
de Souza et al. BMC Medical Genomics (2024) 17:273
https://doi.org/10.1186/s12920-024-02037-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

BMC Medical Genomics

Private detection of relatives in forensic
genomics using homomorphic encryption
Fillipe D. M. de Souza1*, Hubert de Lassus1 and Ro Cammarota1 

Abstract 

Background  Forensic analysis heavily relies on DNA analysis techniques, notably autosomal Single Nucleotide
Polymorphisms (SNPs), to expedite the identification of unknown suspects through genomic database searches.
However, the uniqueness of an individual’s genome sequence designates it as Personal Identifiable Information (PII),
subjecting it to stringent privacy regulations that can impede data access and analysis, as well as restrict the parties
allowed to handle the data. Homomorphic Encryption (HE) emerges as a promising solution, enabling the execution
of complex functions on encrypted data without the need for decryption. HE not only permits the processing of PII
as soon as it is collected and encrypted, such as at a crime scene, but also expands the potential for data processing
by multiple entities and artificial intelligence services.

Methods  This study introduces HE-based privacy-preserving methods for SNP DNA analysis, offering a means
to compute kinship scores for a set of genome queries while meticulously preserving data privacy. We present three
distinct approaches, including one unsupervised and two supervised methods, all of which demonstrated excep-
tional performance in the iDASH 2023 Track 1 competition.

Results  Our HE-based methods can rapidly predict 400 kinship scores from an encrypted database containing 2000
entries within seconds, capitalizing on advanced technologies like Intel AVX vector extensions, Intel HEXL, and Micro-
soft SEAL HE libraries. Crucially, all three methods achieve remarkable accuracy levels (ranging from 96% to 100%),
as evaluated by the auROC score metric, while maintaining robust 128-bit security. These findings underscore
the transformative potential of HE in both safeguarding genomic data privacy and streamlining precise DNA analysis.

Conclusions  Results demonstrate that HE-based solutions can be computationally practical to protect genomic
privacy during screening of candidate matches for further genealogy analysis in Forensic Genetic Genealogy (FGG).

Keywords  Secure query, Data privacy, Genomic database, Homomorphic encryption

Background
The identification of unknown individuals using their
DNA sample can be done either directly through DNA
matching with target candidates or indirectly via famil-
ial tracing [1]. Typically, in the absence of direct evidence
for DNA matching, the latter method is used to approach

the identification of the DNA sample. DNA matching is
particularly relevant for finding unknown perpetrators of
crime who are unidentifiable with standard DNA profil-
ing. The method is known as Forensic Genetic Geneal-
ogy (FGG) [2]. A typical application is forensic search on
DNA collected from a crime scene, where the DNA helps
law enforcement find close relatives of an unknown sus-
pect in a genetic database. Even if the unknown suspect
individual never had his/her DNA collected, law enforce-
ment will be able to close in on his/her family circle and
from there orient an investigation in the right direction.

*Correspondence:
Fillipe D. M. de Souza
fillipe.souza@intel.com
1 Intel Labs, Intel Corporation, Santa Clara, California, USA

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-024-02037-9&domain=pdf

Page 2 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

FGG shall not be confused with Familial DNA Search-
ing (FDS). In FDS, collected DNA evidence is compared
against the FBI’s CODIS database, which contains DNA
profiles of known convicted offenders. This process
aims to find partial matches that closely resemble the
target DNA profile, primarily focusing on immediate
relatives like parents and children [2]. Conversely, FGG
is employed when FDS is unsuccessful, utilizing non-
criminal genetic genealogy databases. FDS and FGG
also differ in their data types: FDS relies on Short Tan-
dem Repeat (STR) DNA typing, while FGG uses Single
Nucleotide Polymorphism (SNP) high-density markers.
Consequently, their DNA matching algorithms use dif-
ferent analysis approaches: SNP array DNA matching
algorithms commonly rely on probabilistic and heuristic
methods, while STR DNA profiling algorithms compare
the number of shared alleles at specific loci to determine
genetic matches. In summary, FGG leverages genealogy
and SNP analysis, whereas FDS focuses on CODIS and
STR markers. As of 2018, several non-criminal genealogy
databases could be used by law enforcement to resolve
violent crimes and missing person cases, namely, [3–5].
This process has law enforcement upload the raw DNA
evidence to different genetic genealogy databases and
several matches of distant relatives are found and used to
build family trees to back trace to the identity of the DNA
sample source.

There could be many more genetic genealogy databases
to search for matches of relatives. For this reason, it can
be time consuming and unduly computationally expen-
sive if no matches are found after comparing a query
DNA sample with all entries in a database. A method that
could perform a swift screening across all different data-
bases shall alleviate this computational issue. This is the
matter of this work. In addition, because the unknown
DNA sample leave custody of law enforcement, it could
arguably violate the principles of privacy on handling
and processing genetic data, for which there could be
unpredictable negative consequences to both investiga-
tion integrity and unwanted discoveries for the related
matches.

