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Abstract
Objectives: Using electronic health records, we derived
and internally validated a prediction model to estimate
risk factors for long COVID and predict individual risk of
developing long COVID.
Design: Population-based, retrospective cohort study.
Setting: Scotland.
Participants: Adults (�18 years) with a positive COVID-19
test, registered with a general medical practice between
1 March 2020 and 20 October 2022.
Main outcome measures: Adjusted odds ratios (aORs)
with 95% confidence intervals (CIs) for predictors of long
COVID, and patients’ predicted probabilities of developing
long COVID.
Results: A total of 68,486 (5.6%) patients were identified as
having long COVID. Predictors of long COVID were
increasing age (aOR: 3.84; 95% CI: 3.66–4.03 and aOR:
3.66; 95% CI: 3.27–4.09 in first and second splines), increas-
ing body mass index (BMI) (aOR: 3.17; 95% CI: 2.78–3.61
and aOR: 3.09; 95% CI: 2.13–4.49 in first and second
splines), severe COVID-19 (aOR: 1.78; 95% CI: 1.72–1.84);

female sex (aOR: 1.56; 95% CI: 1.53–1.60), deprivation (most
versus least deprived quintile, aOR: 1.40; 95% CI: 1.36–1.44),
several existing health conditions. Predictors associated with
reduced long COVID risk were testing positive while Delta
or Omicron variants were dominant, relative to when the
Wild-type variant was dominant (aOR: 0.85; 95% CI: 0.81–
0.88 and aOR: 0.64; 95% CI: 0.61–0.67, respectively) having
received one or two doses of COVID-19 vaccination, relative
to unvaccinated (aOR: 0.90; 95% CI: 0.86–0.95 and aOR:
0.96; 95% CI: 0.93–1.00).
Conclusions: Older age, higher BMI, severe COVID-19
infection, female sex, deprivation and comorbidities were
predictors of long COVID. Vaccination against COVID-19
and testing positive while Delta or Omicron variants were
dominant predicted reduced risk.
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Introduction
Long COVID is a debilitating multi-system condition

estimated to affect more than 10% of patients

infected with severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2).1,2 Individuals with long

COVID experience a range of symptoms, including

shortness of breath, chest pain and fatigue. These

symptoms can last for months or years, lead to a

deterioration in quality of life and limit the ability

to carry out everyday tasks.1,3–5

The burden posed by long COVID has created a

need for prediction models to identify patients at

greatest risk. These models could inform preventive

public health strategies, improve targeted support for

patients and guide participant selection for clinical

trials aimed at developing therapeutic interventions.

Several long COVID prediction models have been

developed, and have identified common risk factors,

including increasing age,6–10 female sex6,9,11,12 and

the severity of acute COVID-19 infection.5,8,11

However, many of these models identify long

COVID cases using survey data,6,7,11,12 which may

be prone to sampling bias, recall bias or inaccurate

self-reporting. Other models use data from electronic

heath records (EHRs) for case identification, such as

long COVID diagnostic codes8,9 or referrals to long

COVID clinics.10 While this approach mitigates some

of the challenges associated with survey data, under-

utilisation of diagnostic codes and non-universal

access to long COVID clinics13–15 likely results in

under-identification of long COVID cases. This, in

turn, restricts the number of positive cases available

for model training and increases the likelihood of

undocumented cases being misclassified as controls.
Our study sought to address these limitations by

taking a multi-faceted approach to case identifica-

tion. We identified long COVID cases using clinical

codes and free-text data from EHRs together with an

operational definition for long COVID.13 In doing

so, we aimed to reduce the risk of bias and under-

identification, thereby improving case identification

for model training, and enhancing the accuracy of

predictions by capturing cases that might otherwise

go undocumented.

