensor, describes first-

order response of the atomic positions to an electric field. All of the PZ tensor-components 

are zero for materials that have inversion symmetry, leaving 138 space groups with non-zero 

PZ response while DL tensors and BEC tensors can have non-zero components regardless 

of symmetry. However, even when non-zero values are allowed, symmetry still strongly 

restricts the structure of these tensors.
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While IR data can be used in infrared-detector design, the associated PZ61, DL62 and 

Born-effective charge data can be utilized for designing sensors, actuators and capacitors62–

64. In addition, there is significant interest in finding lead-free piezoelectric materials to 

replace lead zirconate titanate (PZT) in various applications. All the above quantities can be 

obtained from density functional perturbation theory calculations (DFPT)65–69. The DFPT is 

a well-known technique to effectively calculate the second derivative of the total energy with 

respect to atomic displacement. The computational phonon-spectroscopy method has been 

recently shown to be an effective means for characterizing materials, as discussed by Skelton 

et. al.70 and Kendrik et. al71. The information obtained using the DFPT method can also be 

utilized for predicting piezoelectric coefficients, static dielectric matrix and Born effective 

charges, as described by Gonze et. al.68 and Wu et. al.66

To validate our calculations, we compare them to the handful of available experimental 

data and show the uncertainty in predictions. We also identify materials that we predict 

have exceptional IR, PZ or DL properties, which may be good candidates for experimental 

synthesis and characterization. Finally, we develop high accuracy supervised machine 

learning models based on the classification and regression methods to pre-screen high-

performance materials without performing additional first-principles calculations. This work 

is a continuation of our previous datasets for exfoliability6, elastic23, optoelectronic41, 

topological21,22, solar-cell efficiency21, and thermoelectric43 property, scanning tunneling 

microscopy image8 datasets. The complete datasets for IR, PZ, BEC and DL properties 

are provided on the JARVIS-DFT website (https://www.ctcms.nist.gov/~knc6/JVASP.html ). 

The JARVIS-DFT is a part of the Materials Genome Initiative (MGI) at NIST.

2 Results and discussion

We use density functional perturbation theory (DFPT) to predict the infrared, dielectric 

and piezoelectric response of insulating materials. Out of 38000 3D materials in the 

JARVIS-DFT database, we select materials with OptB88vdW bandgaps > 0.1 eV41 and 

energy above convex hull < 0.5 eV/atom72 and in their corresponding conventional cell 

representation. This leads to 10305 materials. Note that the OptB88vdW gaps are generally 

underestimated compared to experiments but are useful in pre-screening. The convex hull 

helps enumerate the thermodynamic stability at 0 K. We further narrow down the list of 

candidates with the number of atoms in the simulation cell < 20 atoms leading to 7230 

systems. We have completed calculations for 5015 materials so far and other calculations 

are still ongoing. After the DFPT calculations, we obtain the phonon-frequencies at 

Г-point as well. We predict infrared, piezoelectric and dielectric properties of systems 

only with all positive phonon-frequencies because the materials with negative frequencies 

are dynamically unstable. Dynamically unstable materials are usually the high symmetry 

structure of a material that undergoes a symmetry-lowering structural phase transition at 

low temperatures, such as a ferroelectric transition, but further calculations are necessary 

to understand these behaviors. For the dynamically stable materials, we also train machine 

learning models to quickly pre-screen materials for the next set of DFPT calculations. Such 

machine-learning models have not been reported before to the best of our knowledge. A 

brief- flow-chart of the whole process is given in Fig. 1. Now we discuss in detail individual 

components of this work below.
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2.1 Infrared intensity

As mentioned above, the infrared intensity is important for thermal-imaging, infrared-

astronomy, food-quality control. Using Eq. 1–7 (see Methods section) we calculate the 

IR intensities of 3411 materials with bandgap > 0.1 eV and positive phonon frequencies at 

Γ-point. We compare nine experimental (Exp.) IR modes with the DFPT results to estimate 

the data-uncertainty. The comparison is listed in supporting information (see Table S1). 

Based on the data in table S1, the difference in IR mode location between our calculations 

and experiments has a mean absolute deviation of 8.36 cm−1. This difference is small 

compared to the total range of IR frequencies, from 0–1000 cm−1. Several previous studies 

also report the difference between DFPT computed frequencies and measured peaks in this 

range73–75. In addition to intrinsic limitations in the DFT-exchange-correlation function, this 

small discrepancy may be caused by the fact that our calculations are carried out at 0 K 

while experiments are typically done at 300 K, or that experimental systems can contain 

defects and impurities, which are absent in our calculations. Given the strong agreement 

between theory and experiment, we expect that our carefully curated database will be useful 

for materials characterization.