The benefit of enforcing genetic privacy could bring
some positive gains such as breaking geographical barri-
ers concerning access to genetic databases spread world-
wide, which are protected by international privacy laws
and regulations. Its value goes beyond prudent accessibil-
ity of genetic databases but also, more generally, to the
proactive prevention of ethical and privacy issues involv-
ing the general public, which can be sidelined or over-
looked [6] and cause wrongful convictions [7].

The yearly iDASH competition proposes the chal-
lenge of protecting genetic privacy using Homo-
morphic Encryption. The goal of the 2023 edition of

iDASH is determining whether a DNA sample (query)
shares any genetic information with genomes com-
prising a target genetic genealogy database. Aiming
at addressing the iDASH 2023 Track 1 challenge, i.e.,
“Secure Relative Detection in (Forensic) Databases”,
we devised three methods that utilize HE-based
approaches to confirm the presence of a person’s rela-
tives’ genetic data within a genomic database. During
this procedure, the query site initiates the request,
and the database site provides the response. Both sites
would like to keep data confidential. The output of
the method is a score that indicates for each query the
likelihood rate about the presence of its relatives in the
genomic database. Our methods enable a secure search
for the target individual without compromising the
privacy of the query individual or the genomic data-
base. It also makes consent management more modu-
lar, as individuals can consent to secure searches but
not searches in clear text. This is particularly relevant
in the forensic domain, where using genetic genealogy
databases (e.g., GEDMatch) to rapidly identify sus-
pects and their relatives raises complex ethical issues,
such as using genomic data without consent for foren-
sic purposes. In the use case we consider, there are 3
entities (see also Fig. 1):

1.	 A law enforcement querying entity (QE) that holds
the genome of a target suspect individual collected
on a crime scene.

2.	 A Database owner (DE), who manages a genetic
genealogy database.

3.	 A Non-colluding trusted computing entity (CE) that
performs genome detection using the encrypted data
from QE and DE.

QE wants to find out if the genome of the target indi-
vidual (or family relatives) is in the database. Neither
QE nor DE is allowed to reveal the genomic informa-
tion to the other party. The main challenge is to per-
form this search in a secure manner using a HE-based
query system such that information exchanged between
the entities remains encrypted at all time. The use case
involves two steps:

1.	 One-to-Many DNA comparisons: a way to compare
a genetic profile to all other database members. In
this case, a unique real-value score is computed to
determine how likely a query individual has a famil-
ial relationship with any other individual in the
database. This can be accomplished also by directly
comparing a query to every member in the database
and then selecting the maximum a real-valued num-
ber out of all comparisons, which directly pinpoints

Page 3 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

which member is most likely to be related to the que-
ried genome.

2.	 One-to-One autosomal DNA comparison allowing
to confirm how much DNA an individual share with
someone before contacting them.

Contributions
The solution to step 1, the focus of this work, can serve
as a filtering system for forensics analysis of DNA sam-
ples collected on crime scenes. In this case, the problem
does not require that the relative in the database be iden-
tified exactly, but instead it requires to determine if there
exists at least one relative to the query individual in the
database with certain probability. There could be many
databases to search from. Since comparing a suspect
with each individual in every database is computationally
expensive, it pays off to reduce the number of databases
to search from and to reduce the number of suspect can-
didates for each target database. In this regard, the first
step would be to determine if a suspect has any relative in
the target database.

The key contributions of this work are three-fold:

1.	 Firstly, we propose an HE-friendly mathematical sim-
plification of the equation proposed in [8] to detect
contributing trace amounts of DNA to highly com-

plex mixtures using homomorphically encrypted
high-density SNP genotypes.

2.	 Secondly, we introduce two novel algorithms to pre-
dict evaluation scores rating whether a DNA sample
query shares genetic data with any other DNA sam-
ple in a genomic database, where one of these two is
heuristically inspired by the z-test hypothesis test-
ing, and assumes no prior knowledge of the reference
populations, and the other algorithm uses a Machine
Learning approach with linear regression model
trained on a known reference population mixture
inherited from the genealogy database.

3.	 Finally, we demonstrate through several experi-
ments that our methods perform high accuracy
predictions in less than 37.5 milliseconds per query
using encrypted genetic data in a privacy-preserving
approach with provable 128-bit security.

As follows, in “Forensic Genetic Genealogy (FGG)” sec-
tion, we define the problem scope in the context of FGG
and present a discussion on relevant related work in
“Related work” section. In “Methods” section, we present
the methods in details, including some data analysis and
design considerations to address the problem statement
effectively in aspects such as security, computing and
resource optimizations. We present performance results
of the methods in detail in “Results” section, including a
description of the characteristics of the challenge, data,

Fig. 1  Classic secure outsourcing computing protocol used in the iDASH 2023 Homomorphic Encryption challenge. 400 queries and 2000
database samples make up the bulk of the data movement, each requires 956KB of storage space. The size of encrypted predictions displayed
in the picture corresponds to 400 encrypted predictions, i.e. 51MB

Page 4 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

evaluation criteria, and computing resource constraints
in “Secure detection of relatives in forensic genom-
ics” section. Finally, we finalize our discussion in “Discus-
sion” and “Conclusions” sections.