Methods

Study design, setting, participants and permissions

The protocol describing this study was published in

advance.16 We followed the Transparent Reporting

of Multivariable Prediction Models (TRIPOD)

guidelines (Table S1).17

We conducted a retrospective cohort study using

routinely collected data contained in EHRs, hosted

on the Early Pandemic Evaluation and Enhanced

Surveillance of COVID-19 (EAVE II) platform.18

The EAVE II platform provided approved research-

ers with access to pseudonymised EHRs for all indi-

viduals registered with general practitioners (GP) in

Scotland (98%–99% of the population) during the

COVID-19 pandemic.
We analysed linked data from primary care, sec-

ondary care, laboratory testing and prescribing for

adults (�18 years) registered with GPs and resident

in Scotland between 1 March 2020 and 20 October

2022 (date of last data extraction). Specific datasets

are listed in the Supplementary Materials, pp.S3. The

sample was restricted to 1,096,106 individuals

infected with SARS-CoV-2 (indicated by a positive

reverse transcription polymerase chain reaction (RT-

PCR) test result), who had a minimum of four weeks’

follow-up data available after testing (Figure 1).
It was not feasible to obtain consent from each

participant; however, the National Health Service

of Scotland’s Public Benefit and Privacy Panel for

Health and Social Care (PBPP) granted permission

to access, within a secure trusted research environ-

ment, unconsented, whole-population, de-identified

data from EHRs for the purpose of surveillance

during a public health emergency.

Outcome measures

The primary outcome was long COVID. Following a

novel case identification approach we recently

reported on,13 we classified patients as having long

COVID if they had one or more of the following in

their EHRs: a long COVID clinical code recorded in

primary care; free-text terms indicating long COVID

recorded in primary care; a sick note containing free-

text terms indicating long COVID or patterns in

EHR data suggestive of long COVID, as captured

by an operational definition.
The operational definition identified individuals as

having long COVID if they had specific combina-

tions of clinical codes and dispensed prescriptions

recorded in their EHRs in the 4–26 weeks following

a positive RT-PCR test (summarised in Figure 2).

The clinical codes and prescriptions included in the

operational definition were identified previously,

informed by an investigation into clinical interactions

that were recorded at a significantly higher rate in

the EHRs of individuals who tested positive for

COVID-19, relative to matched controls, within 4–26

of each matched pair’s positive RT-PCR test date.
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Figure 1. Participants identified as having long COVID in the training and holdout datasets.

Figure 2. Long COVID outcome measure. Individuals were classified as having long COVID if they had any of the indicators
described in boxes 1–4 recorded in their EHR.

Symptoms 

• Fatigue 
• Breathless 
• Chest pain 
• Taste and smell 

Investigations 

• Chest X-ray
• Blood test: Endocrine 
• Blood test: Glucose 
• Blood test: Inflammation 
• Blood test: Haematology 
• Blood test: Biochemistry 

Management Strategies 

• Sick note 
• Antivirals to treat coronavirus 
• Cough suppressants 
• Expectorant and demulcent cough 

preparations 
• Selective beta(2)-agonists 
• Inhaled corticosteroids 
• Tetracycline antibiotics 

4. Operational definition  

Positive RT-PCR test AND an indicator in 2 
of the 3 columns in Box A, 

 recorded 4-26 weeks after testing 

1. Long COVID 
clinical code 

2. Long COVID 
in free text 

field of 
primary care 

record 

3. Long COVID 
in free text of 

sick note 

Box A
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Details on each component of the outcome

measure are included in the Supplementary

Materials, pp.S4–5.

Predictors

Candidate predictors were selected based on a review

of the literature and assessment by the project’s steer-

ing group of clinicians, epidemiologists, data scien-

tists, and patient and public involvement (PPI)

members. An index date equal to the date of an indi-

vidual’s first positive RT-PCR test was used to define

time-variant predictors (as described below).

Socio-demographic variables. Sex was recorded as a

binary variable. We used degree 1 splines in age

with knots at 34 and 52 years (two knots optimised

the Akaike Information Criterion [AIC] score).

Scottish Index of Multiple Deprivation (SIMD)

quintiles,19 household size and six-fold urban-rural

residency were recorded as ordinal variables. Care

home residency was recorded as a binary variable.

Clinical variables. The number of COVID-19 vaccine

doses received up to 14 days before the index date

was included as an ordinal variable. We analysed

serological data to derive an indicator of the domi-

nant SARS-CoV-2 variant (representing 60% or

more of sequenced cases) during the week each indi-

vidual tested positive. Binary variables captured

whether individuals had been advised to shield from

COVID-19, were immunocompromised, had a severe

acute COVID-19 infection (defined as hospitalisation

within 28 days of testing positive for COVID-19) or

had been diagnosed with one of 22 comorbidities

associated with increased risk of severe COVID-

1920 (detailed in Table S2). We used degree 1 splines

in body mass index (BMI) with a knot at 28 (a single

knot in BMI optimised the AIC score).