To analyze the overall trend in the IR data, we plot the results for all materials together in 

Fig. 2. We observe that most of the modes are less than 1500 cm−1 which is consistent with 

the fact that inorganic materials generally have much lower IR frequencies than organic and 

soft materials, which typically contain covalently bonded light elements, leading to higher 

vibrational frequencies. Moreover, a close look at the dataset suggests that 3230 materials 

have at least one far-IR mode, and 1943 materials have at least one mid-IR mode. As 

expected, we couldn’t find any material with near-IR modes, as the largest frequency we 

find is 3764 cm−1 for Mg5(HO3)2 (JVASP-13093). We find 41 elemental systems such as 

crystalline nitrogen (JVASP-25051), krypton (JVASP-907), xeon (JVASP-25276) etc. have 

no IR peaks. This can be attributed to the acoustic sum rule (ASR) for Born effective 

charges, which forces the total Born effective charge of a system to add up to zero. From 

the dataset, we also observe that 1426 materials have only far-IR, 1804 both far and mid-IR 

and 139 mid-IR peaks. Some of the materials with the lowest IR frequencies are from the 

halide family, such as CuBr (JVASP-5176), AgI (JVASP-12023), TlTe3Pt2 (JVASP-4627), 

while some of the highest frequencies are obtained for O- or OH-containing compounds, 

such as Mg5(HO3)2 (JVASP-13093). All the materials above 2078 cm−1 contain hydrogen 

and the next highest set of frequencies are obtained for compounds with C-N bonds, which 

is reasonable, as ω ~ m−1/2 (where ω is frequency and m is the atomic mass). These trends 

may be useful as a starting point in identifying new materials for infrared-related devices, 

like detectors, sensors, and lenses.

Next, we compare the DFPT and finite-displacement method (FDM) phonon frequencies 

(obtained from our elastic-constant database23) for 2926 materials and 72624 phonon modes 

(as shown in Fig. 2b). We find that the DFPT and FDM compare very well (Pearson 

correlation coefficient of 0.99), and significant differences are only found for a few 

molecular systems such as crystalline H2, N2 and a few lanthanide oxides (such as ErBiO, 

JVASP-49979). This consistency suggests an overall high quality of our computational 

dataset.
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In Fig. 2c, we analyze the space-group variation of materials with at least one far-IR (blue) 

and mid-IR (green) peaks. Some of the high-symmetry space-groups with a high number 

of materials with far-IR peaks are 36, 80,129, 166 and 216. As shown in Venn diagram in 

Fig. 2d, we find that a large number of materials with far-IR peaks are chalcogenides (O, S, 

Se, Te-based compounds); however, our database of inorganic materials is generally biased 

towards oxides (39% are chalcogenides, 14% are halogens,19% pnictides and 28% others), 

and we find many examples of halides and pnictides with far-IR peaks as well. Halides 

such as MgF2, LiF etc. have been used in several astronomical telescopes such as Hubble 

telescope76 for infrared astronomy, and non-oxide chalcogenides such as CdTe have been 

used for infrared night vision cameras. We find that denser materials generally have lower 

phonon frequencies, which can be observed in the Fig. 2e. This can be explained by the fact 

that the denser materials have heavier atoms leading to lower phonon frequencies for fixed 

spring constants. Conversely, high IR modes seem to require low-density materials. Finally, 

we analyzed how the dimensionality23 of materials affect the far-IR peaks (Fig.1f). While 

we find that most of the far IR-peak materials have 3D bonding, we also determine that a 

significant fraction (20.9%) are low-dimensional, which is slightly higher than their overall 

representation in the database of 17.2%. The low-dimensional/vdW-bonding is determined 

based on the bond-topology or lattice constant criteria.23 Several examples of materials with 

different dimensionality with low and high-IR modes are shown in Table. 1 and 2. The 

complete list is provided in the supplementary information (see data-availability section). 

Identifying low dimensional dielectric materials is important for designing ultrathin flexible 

electronic devices.

2.2 Piezoelectric properties

The piezoelectric effect is a reversible process where materials exhibit electrical polarization 

resulting from an applied mechanical stress, or conversely, a strain due to an applied 

electric field. Common applications for piezoelectricity include medical applications, energy 

harvesting devices, actuators, sensors, motors, atomic force microscopes, and high voltage 

power generation58. As discussed in the methods section, PZ responses can be measured 

under constant strain, giving the piezoelectric stress tensor eij or constant stress, giving the 

piezoelectric strain tensor dij. In table S2 we compare DFT computed PZ stress tensors 

(maximum eij) to experimental ones for several classes of materials, such as oxides, nitrides, 

and sulfides, and in several crystal structures. We find that the mean absolute deviation 

in max (eij) is 0.79 C/m2, which is reasonable at least for initial screening purposes. The 

relaxed-ion contribution to the piezoelectric tensor is proportional to the inverse dynamical 

matrix (see Eq. 5 in the methods section), which makes this contribution very sensitive 

to low-frequency IR modes. These modes are often very sensitive to temperature changes 

and defects, especially in ferroelectric materials, which makes a direct comparison between 

theory and experiment challenging77. In Fig. 3a, we show a histogram of the distribution 

of the maximum absolute value of the eij PZ tensor component across the dataset, which 

shows a peak at zero and a long-tailed distribution. Most of the materials have max eij less 

than 1.0, but some of the high PZ materials have max. eij above 4 C/m2. We choose a 

0.5 C/m2 threshold to select whether a material is a good PZ material, giving rise to 577 

screened materials. The 0.5 C/m2 threshold value is used in Fig. 3d,3e and 3f. In Fig. 3b we 

plot a similar histogram for the maximum component of the dij tensor, the more commonly 
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measured piezoelectric coefficient. The value of d33 is generally below 50×10−12 C/N as 

shown in Fig, 3b. Examples of the predicted lead-free high PZ materials, which we do 

not find reported in literature are: MoO3 (JVASP-30103), YWN3(JVASP-38813), W(BrO)2 