Forensic Genetic Genealogy (FGG)
Forensic Genetic Genealogy (FGG) is an investigative
tool that combines traditional genealogy research with
advanced SNP DNA analysis to solve crimes and identify
unknown individuals. It consists of the following steps:

1.	 DNA sample collection: DNA sample is collected
from a crime scene or an unidentified individual.

2.	 SNP testing: this is the process in which DNA is
analyzed to identify the SNP variations and then
compiled into an array format (the input data of this
paper).

3.	 Profile upload: the genetic profile acquired from
step 2, the SNP array (or genome), is then uploaded
to a public genetic genealogy database, such as GED-
match or FamilyTreeDNA.

4.	 Database matching: matching algorithms are used
to compare the uploaded profile with other genetic
profiles in the database to identify potential relatives
by measuring the amount of shared DNA segments.
The scope of our work and the iDASH 2023 competi-
tion intersects with this since it concerns identifying
whether there are any potential relatives in the data-
base [9].

5.	 Relationship estimation: an algorithm takes two
genomes and estimates the degree of relatedness
between them, which can range from close relatives
(e.g., parents, siblings) to distant cousins. The meth-
ods proposed here can be used to perform relation-
ship estimation but this is out of scope of this work.

6.	 Genealogical research: genealogists use the matches
found in step 5 to reconstruct family trees, tracking
common ancestors and descendants to reduce the
number of potential suspects.

7.	 Identifying the suspect: once a potential match is
identified, law enforcement collects a DNA sample
from the suspect to confirm the match through tradi-
tional forensic methods.

Kinship estimation
The kinship score determines the degree of relatedness
between two individuals based on their genetic data
(see [10–12]). The database matching step, described in
step 4 above, relies on predicting the kinship between
the uploaded genetic profile and the genetic profiles in
the database. It is a measure of the probability that a ran-
domly chosen allele from one individual is identical by

descent (IBD) to a randomly chosen allele from another
individual. It can be mathematically described (see [13])
as

where L is the number of loci (genetic markers or SNP
variants), xil and xjl are the SNP variants of individuals
i and j at locus l, and pl is the allele frequency at locus l.

Scope of this work in the FGG context
Step 4 is the subject matter of this work and of the
iDASH competition task. It concerns kinship predic-
tion. The input data of this work comes from step 2, a
genome sequence formed of SNP variants represented
with elements in the set {0, 1, 2} . This genome encoding is
a sequence of bi-allelic SNP data. In the GDS (Genomic
Data Structure) data format, which is derived from a VCF
(Variant Call Format) data file, the genotype encodings 2,
1, and 0 refer, respectively, to Homozygous for the refer-
ence allele (both alleles match the reference allele), Het-
erozygous (one of the alleles matches the reference allele
and the other matches the alternate allele), and Homozy-
gous alternate genotype (both alleles match the alternate
allele). It basically counts how many alleles match with
the reference allele in a specific position (gene locus) of
the reference genome (see similar explanation in [9]).

For simplification, the database matching task in step
4 is a search problem cast as a decision problem. The
matching task is reduced to finding out whether or not
the uploaded profile matches with any of the profiles
in the database, while not requiring that any potential
matches be exactly identified or retrieved. This means
that the uploaded profile may not need be compared with
all, or any, of the database profiles to deliver the answer.
In this case, step 4 of the FGG task can be split into two
parts. The first part regards screening each database to
find out whether there exists any potential matches. All
that is needed is to identify the nature of the relationship
between the uploaded profile and the genetic database,
i.e. answering the question “Is there any relative of the
query individual in the probed genetic database?”. Once
the databases that contain relatives are identified, then
the second part starts, which consists of searching for the
actual candidate matches in each of the databases where
the uploaded profile was screened and found to share
DNA segments with other database profiles. We concen-
trate our efforts on part 1 of step 4 as just described since
it was the required task in iDASH competition. Steps 1, 2,
3, 5, 6, and 7 fall outside the scope of this work.

We simplify the problem to obtain the kinship score
between the individual query and the genomic database.

(1)φij =
L

l=1

(xil − 2pl)(xjl − 2pl)

2pl(1− pl)
,

Page 5 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

We use homomorphic encryption to devise privacy-
preserving methods to perform the relatedness match-
ing while securing the computation with genetic data.
The output of our methods can also be used as kinship
predictions between pairs of genetic profiles and then
used to estimate relationship types (step 5), but it is not
the subject of study here. We use the predicted kinship
scores to estimate the relationship of the uploaded profile
directly with the genetic genealogy database. Other pri-
vacy-preserving genetic relatedness testing methods have
been proposed and are discussed in [14–17].