Medications. Binary variables were used to indicate

prescriptions dispensed in the community during

the three months before the index date. Prescribing

data covered 23 categories of prescriptions (Table S3)

representing 775 medicinal products, grouped

according to British National Formulary (BNF)

sub-paragraphs or chemical substances (Table S4).

We prioritised medicinal products highlighted in the

literature as candidates for preventing or treating

long COVID. To avoid circularity, prescriptions

included in the operational definition of long

COVID were excluded.

Statistical analyses

R (version 3.6.1) was used for all analyses.

Sample size calculation. Sample size calculations were
conducted using the R package, pmsampsize.21 The
minimum required sample size was estimated to be
20,311 with 1133 events, assuming prevalence of the
outcome measure of 5.6%, a c-statistic of 0.71 and 56
candidate predictors with 74 candidate predictor
parameters (including splines).

Training and holdout. Individuals were randomly
assigned to a training or holdout dataset in an
80:20 split (Figure 1).

Missing data. Missing BMI values were imputed using
single imputation by chained equations, with the fol-
lowing variables included in the imputation model:
age, sex, ethnicity, urban-rural classification,
QCOVID risk groups22 and SIMD quintiles.
Imputations were carried out separately for men
and women over 20 years of age, and those under
20 years of age.

Multicollinearity checks. We tested for multicollinearity
among predictors using correlation coefficients and
variance inflation factors. Type 2 diabetes and pre-
scriptions for metformin (a drug primarily used to
treat Type 2 Diabetes) had a correlation coefficient
of 0.67. Therefore, a combined ‘Type 2 Diabetes’
measure indicating that a patient had a Type 2
Diabetes clinical code or metformin prescription
was used. Variance inflation factors suggested no
multicollinearity.

Predictor selection. Predictors were selected using back-
ward stepwise selection to optimise the AIC score of
the multivariable logistic regression model. This led
to the removal of 12 predictors, with no significant
impact on model fit (Table S5). Least absolute
shrinkage and selection operator regression with
resampling was used to assess the robustness of pre-
dictor selection, and led to removal of six further
predictors, with no significant impact on model per-
formance (Figure S1 and Supplementary Materials,
pp.S10).

Model type. Multivariable logistic regression with 10-
fold cross validation was used for model training.

Evaluating model performance. Model performance was
evaluated in the training dataset, using the c-statistic,
calibration intercept and slope, and by visually
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inspecting predicted and observed values across vig-

intiles of predicted probabilities. We considered the true

positive and true negative rates to be of equal impor-
tance, and therefore evaluated model performance at a

discrimination threshold set equal to the prevalence of

long COVID observed in the training dataset, using the

following performance metrics: sensitivity, specificity,

accuracy, positive predicted value (PPV), negative pre-

dicted value (NPV), F1 score, Matthew’s correlation

coefficient and Brier score.

Model validation. To assess the internal validity of the

model, we evaluated model performance in the hold-

out dataset, using the same metrics as for evaluation

in the training dataset.

Sensitivity analyses. We conducted sensitivity analyses

to interrogate the model’s robustness and generalis-

ability, including: using positive lateral flow tests
(LFTs), in addition to RT-PCR testing data to iden-

tify positive COVID-19 cases for inclusion in the

cohort; omitting patients with incomplete follow-up

data; using more conservative variations of the main

outcome measure; re-training the model using

machine learning methods (gradient-boosted decision

trees (XGBoost) and Naı̈ve Bayes Classification); and
re-training the model using data from 12 of 14 geo-

graphic regions in Scotland, and evaluating perfor-

mance in the two geographic holdout regions

(Supplementary Materials, pp.S21-31).

Patient and public involvement

PPI members were involved in the conception,

design, and interpretation of this study (Table S6–7).

Results

Participants

The cohort included 1,096,106 adults. There was con-
sistency across training (n¼ 876,885) and holdout

(n¼ 219,221) datasets in terms of prevalence of long

COVID, (5.6%) participant characteristics, (Table 1)

comorbidities and prescriptions (Tables S2–3).