(JVASP-30364), InBiO3(JVASP-34653), NbNO (JVASP-52492), MgTiSiO5 (JVASP-9481), 

MgCN2 (JVASP-7814), Ca2SnS4 (JVASP-40157), ZnTa2O6 (JVASP-9231), Bi3TaO7 

(JVASP-13350). The highest PZ values naturally require a combination of high-Born 

effective charges and low-frequency IR modes, in combination with a crystal symmetry 

that allows for the non-zero piezoelectric response. This confluence of factors makes strong 

piezoelectricity difficult to predict and optimize.

As depicted in Fig. 3c we compare the stress and strain-based PZ. We find that there is no 

obvious relation between the stress and strain PZ tensors, implying that accurate compliance 

tensor is essential to predict the dij values. It is important to note that PZ strain tensors are 

the components which are generally measured during the experiments. Next, in Fig. 3d we 

analyze the chemistry of high PZ materials (using 0.5 C/m2 as a threshold). Like the IR data, 

the high PZ materials are dominated by chalcogenides, with very few halides. We find most 

of the materials with high PZ are 3D, with low-dimensional materials under-represented. 

Some examples of 3D and low-dimensional materials are given in Table. 3. Analyzing the 

crystal systems of the high-PZ materials, we observe that orthorhombic systems are the 

most represented crystal system (Fig. 3e), while space group 216 is the most common space 

group. As the PZ is a tensor quantity, we analyze the tensor component distribution for the 

whole dataset in Fig. 4a. All the piezoelectric tensor components have similar distributions 

with outlier materials with high coefficients. The e33 component has the largest number 

of high-value piezoelectric response materials. This stands in contrast to other tensors, like 

the elastic tensor, where diagonal components tend to dominate, and many components are 

almost always near zero. Our database can also be used to identify unusual piezoelectric 

mechanisms, such as negative piezoelectricity78, but such detailed analysis is beyond the 

scope of current work.

2.3 Dielectric properties

Dielectric materials are important components in many electronic devices such as capacitors, 

field-effect transistors computer memory (DRAM), sensors and communication circuits59,60. 

Both high and low-value DL materials have applications in different technologies. To 

evaluate the uncertainty in the data, we compare the dielectric constant of 16 materials 

with respect to experiments and the linear optics methods. The comparison is listed 

supporting information Table S3. We find the DFPT total DL has a mean-absolute deviation 

(MAD) of 2.46, which is lower than MAD of 2.78 for linear optics based Tran-Blaha 

modified Becke-Johnson (MBJ) potential with respect to experiments. Next, we analyze 

the dielectric constant data obtained using the DFPT method. In Fig. 5a, we plot the 

distribution of the average of the diagonal values of the dielectric tensor (εavg). We 

find a peak value of 8.9 and a long tail towards high values. Setting our threshold for 

high dielectric constant materials at 20, we identify 441 materials. Some examples of 

previously unreported low- εavg materials are CClN( JVASP-14343), GeF4( JVASP-22445) 

and Mg(CN)2 (JVASP-29285), BCl3 (JVASP-164), PHF4 (JVASP-25550) while high-k 

materials are : ZnAgF3 (JVASP-7792), CaZrN2 (JVASP-79475), Ta2ZnO6 (JVASP-9231), 
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YWN3 (JVASP-38113), KCaCl3 (JVASP-36962), NbBi3O7 (JVASP-13286), and RuC 

(JVASP-36402). In Fig. 5b, we compare the dielectric constants from this work to the low-

frequency limit of the linear optics method we used to calculate the frequency-dependent 

dielectric function in our previous work41. The electronic part of the DFPT dielectric 

constant is in close agreement with that obtained from the linear optics method. Importantly, 

the ionic contribution to the static dielectric constant is frequently larger than the electronic 

contribution. Our dataset of electronic and ionic components can guide experimentalists to 

choose a material with either high and/or low ionic-contribution compounds. As expected, 

the electronic part of the dielectric constant and the bandgaps have a qualitative inverse 

relationship,79 as shown in Fig. 5c. This relationship, combined with the underestimation 

of bandgaps by semilocal DFT functionals, can lead to an overestimation of electronic 

dielectric constants. Electronic bandgap properties are already discussed in detail in our 

previous work41. The dataset suggests that most of the high εavg materials are 3D, with 

again a high number of chalcogenides (Fig. 5d). However, the low-dimensional dielectric 

materials could be of great technological importance, because the capacitance of a layer 

is generally inversely proportional to its thickness, potentially allowing for ultrathin vdW-

bonded devices. Examples of 3D/2D/1D/0D bulk dimensional materials with a high and 

low-dielectric constant are shown in Table. 4 and Table. 5. We find similar crystal system 

trends for high DL and PZ materials. In Fig. 5e and 5f we show the crystal system and 

dimensionality trends of the screened materials. We observe that trigonal and tetragonal 

crystal systems are highly favored for the high DL materials. Similar to the PZ data, most 

of the high PZ value materials in our database are 3D. The electronic part of the dielectric 

constant can be directly used to estimate other physical properties such as the refractive 

index and the birefringence, which will be analyzed in detail in a follow-up work in the 

future.