Related work
Current security and privacy protection practices in genomic
data sharing
Genomic data sharing [18, 19] is particularly useful
for precise medicine [20]. There are a myriad of uni-
fied genomic database knowledge projects (see [21] for
a list) that provide researchers with genetic data shar-
ing and analysis [22] capabilities for this purpose. Along
with that, concerns regarding genomic data security and
privacy are raised [21]. They implement different strate-
gies to offer security and privacy protection guarantees.
For instance, control access through administrative pro-
cesses, laws and regulations, data anonymization, and
encryption.

Administrative processes  To obtain access to controlled
data from the NCI (National Cancer Institute) Genomic
Data Commons (GDC) [20, 23] knowledge database, it
is required to file a dbGaP (Database of Genotypes and
Phenotypes) authorization request that will be reviewed,
approved or disapproved by the NIH (National Institutes
of Health) Data Access Committee (DAC) on the basis of
whether or not the usage will conform to the specifica-
tion determined by the NIH Genomic Data Sharing Pol-
icy (see more details at [24]). Once access is granted, the
recipient is entrusted with and accountable for the secu-
rity, confidentiality, integrity and availability of the data,
including when utilizing Cloud computing services.

Another example is the European Genome-phenome
Archive (EGA)’s data access [25], which operates in a
similar manner, i.e. through Data Access Agreement
(DAA) and Data Processing Agreement (DPA) docu-
ments, but enhancing data access security and confiden-
tiality via authenticated encryption of data files using
Crypt4GH [26]. Many other public genomic datasets
exist and implement similar security and privacy protec-
tion practices, as reviewed by [21].

Employing administrative processes only is not suit-
able for privacy-preserving FGG. This implementation of
access control to sensitive data depends on the integrity

and goodwill of the authorized individual to self-report
any agreement violations and data breaches. Once data
access is granted, there is a lack of oversight to enforce
policies related to genomic privacy, re-identification, and
data misuse.

Data anonymization  Data anonymization involves
obscuring personal identifiers in genetic data to protect
individual’s privacy. It can also come in the form of aggre-
gated data that shows trends and patterns without reveal-
ing specific identities. Data masking is also a technique
employed to alter sensitive parts of the data to prevent
identification [27].

Employing data anonymization only is not suitable
for privacy-preserving FGG. Genetic data is unique and
inherently identifiable. Even when anonymized, it can
often be re-identified through genealogical research and
cross-referencing with other data sources. Anonymi-
zation of data also bring serious limitations due to the
uniqueness of every individual’s genome, which can
be easily subject to proven re-identification attacks
(see [28]).

Laws and regulations  Laws and regulations play a cru-
cial role in protecting the privacy of genetic data and
medical information. They legally protect individual’s
medical record and other PII data, including genetic
data, by setting standards for the use and disclosure of
such information by covered entities. Their security rules
depends on appropriate administrative and technical
safeguards to ensure confidentiality, integrity and secu-
rity of protected health information. They set the foun-
dation of genetic privacy but carry limitations that pose
increased risk to individuals’ privacy.

Employing laws and regulations only is not suitable for
privacy-preserving FGG. There is a lack of standardized
regulations and ethical guidelines governing the use of
genetic data in forensic investigations. Legal acts such
as HIPAA and GINA seem inadequate and leave gaps in
protection since they focus on who holds the data rather
than the data itself because it only applies to covered
entities. For example, they do not regulate consumer-
generated medical and health information or recreational
genetic sequencing generated by commercial entities
such as 23andMe and Ancestry.com. Therefore, we can
argue that these commonly practiced solutions fall short
in securing genomic data privacy.

In all the aforementioned genomic data sharing data-
base cases, privacy protection is traded by confidentiality
agreements, which do not offer the same layer of protec-
tion to sensitive data since their compliance is subject to

Page 6 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

the actions of fallible human beings. The adequate solu-
tion shall enforce privacy protection policies on the data
regardless of the creator or who has access to it. Cryp-
tographic techniques appear to be the most suitable
to address it in this manner (e.g. [29]), where the most
advanced of them allows making inferences and analyt-
ics while the data is encrypted, while never revealing the
contents to the user.

Encryption in genomic data sharing  Privacy risks asso-
ciated to accessing and storing genetic data can be miti-
gated by enabling confidentiality through cryptography.
If either at rest or in transit, genetic data can be guarded
from unwarranted access using state-of-the-art encryp-
tion schemes (e.g. [26, 30, 31]). This way, only author-
ized personnel holding the decryption key can reveal the
contents of the encrypted genetic data. Crypt4GH [26]
is an industry standard for genomic data file format to
keep genomic data secure while at rest, in transit, and
through random access; thus, allowing secure genomic
data sharing between separate parties. A solution so-
called SECRAM [32] data format has been proposed
for secure storage and retrieval of encrypted and com-
pressed aligned genomic data. To perform data analytics
with machine learning algorithms in such case, the data
is required to be decrypted and it becomes vulnerable to
cybersecurity attacks. This is the major protection limita-
tion of conventional cryptographic encryption schemes,
i.e. requiring decryption before computing.