Model results

Figure 3 presents adjusted odds ratios (aORs) for each
predictor, estimated using the multivariable logistic

regression model with 10-fold cross validation

(Equation S1). Increasing BMI and increasing age (up

to 65–70 years) were associated with increased risk of

long COVID. Female sex, severe acute COVID-19

infection, deprivation, immunosuppression, and being
advised to shield were also associated with increased
risk of long COVID. Figure 4 presents predicted prob-
abilities by age, sex, BMI and variant period.

Eight of the 13 comorbidities investigated were
associated with increased risk of long COVID
(Type I and Type II diabetes, asthma, chronic
obstructive pulmonary disease, severe mental illness,
coronary heart disease, a thrombosis or pulmonary
embolus, and rheumatoid arthritis or systemic lupus
erythematosus. Dementia, respiratory cancer and
blood cancer were associated with reduced risk of
long COVID. All prescriptions included in the
model were associated with an increased risk of
long COVID, with the exception of antiplatelet
drugs, for which there was no significant association.

Predictors associated with a lower risk of long
COVID included testing positive while Omicron or
Delta were dominant SARS-CoV-2 variants (relative
to testing positive when the wild-type variant was
dominant), having received one or two doses of
COVID-19 vaccination (relative to being unvacci-
nated) and care home residency.

Model evaluation in the holdout dataset

In the holdout dataset, the model achieved a c-statis-
tic of 0.71 (95% CI: 0.71–0.72), area under the
precision-recall curve of 0.13 (95% CI: 0.13–0.14)
and a calibration slope of 1.01 (95% CI: 0.99–1.03)
with the intercept at 0.01. Calibration plots (Figures
S2–S3) indicated agreement between observed and
predicted probabilities of developing long COVID,
with some under-estimation at higher vigintiles of
predicted probabilities.

At a discrimination threshold of 0.056 (observed
prevalence of long COVID), sensitivity and specific-
ity were 0.65 (95% CI: 0.64–0.66) and 0.67 (95% CI:
0.66–0.67), respectively. The model achieved an accu-
racy of 0.67 (95% CI: 0.66–0.67), PPV of 0.10 (95%
CI: 0.10–0.11), NPV of 0.97 (95% CI: 0.97–0.97), F1
score of 0.18 (95% CI: 0.18–0.18), Matthew’s corre-
lation coefficient of 0.15 (95% CI: 0.15–0.16) and
Brier score of 0.33 (95% CI: 0.33–0.34) (Table S8).

Internal validation

Across most metrics, model performance in the hold-
out dataset was comparable to that in the training
dataset, with marginally higher F1 Score and
Matthew’s correlation coefficient (Table S8) suggest-
ing minimal overfitting. Subgroup analyses demon-
strated consistency in model calibration across age
and variant periods (Figures S4–S5).
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Table 1. Patient characteristics in testing and holdout datasets, stratified by long COVID classification.

Training dataset Holdout dataset

No long COVID Long COVID No long COVID Long COVID

N % N % N % N %

Total (% of dataset) 827,997 94.4 48,888 5.6 206,986 94.4 12,235 5.6

Sex

Female 441,891 53.4 31,757 65.0 110,398 53.3 7997 65.4

Male 386,106 46.6 17,131 35.0 96,588 46.7 4238 34.6

Age (years)