2.4 Dynamically unstable materials

Our analysis finds many materials with imaginary phonon frequencies at Г-point, which 

we call dynamically unstable materials, and which we exclude from our main analysis. In 

order to be observed experimentally, these materials must be stabilized by finite temperature 

contributions to the free energy, which are neglected in this analysis. Unstable phonon 

modes typically indicate that materials will go through phase transitions, and are therefore 

of interest for applications as ferroelectrics, antiferroelectrics, ferroelastics, etc. We find 

1061 materials with at least one imaginary phonon frequency at Г-point. We observed 

that most unstable materials have high crystal symmetry, and would likely go through 

symmetry-lowering phase transitions. Many of these systems belong to oxide families such 

as ABO3 (examples: BaTiO3 (JVASP-110), KIO3 (JVASP-22568), CoBiO3 (JVASP-29444), 

ZrPbO3 (JVASP-7966), MgZrO3 (JVASP-36637)), AO2 (examples: NbO2(JVASP-12003), 

BiO2(JVASP-12066), FeO2 (JVASP-18430) ). In addition to the oxide family, we also 

find several other classes, including halides, hydroxides, and chalcogenides. Related high-

throughput searches of unstable materials have recently been carried out by Garrity80. A 

full analysis of dynamically unstable materials would require finding all of the low energy 

phases of an unstable material, as well as how they are related. This goes beyond the scope 

of this work, but may be the topic of future work. A list of dynamically unstable materials is 

given in the supplementary information (see data-availability section).
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2.5 Born-effective charge analysis

In Figs. 6 and 7 we show some of the general trends in the PZ, IR and dielectric data. The 

relaxed ion contributions to all the properties considered in this work depend on the Born 

effective charges, making understanding trends in the BEC important to understanding the 

entire dataset. In the Fig. 6a the overall distribution of the maximum BEC in a material and 

in Fig. 6b the absolute difference in maximum BEC and the maximum formal charges81 in 

a material. While most materials have BEC near their formal charges, there are significant 

outliers with anomalous BEC, which can represent some of the best candidate materials for 

piezoelectric and dielectrics and is commonly associated with ferroelectrics. For example, 

Figs. 6(c–d) portray the maximum BEC charge of a material and the minimum frequency 

versus the piezoelectric and ionic dielectric constant, and it is evident that almost all the 

high-response materials have high BEC and low-frequency modes at Γ-point. We note that 

while anomalous BECs are often a signature of ferroelectric materials, we remove materials 

with unstable phonon modes at Γ in this work.

2.6 Chemical Trends

Next, we depict the trends across the periodic table of the properties investigated in this 

work in Fig. 7. In order to understand the contribution of various elements to a given 

property, we weigh an element in a material one or zero depending on whether the material 

has a maximum-IR for far-IR peak (Fig. 7a), has PZ value greater than 0.5 C/m2 (Fig. 7b), 

has dielectric constant more than 10 (Fig. 7c) and has BEC more than 5 or not (Fig. 7d). 

After such weighing for all the materials in our dataset, we calculate the probability that 

an element is part of a high-value material using the threshold defined above. For example, 

suppose there are x number of Se-containing materials and y of them have a property over 

the threshold, then the percentage probability (p) for Se is calculated as: p = y
x × 100%. We 

find that high-IR peaks generally have the light elements H, B, C, N, or O, as discussed 

earlier. The highest PZ, DL and BEC most commonly have Ti, Zr, Hf, Nb, Ta, or Bi. The 

first five elements are commonly found in 4+ and 5+ oxidation states in insulators, which 

tends to result in high BECs, and these elements are also present in many ferroelectric 

perovskite oxides. Most of the transition metals after d5 have low IR/PZ/DL and BEC 

values that can be related to the partial-filling of d-orbitals. Similar behavior for other 

materials properties such as elastic properties has been observed23. Somewhat surprisingly, 

our database shows the Bi has a higher average piezoelectric response than neighboring 

lone-pair element Pb, which is commonly associated with a high-piezoelectric response, 

especially in PZT, suggesting that Bi may be effective as a Pb-free piezoelectric substitute.

2.7 Machine learning

Recent advances in data infrastructure, statistics, machine learning, and computational 

methods has led to an explosion of computed data in the field of materials science25,26,82–

86. Here, we apply the machine learning classification model using classical force-field 

inspired descriptors (CFID)46, gradient-boosting decision trees (GBDT)87,88 to our dataset 

consisting of 3954 dynamically stable materials. We partition the complete dataset of highest 

IR frequency, highest Born-effective charge in a system, highest PZ tensor value and average 

dielectric tensor in 90%−10% train-test divisions. To obtain optimized parameters (number 
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of trees, number of leaves and learning rate) for each model, we carry out hyper-parameter 

optimization with five-fold cross-validation on the 90% training data for each model. First, 

we train a regression model for predicting the highest IR frequency mode of a material. The 

mean absolute error (MAE) and r2 on the 10% held set for such a model are 67.8 cm−1 and 

0.96, respectively. A scatter plot of the performance on the held set is shown in Fig. 8a. 