On the other hand, encrypting genomic data with
Homomorphic Encryption (HE) schemes allows com-
putation over encrypted data without ever decrypting
it; thus, not revealing any sensitive content since the
data remains encrypted, ensuring true private computa-
tion. This additional layer of security can potentially help
reduce the time and cost spent on reviewing and approv-
ing data accesses. When computationally demanding data
analysis is desired, more often than not, processing needs
to occur in (public) untrusted cloud service providers due
to limited local computing resources and/or access to a
restricted number of analytic model IPs. In this context,
modern cryptography introduces homomorphic encryp-
tion methods (e.g., BGV [33], and CKKS [34]), which
bring the capability of protecting data privacy during
computation in a semi-honest security model.

Genetic privacy protection with homomorphic encryption
Fully Homomorphic Encryption (FHE) allows compu-
tation of arbitrary functions on encrypted data without
decryption [35]. This means the data is also protected
during computation (processing) since it remains
encrypted. Its security guarantee stems from the

hardness of Ring Learning with Errors (RLWE) assump-
tions [36]. There are two aspects to this assumption,
namely, decisional and computational. The decisional
RLWE assumption states that it is infeasible to distin-
guish pairs (a, b) picked at random from a distribution
over a ring R2

Q and pairs constructed as (a, a · s + e)
with a sampled from RQ , where e and s are randomly
sampled from a noise distribution X over the ring R .
The computational assumption states that it is hard to
discover the secret key s from many different samples
(a, a · s + e) . This homomorphic encryption construct is
built on a polynomial ring RQ = ZQ[x]/(XN + 1) , where
ZQ denotes the ring of integers modulo Q that populate
the polynomial coefficients, XN + 1 is the Mth cycloto-
mic polynomial φM(x) , and N = M/2 . The choice of N,
where N is typically a power-of-2 integer, is determined
by the value of the coefficient modulus Q and the secu-
rity parameter � , such that M = M(�,Q) is a function of
� and Q.

Various homomorphic encryption schemes built
on RLWE constructs that work naturally with inte-
gers emerged in the literature (e.g. [33, 37]). Although
the genetic data in this work takes values in the set
G = {0, 1, 2} , the expected output and model param-
eters to perform the data analysis and predictions oper-
ate on numbers in floating-point representation. This
is especially true when training machine learning mod-
els to make predictions from genotypes. For this rea-
son, it is natural to opt for a homomorphic encryption
scheme intrinsically designed to accommodate floating-
point arithmetic. Cheon et al. [34] put forward the first
homomorphic encryption for arithmetic of approximate
numbers, also commonly known as the CKKS (short
for Cheon-Kim-Kim-Song) scheme, that is most suit-
able to operate on real numbers. The CKKS scheme [34]
is a levelled homomorphic encryption (LHE) public key
encryption scheme based on the RLWE problem [36]. It
allows to perform computations on encrypted complex
numbers; thus, real numbers too. The ability of the CKKS
method to handle floating-point numbers, approximated
with fixed-point representation, makes it particularly
attractive for confidential machine learning (ML) and
data analysis. In the following, we briefly describe the
CKKS scheme that we will use throughout this paper.

The same noise e added during the encryption to
strengthen the security also contributes to limiting the
number of consecutive multiplications as the noise grows
as consequence of that, possibly causing decryption
error. CKKS controls this error-causing noise growth
with the concept of levels and rescaling. Initially, a fresh
CKKS ciphertext ct is assumed to encrypt numbers with
certain initial precision masked by the added noise of
smaller precision. The initial noise budget of a CKKS

Page 7 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

ciphertext (see Fig. 2) is determined by the parameter L
(multiplicative depth). The integer L corresponds to the
largest ciphertext modulus level permitted by the secu-
rity parameter � . Let the ring dimension N be a power-
of-2, a modulus Q = qL = �L , and ql := �l for 1 ≤ l ≤ L ,
and some integer scaling factor � = 2p , where p is the
number of bits for the desired (initial) precision.

Before encryption, the message needs to be encoded
in a plaintext space. Genetic data vector q ∈ G

n is seen
as a single CKKS message z ∈ C

N/2 , assuming n ≤ N/2 ,
mapped to a plaintext object �m ∈ R . This plain-
text space supports element-wise vector-vector addi-
tion, subtraction, and Hadamard multiplication. For
encoding and decoding procedures, CKKS relies on
a field isomorphism called canonical embedding, i.e.
τ : R[x]/(XN + 1) → C

N/2 . Hence, we have

Equipped with the aforementioned concepts, we now
define the following CKKS operators:

•	 KeyGen(RqL ,χkey,χerr , 1
�)

–	 Sample s ← χkey and set the secret key as sk = (1, s)

.
–	 Sample a ← U(RqL) (where U denotes the Uni-

form distribution) and e ← χerr.
–	 Set the public key as pk = (b, a) ∈ R

2
qL

 where
b = [−a · s + e]qL

•	 Encpk(�m)

–	 Given a plaintext message �m ∈ R , sample v ← χenc
and e0, e1 ← χerr.