18–27 166,790 20.1 4079 8.3 41,605 20.1 987 8.1

28–37 175,219 21.2 6938 14.2 43,641 21.1 1729 14.1

38–47 160,343 19.4 9317 19.1 40,316 19.5 2371 19.4

48–57 145,676 17.6 11,620 23.8 36,536 17.7 2855 23.3

58–67 100,948 12.2 10,186 20.8 25,212 12.2 2541 20.8

68–77 44,267 5.3 4008 8.2 11,110 5.4 1077 8.8

78–87 24,012 2.9 2155 4.4 5886 2.8 525 4.3

88–100 10,742 1.3 585 1.2 2680 1.3 150 1.2

Scottish Index of Multiple Deprivation (SIMD) quintiles

1 – Most deprived 188,963 22.8 13,591 27.8 47,157 22.8 3426 28.0

2 176,740 21.3 11,439 23.4 44,465 21.5 2796 22.9

3 153,201 18.5 9026 18.5 38,444 18.6 2361 19.3

4 155,458 18.8 8096 16.6 38,582 18.6 1995 16.3

5 – Least deprived 153,635 18.6 6736 13.8 38,338 18.5 1657 13.5

Household size

1 184,491 22.3 12,150 24.9 46,081 22.3 3002 24.5

2 199,164 24.1 13,649 27.9 49,945 24.1 3457 28.3

3–5 404,298 48.8 21,200 43.4 100,990 48.8 5282 43.2

6–10 32,318 3.9 1604 3.3 8053 3.9 421 3.4

11þ 7726 0.9 285 0.6 1917 0.9 73 0.6

Urban–rural classification

Large urban areas 287,174 34.7 17,378 35.5 71,493 34.5 4404 36.0

(continued)
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Table 1. Continued

Training dataset Holdout dataset

No long COVID Long COVID No long COVID Long COVID

N % N % N % N %

Other urban areas 339,401 41.0 20,246 41.4 85,276 41.2 5013 41.0

Accessible small towns 73,951 8.9 4050 8.3 18,500 8.9 998 8.2

Remote small towns 29,331 3.5 1717 3.5 7267 3.5 456 3.7

Accessible rural 71,104 8.6 3589 7.3 17,728 8.6 913 7.5

Remote rural 27,036 3.3 1908 3.9 6722 3.2 451 3.7

Variant period

Wild (up to 10 January 2021) 90,548 10.9 7777 15.9 22,642 10.9 1954 16.0

Alpha (11 January 2021–09 May 2021) 42,458 5.1 3697 7.6 10,599 5.1 944 7.7

Delta (24 May 2021–28 November 2021) 258,298 31.2 15,844 32.4 64,290 31.1 3898 31.9

Omicron (20 December 2021 onwards) 342,241 41.3 17,580 36.0 85,982 41.5 4467 36.5

No dominant variant or unknown 94,452 11.4 3990 8.2 23,473 11.3 972 7.9

Vaccination doses (up to 14 days before positive test/outcome)

0 235,822 28.5 15,207 31.1 58,838 28.4 3773 30.8

1 63,472 7.7 2749 5.6 15,816 7.6 684 5.6

2 296,421 35.8 16,487 33.7 74,247 35.9 4104 33.5

3þ 232,282 28.1 14,445 29.5 58,085 28.1 3674 30.0

Shielding

Shielding 23,301 2.8 3764 7.7 5768 2.8 956 7.8

Not shielding 804,696 97.2 45,124 92.3 201,218 97.2 11,279 92.2

Immunosuppressed

Immunosuppressed 24,251 2.9 3250 6.6 5987 2.9 847 6.9

Not immunosuppressed 803,746 97.1 45,638 93.4 200,999 97.1 11,388 93.1

Care home resident

Care home resident 5616 0.7 226 0.5 1369 0.7 59 0.5

Not care home resident 822,381 99.3 48,662 99.5 205,617 99.3 12,176 99.5

BMI (kg/m2)

Underweight (BMI< 18.5) 13,020 1.6 876 1.8 3221 1.6 203 1.7

(continued)
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Results of sensitivity analyses

Results from the sensitivity analyses are presented
below, with further detail provided in the
Supplementary Material (pp.S20–S30).

Incorporating data from individuals with positive LFTs.

Including individuals with positive LFTs increased
the cohort size to 1,458,018. Training the model on
a randomly selected 80% of the cohort resulted in
patterns of predictors that were consistent with the
main analysis, with the exception that having
received three doses of COVID-19 vaccination was
associated with significantly (p< 0.05) reduced risk of
long COVID, compared with no significant associa-
tion in the main analysis. (Figure S6). Model perfor-
mance in holdout data was generally consistent with
that of the main model (Table S9).

Omitting individuals with incomplete follow-up. Omitting
individuals with incomplete follow-up (due to
death, reinfection or where the index date was
fewer than six months before the end of the study
period) retained 94.1% of the cohort (n¼ 825,184
in the training dataset, n¼ 206,357 in the holdout
dataset). The model trained on these data was con-
sistent with the main model, with the exception that

having received three doses of COVID-19 vaccina-

tion was associated with significantly (p< 0.05)

increased risk of long COVID compared with no sig-

nificant association in the main analysis (Figure S7).