While the MAE of the ML model of 67.8 cm−1 is about 8 times higher than the MAE of 

DFPT with respect to experiments, it is small with respect to the whole range of investigated 

values. The high r2 value and obvious trend in Fig. 8a shows that the maximum IR frequency 

can be at least roughly predicted using M. Furthermore, a five-fold cross-validation shows a 

MAE score of 77.84 ±34.67 cm−1 supports such a conclusion. The corresponding learning 

curve (Fig. S1) shows that the model error decreases as we add more data, suggesting that 

this model will improve as our database increased.

GBDT inherently allows accessing the importance of all the features of the models. For this 

model, feature importance analysis shows that some of the most important descriptors are 

radial distribution function data, especially at 1.5 and 5.9 Å, electron affinity, and atomic 

radii of elements. The high importance of short bond-lengths can be easily understood as 

it indicates the presence of H-containing compounds, which tend to have high IR modes as 

discussed earlier.

Similarly, we train a regression model for maximum Born effective charge (BEC) in 

materials. Predicting for the test dataset, we find the MAE and r2 in BEC as 0.6 and 

0.76 respectively as shown in Fig. 8c, showing that a significant portion of the BEC can 

be predicted using ML. A five-fold cross-validation shows MAE of 0.69±0.31, therefore 

supporting the above conclusion. Given the non-trivial relationship between the BEC and the 

formal charge, shown in Fig. 8b, it may be difficult to improve this model. Some of the most 

important features are the radial distribution function at 3.4 Å, 6.2 Å, angle distribution at 

143°, dihedral angle at 95°, atomic radii and heat of fusion of elements. We notice that the 

standard deviation for cross-validation in both the above two regression models is about half 

of the actual MAE values (IR:34.67 vs 77.84 cm−1 and BEC: 0.31 vs 0.69). We provide the 

learning curves for these regression models in supporting information (see Fig. S1). Again, it 

shows that the models would improves if we add more training data.

We try similar regression models for a maximum value of the PZ tensor (MAE: 0.47 C/m2) 

and average DL tensor (MAE: 4.91), but these regression models perform poorly, with r2 

< 0.2 in both cases. Therefore, we train classification models for predicting the high PZ 

and high dielectric models using a threshold of 1 C/m2 for PZ and 10 for the dielectric 

constant, instead of trying to predict exact values, as for IR and BEC. In classification 

models, the accuracies are evaluated in terms of the area under curve (AUC) of the receiver 

operating characteristics (ROC) curves (Fig. 8b, d). The ROC curve illustrates the model’s 

ability to differentiate between high and low-performance materials. We find ROC AUCs 

of 0.86 and 0.93 for the high PZ and high DL materials. For each property, the five-fold 

cross-validation result is shown with the gray region around the ROC curve. We find a very 

small deviation due to the swapping of datasets during cross-validation, indicating the model 

is fairly agnostic to the choice of test data. For the above models, in addition to the structural 

descriptors, chemical descriptors such as heat of fusion and maximum oxidation states of 
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constituent elements are important. We note that the structural features are more important 

for the above DFPT based properties than quantities such as formation, exfoliation energies, 

bandgaps where chemical descriptors were more important as shown in our previous work46. 

This highlights the higher difficulty in predicting the DFPT-based properties studied in this 

work, as these properties depend strongly on the structure of the material, rather than mostly 

on just the type of elements and bonding.

All these models, along with the data, are publicly available at (https://www.ctcms.nist.gov/

jarvisml/) to predict the performance of new compounds. These ML models can be 

used to identify materials worth performing the next set of DFPT calculations. For 

instance, we apply the classification models for high DL values on 1193972 materials 

taken from AFLOW4, Materials-project3, Open Quantum Materials Database (OQMD)5, 

Crystallography Open Database (COD)89 and JARVIS-DFT databases combined. We 

convert the structures from these databases into CFID descriptors and then we can easily 

apply the trained models. As the predictions in ML are very fast, we quickly pre-screen 

32188 high DL materials. Now, these new materials can be prioritized in the next set of 

DFT calculations in our database workflow. We have applied such workflows previously for 

various quantities such as exfoliation energies, solar-cell efficiency, and thermoelectric with 

appreciable success.

3 Summary & conclusions

In summary, we perform a multi-step high-throughput computational screening study for 

infrared, piezoelectric and dielectric materials, using density functional perturbation theory 

on 5015 inorganic materials. These data constitute one of the largest datasets of infrared, 

dielectric and piezoelectric properties. Creating such a repository is a necessary step for 

data-driven material-design. We verify our workflow by comparing our computational 

results with several experimental measurements and alternative computational techniques 

like finite-differences, finding strong agreement. Using this database, we analyze the trends 

in these properties in terms of the dimensionality of materials (0D/1D/2D/3D), space-group, 

and chemical constituents, and we find various correlations that quantitively confirm 

and match some known chemical and physical trends and may help designing improved 

materials. We have identified several candidate compounds for high-performing infrared-

detectors, piezoelectrics and dielectrics that have not been studied experimentally yet, to the 

best of our knowledge. To summarize, some of them are listed in Table 1–5. We observe 

that many hydroxides and halides have high and low-IR modes, respectively, as shown in 

Table 1 and 2, which are trends that can be used for the rational design of IR-detectors. 