–	 Output the ciphertext ct = [v · pk + (�m+ e0, e1)]qL
.

•	 Decsk(ct)

(2)Encode(z,�) = ⌊� · τ−1(z)⌉

(3)Decode(�m,�) = τ (
1

�
·m)

–	 Given a ciphertext ct ∈ R2
qL
 , where ct as encryp-

tion of �m satisfies �ct, sk� = �m+ e(mod qL) for
some small e, then the decryption output results in
�m′ = �ct, sk�(mod qL) , where �m′ is slightly differ-
ent from the original encoded message �m ; indeed,
an approximated value when ||e||∞ << || �m||∞
holds true.

•	 Add/Sub(ct1, ct2)

–	 Given two ciphertexts ct1, ct2 , output the ciphertext
ctadd/ctsub = [ct1 ± ct2]qL encrypting a plaintext
vector �m1 ± �m2.

•	 Multevk(ct1, ct2)

–	 Given two ciphertexts ct1, ct2 ∈ R2
qL
 , output a level-

downed ciphertext ctmult ∈ R2
qL−1

 encrypting a plaintext
vector �m1 ⊙ �m2

•	 Relinevk(ct)

–	 When two ciphertexts ct1 and ct2 are multi-
plied, the results if a larger ciphertext ctMult =

Mu(ct1, ct2) = (d0, d1, d2) , where d0 , d1 , and d2
are the components of the resulting ciphertext.
To reduce the ciphertext back to the original
size, a relinearization key evk is used to trans-
form the ciphertext from three-component form
back to a two-component form, such that ctrelin =

Relinevk((d0, d1, d2)) = (d′
0
, d′

1
) , where the results

of applying Relinevk is defined by the expression
(d0 +

∑2
i=1 evki · di, d1 +

∑2
i=1 evki+2 · di).

•	 Rotaterk(ct, r)

–	 This operator is also called automorphism. For
a ciphertext ct encrypting a plaintext vector �m =
(m1, . . . ,mn) , output a ciphertext ct ′ encrypting a
plaintext vector �m′ = (mr+1, . . . ,mn,m1, . . . ,mr) ,
which is the (left) rotated plaintext vector of ct by r
positions.

•	 Rescale(ct)
–	 When two ciphertexts ct1 and ct2 are multiplied, the

resulting ciphertext ctMult = Multevk(ct1, ct2) has
a scale that is the product of the scales of ct1 and
ct2 , i.e. �Mult = �1 ·�2 . Rescaling brings the scale
back to a manageable level. It involves dividing the
ciphertext by a factor � , i.e. ctrs = ⌊ ctMult

�
⌋.

•	 ModSwitch(ct, q′)

Fig. 2  CKKS ciphertext structure depicting the noise budget in a freshly encrypted ciphertext

Page 8 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

–	 Modulus switching in CKKS is used to reduce the
modulus of the ciphertext to help manage the noise
(and plaintext) growth and to match levels of
ciphertexts operating together. To switch to a
smaller modulus q′ < q , the ciphertext components
ct0 and ct1 are scaled down and rounded according
to ct ′ = (⌊ q′q · ct0⌋, ⌊ q

′
q · ct1⌋) mod q′.

The distribution χenc and χerr denote the discrete
Gaussian distributions for some fixed standard deviation
σ . The distribution χkey outputs a polynomial of {−1, 0, 1}
coefficients. We denote the rounding function ⌊·⌉ and
modulo q operation [·]q . The encoding technique allows
parallel computation over encryption in a Single-Instruc-
tion-Multiple-Data (SIMD) way making it efficient once
the computation is amortized on the vector size.

DNA matching methods
There are two lines of work relevant to our topic: first,
database queries on cleartext data that could be adapted
to Homomorphic Encryption and second, encrypted
genomic database queries. Not all popular methods in
the unencrypted domain are good candidates to run in
the encrypted domain. Depending upon the Homomor-
phic Encryption scheme, mathematical functions like
max, min, greater than, less than, is equal to and algo-
rithm like loops and sorts are not easily implementa-
ble on encrypted data. We are looking for methods that
enable swift kinship searches for relatives up to the third
degree, while observing the aforementioned constraints
imposed by the difficulties to transform it into a homo-
morphic encryption arithmetic circuit.