Model performance, evaluated in the restricted hold-

out dataset, was marginally better than the main

model, though specificity and accuracy were margin-

ally worse (Table S10).

Variations of the main outcome measure. We trained two

additional models on outcome measures that: (1)

omitted to use the operational definition for identifi-

cation of long COVID patients, and (2) omitted to

use blood tests within the operational definition for

identification. Observed prevalence of long COVID

was lower according to these measures (1.4% and

2.2%, respectively, Table S11). The resultant

models were consistent with the main model with

respect to associations between long COVID and

sociodemographic and some clinical predictors

(asthma, coronary heart disease, severe mental ill-

ness). However, fewer clinical and prescribing predic-

tors were identified as significantly associated with

long COVID (Figure S8). In holdout data, the per-

formance of the two additional models deviated

somewhat from the main model (Table S12). Most

Table 1. Continued

Training dataset Holdout dataset

No long COVID Long COVID No long COVID Long COVID

N % N % N % N %

Normal weight (BMI 18.5–24.9) 215,963 26.1 9784 20.0 54,239 26.2 2466 20.2

Overweight (BMI 25–29.9) 308,896 37.3 15,726 32.2 76,924 37.2 3819 31.2

Obese (BMI> 29.9) 290,118 35.0 22,502 46.0 72,602 35.1 5747 47.0

Comorbidities

0 547,007 66.1 22,467 46.0 136,303 65.9 5623 46.0

1 198,465 24.0 15,510 31.7 50,157 24.2 3812 31.2

2 54,242 6.6 6639 13.6 13,565 6.6 1655 13.5

3þ 28,283 3.4 4272 8.7 6961 3.4 1145 9.4

Severity of acute infection (positive cases)

Hospitalised within 28 days 31,166 3.8 5127 10.5 7778 3.8 1270 10.4

Not hospitalised within 28 796,831 96.2 43,761 89.5 199,208 96.2 10,965 89.6

The table presents the number and percentage of individuals in the training and holdout datasets, classified as having long COVID or not according to

the outcome measure.
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Figure 3. Adjusted odds ratios for predictors of long COVID. The plot illustrates the adjusted odds ratios and 95% confidence
intervals for all predictors of long COVID included in the main multivariable logistic regression model. The model was trained on
the training dataset (n¼ 882,782) using multivariable logistic regression with 10-fold cross-validation. SIMD quintiles relate to
quintiles of the Scottish Index of Multiple Deprivation.

Jeffrey et al. 9



notably, both models had lower PPV and higher
NPV than the main model, indicating a tendency to
produce a higher rate of false positives and a lower
rate of false negatives.

Models derived using machine learning. The XGBoost
model exhibited good consistency with the main
analysis in terms of the most important predictors
of long COVID identified (Figure S9). When

Figure 4. Predicted probability of long COVID by age, sex, BMI and variant period. (a) Predicted probabilities of long COVID by
age and sex. (b) Predicted probabilities of long COVID by age and dominant SARS-CoV-2 variant in circulation when an individual
received a positive RT-PCR test. (c) Predicted probabilities of long COVID by BMI and sex. (d) Predicted probabilities of long
COVID by BMI and dominant SARS-CoV-2 variant in circulation when an individual received a positive RT-PCR test. Predicted
probabilities were estimated by applying the main multivariable regression model to the training dataset (N¼ 876,885). Shading
indicates 95% confidence intervals.
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evaluated in holdout data, both machine learning
approaches correctly identified more negative cases
and fewer positive cases than the main model, result-
ing in higher accuracy (Table S13).

Model training and testing using a geographic split. The
model trained on 12 of Scotland’s 14 geographic
regions closely resembled the main model (Figure
S10). In each holdout region, model performance
was consistent with the main analysis in terms of
the c-statistic and calibration slope, but generally
worse in other metrics (Table S14).

Discussion

In a cohort of 1.1 million adult residents in Scotland,
we analysed coded and free-text data recorded in
EHRs to derive and internally validate a long
COVID risk prediction model. Whereas existing
models rely on survey data,6,7,11,12 which may be
prone to bias, or use EHR data8–10 that likely
under-identifies long COVID cases, we combined
clinical codes, free-text data and a comprehensive
operational definition to improve case identification,
in an effort to reduce under-reporting, and enhance
prediction accuracy.