We identify several candidates with high piezoelectric stress and strain coefficients, and 

notice that they are generally oxides and belong to orthorhombic crystal system. Somewhat 

surprisingly, we note that PZ-stress and PZ-strain coefficients are not strongly correlated. We 

verify the inverse relationship between bandgap and dielectric constants at a large scale and 

predict several new materials with unusually low and high constants (shown in Fig. 5c). We 

find that most of the halides have low while oxides have high dielectric constants. Using 

the phonon data at Г-point, we identify many dynamically unstable materials, which may 

include new functional materials like ferroelectrics. Most of the high piezoelectric, dielectric 

and Born-effective charge materials contain elements such as Ti, Zr, Hf, Nb, Ta and Bi. Most 
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of the high-performance materials in the above classes are three-dimensional (i.e. no vdW 

bonding) in nature, but there are also several candidates of 2D, 1D and 0D materials that 

can be useful for flexible and unique electronics applications. In addition to finding trends 

and correlations, we use our data to train machine learning surrogate models to expedite 

the computational screening processes. We achieve high accuracy models for predicting 

Born effective charges, maximum IR mode and classifying high piezoelectric and dielectric 

materials. We find bond-lengths, electron-affinity and atomic radii as some of the most 

important features in the machine learning models which are also intuitive and helpful for 

physical understanding. We believe that our results, workflow and tools can act as a guide 

for the experimental synthesis and characterization of various next generation materials.

4 Methods

The DFT calculations were carried out using the Vienna Ab-initio simulation package 

(VASP)90,91. The entire study was managed, monitored, and analyzed using the modular 

workflow, which we have made available on our github page (https://github.com/usnistgov/

jarvis). Please note that commercial software is identified to specify procedures. Such 

identification does not imply recommendation by the National Institute of Standards 

and Technology. We use the projected augmented wave method92,93 and OptB88vdW 

functional94, which gives accurate lattice parameters for both and non-vdW (3D-bulk) 

solids6,23. In this work, a material is defined as low-dimensional if it contains vdW-bonding 

in one (2D-bulk), two (1D-bulk), or three (0D-bulk) crystallographic directions23. Both the 

internal atomic positions and the lattice constants are allowed to relax until the maximal 

residual Hellmann–Feynman forces on atoms are smaller than 0.001 eV Å−1. The k-point 

mesh and plane-wave cut-off were converged for each materials using the automated 

procedure in the JARVIS-DFT47. We assume that achieving absolute convergence in energy 

is sufficient for obtaining reasonable DFPT results, and this assumption is supported by the 

agreement between frozen-phonon/finite-difference/finite-displacement method (FDM) and 

DFPT as well as linear-optics and DFPT results (discussed later). We also carry out K-point 

convergence for three materials: Si, AlN, MgF2 as test cases to show that our converged K-

points are sufficient to predict the DFPT related data as shown in supplementary information 

(Table. S4). We carry out the DFPT calculation on the standard conventional cell for each 

material. DFPT calculations, as implemented in the VASP code, were used to determine the 

Born effective charge tensors and the phonon eigenvectors were determined using phonopy 

code75.

Given an insulating system with N atoms per cell, with cell volume Ω0, atomic 

displacements um (m=(1…3N)), homogenous strain ηj (j=(1…6)), homogenous electric 

fields ℰα (α=(x,y,z)), energy E, the force-constant matrix (Kmn), internal strain tensor (Λmj), 

the dielectric susceptibility (χαβ), Born dynamical effective charge (Zmα), piezoelectric 

stress tensor (eαj) and piezoelectric strain tensor (dαj) are calculated as follows (SI units are 

used throughout)65–69:

Kmn = Ω0
∂2E

∂um ∂un ε, η
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(1)

Zmα = − Ω0
∂2E

∂um ∂εα η

(2)

Λmj = − Ω0
∂2E

∂um ∂ηj
ε

(3)

χαβ = = − ∂2E
∂εα ∂εβ u, η

+ Ω0
−1Zmα K−1

mn
Znβ

(4)

eαj = − ∂2E
∂εα ∂ηj

u

+ Ω0
−1Zmα K−1

mn
Λnj

(5)

dαj = Sjk
(ℰ)eαk

(6)

The dielectric constant can be derived from the dielectric susceptibility using:

εαβ = ε0 δαβ + χαβ

(7)

In Eq. 4 and 5, the first term represents the electronic contribution and the second term the 

ionic contribution for DL and PZ constants respectively.

The PZ is a 3×6 tensor, the DL 3×3 and the BEC Nx3×3 tensor. The IR intensity of phonon 

modes is calculated using:

f(n) = ∑α ∑sβ Zαβ(s)eβ(s, n) 2

(8)

where eβ(s, n) is the normalized vibrational eigenvector of the nth phonon mode of the sth 

atom in the unit cell, and α, β are the cartesian coordinates. Zαβ(s) is the Born effective 

charge tensor of sth atom (here we explicitly write both the cartesian indices of Z). These 
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approaches are universal and have been already applied to various material classes. More 

details about the DFPT formalism can be found in elsewhere65,66.