Cleartext protocols for DNA matching  Genetic related-
ness or kinship between two individuals can be described
as the likelihood that, at a randomly chosen genomic
location, the alleles in their genomes are inherited from a
common ancestor. This phenomenon is known as Identi-
cal-by-Descent (IBD). This concept of relatedness should
not be confused with Kinship coefficient and metrics
closely connected to other genetic measures, including
the inbreeding coefficient and probabilities associated
with sharing IBD segments.

To identify biological relationships beyond immedi-
ate family, the segment approach and extended IBD
segments are effective but require high density mark-
ers, typically not available in forensic samples. Forensic
samples typically rely on STR (Short Term Repeat) DNA
typing, the preferred data format of forensic searches
in criminal databases (i.e., Familial DNA Searching) to
obtain partial matches with immediate relatives. Find-
ing matches beyond immediate relatives is more suit-
able using single nucleotide polymorphism (SNP) data

format. The main challenge in DNA kinship matching is
choosing the right method for the computations. Most
methods rely on observed allele sharing, Identity-By-
State (IBS), to estimate probabilities of shared ancestry
(IBD) or kinship coefficients and many of these are too
complex to run on encrypted data. Methods available for
DNA kinship matching up to the third degree (e.g., sib-
lings, half-siblings, or first cousins) differ in complexity,
accuracy and latency.

[12] distinguish four categories of kinship methods.
The first category entails moment estimators such as
KING [10], REAP [11], plink [38], GCTA [39], GRAF [9]
and PC-Relate [40] that use Identical-by-State (IBS)
markers and genotype distances to estimate expected
kinship statistics. The second category is represented by
the maximum-likelihood methods RelateAdmix [41] and
ERSA [42], which use expectation- maximization (EM)
to jointly estimate the kinship statistics. The third and
fourth families of methods use IBD-matching on phased
genotypes (e.g. [43, 44]), and kinship estimation from
low-coverage next-generation sequencing data [45, 13,
46]. All these methods use one or more of three types of
analysis, namely:

•	 Identity by Descent (IBD) Analysis by considering
shared alleles across the entire genome, provides
insights into relatedness at different temporal scales
and levels of relatedness. Dou et al. [47] use mutual
information between the relatives’ degree of related-
ness and a tuple of their kinship coefficient to build a
Bayes classifier to predict first through sixth-degree
relationships. Smith et al. [48] developed IBIS, an
IBD detector that locates long regions of allele shar-
ing between unphased individuals.

•	 Morimoto et al. [49] use Identity by State (IBS)
Analysis to identify regions of the genome where two
individuals share the same alleles. The proportion of
the genome that is IBS will indicate the level of relat-
edness.

•	 Ramstetter et al. [50] use Haplotype Sharing Analy-
sis to look at shared haplotypes within particular
genomic regions to uncover recent common ancestry.

Nonetheless, these methods can be too complex to
yield the low latency required for demanding elaborate
polynomial approximations of non-linear functions to
transform them into a homomorphic encryption arith-
metic circuit. Moreover, while the competition challenge
is well-suited for search methods that calculate kinship
scores between each query and every entry in the data-
base, it can also be re-framed as a decision problem to
become more amenable to resolution through decision
algorithms. Specifically, the challenge involves the task

Page 9 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

of establishing kinship scores that quantify the degree
of genetic relatedness between a given query and any
sample within a genomic database. Homer et al. [8] sug-
gest an algorithm working on clear text using clustering
of admixed population. They demonstrate experimen-
tally the identification of the presence of genomic DNA
of specific individuals within a series of highly complex
genomic mixtures. This is significant for two reasons:
first, it brings back to the forefront SNPs for identifying
individual trace contributors within a forensics mixture,
when STRs were the preferred method. Second, we will
show (see “Clustering-based supervised method” sec-
tion) that this method is low latency, accurate and ame-
nable to Homomorphic Encryption.

The choice of method depends on the quality and
quantity of genetic data available, as well as the specific
relationships being investigated and the population struc-
ture. The fastest methods to compute kinship are IBD
methods. These methods, however, are not Homomor-
phic Encryption friendly and may require large comput-
ing resources and long latency running in the encrypted
domain. Table 1 shows the fastest available methods to
compute kinship on unencrypted data [51].

Private queries on encrypted data
Over the last 10 years there has been a number of papers
demonstrating private queries on encrypted data. Ram-
stetter et al. [52] suggest a secure biometric authentica-
tion method that employs fully homomorphic encryption
TFHE scheme. They match biometric data from a local
device, to an encrypted biometric template on a remote-
server encrypted database. Pradel and Mitchell [53]
introduce Private Collection Matching (PCM) problems,
in which a client aims to determine whether a collec-
tion of sets owned by a database server matches their
interests.