In-keeping with other studies, we identified several
predictors of increased risk of long COVID, includ-
ing: increasing age,6–10 increasing BMI,6 severe
COVID-19 infection,5,8,11 female sex,6,9,11,12 increas-
ing deprivation6 and several comorbidities8,9,11 and
prescriptions. Infection with COVID-19 during the
Delta and Omicron periods11,23 predicted reduced
risk of long COVID, relative to the wild-type
(though higher incidence of COVID-19 during these
periods resulted in more long COVID cases in abso-
lute terms). Vaccination9,10 also predicted reduced
risk. While these results predict who is at risk of
developing long COVID, the methods we used do
not allow for a causal interpretation of our results.

This study has several strengths. Using data from
the EAVE II platform enabled analysis of EHRs for
a large, nationally representative cohort using an
extensive range of clinically relevant predictors. Our
main results were robust to variations in inclusion
criteria, cohort subsets, modelling approaches and
training and holdout splits. Involvement of PPI and
clinicians enhanced the study design and interpreta-
tion. Our use of a multi-faceted long COVID identi-
fication method, which did not require explicit coding
of long COVID in EHRs, lays a foundation for anal-
yses of other poorly coded conditions.

Our study also has limitations. Compared to the
models we trained using more conservative versions
of the outcome measure, our main model identified

more comorbidities and dispensed prescriptions as
being significant predictors of long COVID. It is pos-
sible that, by identifying more long COVID cases for
model training, the main outcome measure enhanced
our ability to detect associations between long
COVID and less prevalent predictors (compared
with the more conservative variations of the outcome
measure). However, we cannot rule out the possibil-
ity that the main outcome measure was biased
towards misclassifying individuals with other health
conditions as having long COVID.

Systematic biases in EHR data may also have
influenced our results. For example, the positive
association between long COVID and having
received three or more COVID-19 vaccinations,
which emerged during sensitivity analysis, likely
reflects a confounding effect. This effect may have
arisen because vulnerable populations, who were pri-
oritised during vaccine roll-outs, typically exhibited
higher rates of vaccine uptake.24 Moreover, the neg-
ative associations identified between long COVID
and older adults, care home residents and dementia
patients may reflect under-recording of indicators
used to identify long COVID among these groups.
More generally, reliance on EHR data excluded the
experiences of individuals who had not interacted
with the healthcare system, or whose interactions
were not accurately recorded. Inconsistent recording
of ethnicity and smoking status25 precluded investi-
gation of these features. With the withdrawal of mass
testing for COVID-19, it will not be possible to use
the main outcome measure from this study to identify
long COVID cases going forward.

We found that using machine learning techniques
achieved higher accuracy, but more conservative pre-
diction of positive cases, compared with the main
logistic regression model. This highlights the poten-
tial value of these methods in situations where accu-
racy is prioritised over sensitivity. However, these
methods offer less transparency than logistic regres-
sion in terms of the associations between predictors
and outcomes.

The main model demonstrated reasonable dis-
criminative ability and precision in holdout data;
however, the degree of certainty offered by the
model is not sufficient for use in clinical practice,
given the risk of adverse outcomes from misclassifi-
cation. Several factors likely contributed to the
model’s modest performance. First, the relatively
low observed prevalence of long COVID (5.6%)
likely limited the model’s ability to accurately predict
positive cases. Second, identifying long COVID cases
from EHRs is inherently challenging, due to the lack
of a universally accepted clinical definition and ongo-
ing clinical uncertainty surrounding the condition.4,5
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This uncertainty, coupled with under-utilisation of
diagnostic codes,13–15 further complicates case iden-
tification. Additionally, unmeasured confounders –
such as unrecorded symptoms – may have influenced
model accuracy. Despite these challenges, our find-
ings on risk factors for long COVID provide valuable
insights for policymakers and public health tasked
with developing preventive public health strategies
or allocating and targeting resources to support
long COVID patients. Our results could also aid
researchers in identifying participants for inclusion
in trials investigating preventive strategies or treat-
ments for long COVID.

In conclusion, this study developed and internally
validated a long COVID risk prediction model using
EHR data and a novel case identification approach.
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