Our machine-learning models were trained using gradient boosting decision trees 

(GBDT)87,88 and classical force-field inspired descriptors (CFID) descriptors46 using a 

five-fold cross-validation grid search on the 90% training set. Using the best model found 

during the grid search, we test the model on the 10% held set and report the performance. 

The accuracy of the regression models and classification models were evaluated using 

mean absolute error and receiver operating characteristics (ROC) curves, respectively. The 

principal idea behind the GBDT algorithm is to build new base learners to be maximally 

correlated with the negative gradient of the loss function associated with the whole 

ensemble. The CFID approach gives a unique representation of a material using structural 

(such as radial, angle and dihedral distributions), chemical, and charge properties for a total 

of 1557 descriptors. We trained machine learning regression models to predict the highest IR 

frequency and maximum BEC of a material and classification models to predict whether a 

material has high PZ coefficient (>0.5 C/m2) and dielectric constant (>20).

5 Data availability

The electronic structure data is available at the JARVIS-DFT website: https://

www.ctcms.nist.gov/~knc6/JVASP.html and http://jarvis.nist.gov. The dataset is also 

available at the Figshare repository: https://doi.org/10.6084/m9.figshare.11916720.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Flow-chart portraying different steps for the DFT and ML methods.
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Fig. 2. 
Analysis of the IR-data. a) IR peaks for all the materials in the database, b) Comparison 

of finite-difference (FDM) and DFPT phonon frequencies for conventional cells, c) space-

group distributions of materials with at least one far (blue) and mid (green) IR peaks, d) 

Venn-diagram of the chemistry of materials containing chalcogenides, halides. or pnictides. 

materials, e) Minimum frequency vs density of the system, f) dimensionality analysis of the 

far-IR materials.
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Fig. 3. 
Piezoelectric data distribution. a) PZ stress coefficient distribution, b) PZ strain coefficient 

Distribution, c) PZ stress vs strain coefficients, d) chemistry of high-PZ materials, e) crystal 

system distribution of high PZ materials, f) dimensionality analysis of high PZ materials.
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Fig. 4. 
Dielectric and piezoelectric tensor distributions of the dataset considered in present work. a) 

the 3×6 piezoelectric tensor distribution, b) 3×3 dielectric tensor distribution.
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Fig. 5. 
Analysis of the dielectric constant data a) dielectric constant distribution, b) dielectric 

constant comparison from linear optics and DFPT methods, c) dielectric constant vs 

bandgaps of materials, d) dimensionality analysis of high dielectric constant materials, 

e) crystal system distribution of high dielectric constant materials, f) dimensionality 

(3D/2D/1D/0D) analysis of high DL materials.
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Fig. 6. 
Born effective charge distribution and its relation to PZ, DL and bandgaps. a) Histogram 

of Born-effective charge data, b) histogram of maximum BEC and formal charge c) BEC 

wrt bandgap with color-coded max PZ, d) BEC with respect to the min-IR-frequency with 

color-coded ionic part of dielectric constant.
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Fig. 7. 
Trends across the Periodic table of a) high IR peak (having at least one peak>400 cm−1), 

b) piezoelectric (>1 C/m2), c) dielectric (>20) materials, and 2) max. Born-effective charge 

in a system (>5) The elements in a material are weighed 1 or 0 if the material has high or 

low-values. Then the percentage probability of finding the element in a high-value material 

is calculated.
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Fig. 8. 
Machine learning regression model for predicting highest IR peak, b) classification model 

ROC curve for high PZ materials, c) regression model for maximum BEC in a material, d) 

ROC curve for high dielectric materials.
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Table. 1

Some examples of materials with high IR-modes. Complete data is available in the supplementary 

information.

Formula Dimensionality JID Spg. Max. mode (cm−1)

YHO2 3D JVASP-54770 11 3673.6

Ca(HO)2 3D JVASP-3714 164 3669.40

SrH4O3 3D JVASP-51024 6 3656.2

MoH4O5 3D JVASP-54730 1 3653.8

SrHClO 3D JVASP-3723 186 3632.3

Mg5(HO3)2 2D JVASP-13093 164 3765.0

Al2Si2H4O9 2D JVASP-29330 1 3684.6

Zn(HO)2 2D JVASP-29800 164 3645.2

Al(HO)3 2D JVASP-29385 1 3576.7

FePH5CO4 2D JVASP-29727 7 3410.8

MoH2Cl2O3 1D JVASP-33602 31 3582.2

MnH4(ClO)2 1D JVASP-27170 12 3446.1

SnH4(NF)2 1D JVASP-33072 12 3356.1

ZnH8(N2Cl)2 1D JVASP-33028 12 3312.2

H2C 1D JVASP-33878 62 2950.5

BH6CN3F4 0D JVASP-33800 160 3491.7

MgH4(ClO)2 0D JVASP-24028 12 3454.9

H5NO 0D JVASP-33004 19 3408.9

BH5CN2 0D JVASP-33308 33 3333.1

MgTe(H4O3)3 0D JVASP-32180 146 3276.0
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Table. 2

Some examples of materials with low IR-modes. Complete data is available in the supplementary information.

Formula Dimensionality JID Spg. Min. mode (cm−1)

BaSr2I6 3D JVASP-50964 162 3.4

TlSbSe2 3D JVASP-56763 4 9.4

Ca2SnS4 3D JVASP-40157 189 9.9

RbCaI3 3D JVASP-36914 6 5.1

K3ClO 3D JVASP-53363 38 18.8

HgI2 2D JVASP-5224 137 8.4

Nb2Te6I 2D JVASP-5575 14 14.3

Bi2Se3 2D JVASP-5215 62 22.5

Ag3SI 2D JVASP-29974 4 28.3

Sb2S2O 2D JVASP-30438 12 29.0

Mn(SbS2)2 1D JVASP-32156 12 13.9

AlTlSe2 1D JVASP-8210 140 22.5

NbI5 1D JVASP-5845 14 24.0

BiSeCl 1D JVASP-32942 62 28.1

SnICl 1D JVASP-32820 62 29.6

P2Se5 0D JVASP-5590 14 16.3

Ta(TeBr3)2 0D JVASP-5662 2 25.3

HgIBr 0D JVASP-22656 36 28.4

Ga2PdI8 0D JVASP-5815 12 30.7

AlTeI7 0D JVASP-5653 7 32.9
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Table. 3

Some examples of high-piezoelectric coefficient (max-eij) materials with corresponding strain coefficients 

(dij), if available. Complete data is available in the supplementary information.

Material Dimensionality JID Spg Max(eij) C/m2 Max(dij) (×10−12 C/N)

YWN3 3D JVASP-38813 161 7.73 -

RuC 3D JVASP-36402 216 5.05 83.1

InBiO3 3D JVASP-34653 33 4.75 -

NbNO 3D JVASP-52492 109 4.26 132.5

Ba2Ti3O8 3D JVASP-11504 25 6.35 66.8

Ta2ZnO6 3D JVASP-9231 44 3.96 49.6

MgTa2O6 3D JVASP-9226 31 3.62 38.50

VFeSb 3D JVASP-56856 216 3.69 92.8

YBiO3 3D JVASP-45986 161 3.1 133.8

MoO3 2D JVASP-30103 7 9.44 2623.5

CrHO2 2D JVASP-8621 160 3.46 16.6

GeTe 2D JVASP-1157 160 2.76 154.6

SnPSe3 2D JVASP-29622 7 2.19 -

Mg(SbO2)4 2D JVASP-10736 1 2.1 40.0

V2Pb3O8 2D JVASP-12668 5 1.75 -

WBr4O 1D JVASP-5863 79 4.04 -

WCl4O 1D JVASP-13822 79 2.02 24.7

InGeCl3 1D JVASP-33896 160 1.45 139.0

Br2O 1D JVASP-12916 33 0.94 35.7

InSnCl3 1D JVASP-33897 160 0.68 -

MgTe(H4O3)3 0D JVASP-32180 146 0.74 -

AsF3 0D JVASP-24657 33 0.68 -

SeBr 0D JVASP-22664 41 0.66 112.43

ClO3 0D JVASP-12460 9 0.53 -

BrO2F 0D JVASP-31165 9 0.45
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Table. 4

Some examples of materials with low crystallographic average dielectric constant (εavg). Complete data is 

available in the supplementary information.

Materials Dimensionality JID Spg ε avg

CClN 3D JVASP-14343 59 3.1

CSO 3D JVASP-5482 160 2.8

SiO2 3D JVASP-54225 115 3.0

LiBF4 3D JVASP-21785 152 3.8

AlPO4 3D JVASP-4564 82 3.8

Mg(CN)2 2D JVASP-29285 102 2.92

Zn(CN)2 2D JVASP-29282 102 3.03

SiS 2D JVASP-28397 53 3.07

AgB(CN)4 2D JVASP-10675 215 3.2

ZnC2S2(OF)6 2D JVASP-29289 148 4.2

GeF4 0D JVASP-22445 217 3.2

BCl3 0D JVASP-164 176 2.60

PHF4 0D JVASP-25550 14 2.90

BH3 0D JVASP-33032 14 2.5

SiH4 0D JVASP-5281 14 2.8
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Table. 5

Some examples of materials with high crystallographic average dielectric constant (εavg). Complete data is 

available in the supplementary information.

Materials Dimensionality JID Spg ε avg

ZnAgF3 3D JVASP-7792 221 92.3

CaZrN2 3D JVASP-79475 166 87.4

Ta2ZnO6 3D JVASP-9231 44 74.9

KCaCl3 3D JVASP-36962 1 68.4

NbBi3O7 3D JVASP-13286 1 62.8

PbO 2D JVASP-29376 57 85.4

Bi2TeSe2 2D JVASP-13955 166 80.7

WSeS 2D JVASP-28903 164 76.5

CuSe2Cl 2D JVASP-5827 14 61.8

TiNCl 2D JVASP-3894 59 60.0

Sb2S3 1D JVASP-4285 62 70.0

SbSI 1D JVASP-5197 59 58.8

Mn(SbS2)2 1D JVASP-32156 12 57.0

SbSBr 1D JVASP-5191 62 56.3

SbSeI 1D JVASP-5194 62 49.0

Ta(TeBr3)2 0D JVASP-5662 2 15.1

Pd(SeBr3)2 0D JVASP-4080 2 12.1
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