EdalatNejad et al. [54] propose a string matching pro-
tocol for querying the presence of particular mutations
in a genome database. They combine Homomorphic
Encrytion scheme BGV [55] and private set intersec-
tion [56] to search for similar string segments. Chen
et al. [57] compute private queries on encrypted data in
a multi-user setting. Bao et al. [58] compute conjunctive

queries on encrypted data. Saha and Koshiba [59] exe-
cute comparison queries while [60] compute range
queries on encrypted data. Boneh and Waters [61] com-
pute relatedness scores within the protective confined
Trusted Execution Environment of SGX, a hardware
approach. Chen et al. [62] proposed “sketching”, [63]
worked on “fingerprinting”, while [64] implemented a
differential privacy scheme. Wang et al. [12] proposed a
method to compute relatedness in the encrypted domain
using Homomorphic Encryption taking into account
admixed populations. This projection-based approach
utilizes existing reference genotype datasets for estimat-
ing admixture rates for each individual and use these to
estimate kinship in admixed populations. Dervishi et al.
[65] implements a k-means algorithm on encrypted data
using CKKS. This algorithm shows the feasibility of our
clustering scheme should we require to implement it fully
encrypted as proposed by [66].

Methods
The relatedness measurement of a genetic sample query
to a population of individuals comprising a genetic gene-
alogy database can be framed as a decision algorithm: its
purpose is to ascertain whether a given forensic genomic
sample has a relative (match) in the database, extend-
ing up to the 3rd degree of kinship. For each individual
query, a score is calculated, and this score is designed to
be high when a relative is found and low when there is
no relative in the database. Data discovery and analysis
reveal the necessity of having a reference frame for map-
ping the query. Interestingly, any genome can act as this
reference frame, particularly because the competition
genomic database is derived from the same statistical
data as the genomes in the challenge database, resulting
in identical second-order statistics. Consequently, for
practicality, we have opted to utilize the mean genome
(allele average across all genome samples) from the chal-
lenge database, which is calculated offline and encrypted
at runtime, as our reference.

To assess genetic relatedness, we design a metric built
on one-sample paired z-test hypothesis testing. This
turns into our unsupervised method discussed in “Unsu-
pervised method” section. In this approach, we assign

Table 1  The fastest kinship methods on unencrypted data are IBD based. These performance numbers were reported in Table 1 of
paper by [51]. These methods were evaluated on the SAMAFS dataset and their performance was measured on a sample that included
32154 pairs of annotated related individuals and 3051598 pairs of annotated unrelated individuals

Method Type Pre-processing Runtime Output

PLINK Allele frequency IBD estimate N/A 18.1s IBD proportions

KING Allele frequency IBD estimate N/A 4.6m IBD proportions

REAP Allele frequency IBD estimate 2.8h 3.8h IBD proportions

Page 10 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

weights to each coordinate when mapping the query
onto the aforementioned reference frame. In order to
improve accuracy and latency performances, we propose
two supervised approaches. In “Clustering-based super-
vised method” section, we present the one that uses the
k-means algorithm on the challenge database to discover
k data points to represent the underlying population
mixture. This method uses the distance between a query
and these k data points to gauge whether it relates to any
of the k reference populations comprising the probed
genetic database. The second method, discussed in “Lin-
ear regression method” section, transforms the query by
correlating it with the database mean. This transforma-
tion is an attempt to unveil an underlying pattern that
could discern a query whose relative genetic data is pre-
sent in the database from a query whose genetic data
is absent. The output of these transformations are then
used as features to learn a linear regression model trained
to predict 1 if a query has a relative in the database and 0
if otherwise. On what concerns data privacy protection
of the methods, a summarized description of the secu-
rity parameters used for encryption is shown in Table 2,
while a more detailed discussion is carried out in their
respective security subsections.

Unsupervised method
Unsupervised algorithms present a natural choice
for addressing the relatedness problem. They require
minimal assumptions about the dataset and contrib-
ute to more robust generalization. We proceed with
the assumption that the genomic database primarily
comprises genomes from individuals who are unre-
lated to the query individual. This assumption is
grounded in the fact that on average fertility rate in the
world population is 2.27 [67]; an individual is on aver-
age likely to have less than 97 relatives up to the third
degree (see Table 3). In addition, it is unlikely that all
relative genomes have found their way to the database;

however, if we use the historical highest average fer-
tility rate of 6.8 [67], the number of third degree rela-
tives could reach 2339 (see Table 4), which is still much
lower than a typical genomic database size but greater
than our challenge dataset, in which case, our method
could not be used. That is, if we rely on the assumption
that our database characteristics follow the fertility rate
is 6.8, implying 2339 relatives up to 3rd degree, then
our assumption that the individuals in the database are
mostly unrelated, on which our method relies, would
not be suitable since the challenge database has only
2000 samples. In the real-world scenario, where the
databases have tens to hundreds of thousands of sam-
ples, then our assumption that the samples in the data-
base are mostly unrelated might still hold, for which
our method could still be functionally suitable.

We precomputed offline the correlations (dot prod-
ucts) between known queries that are confirmed to have
a relative within the challenge database and every entry
in the database. Our analysis reveals that 367 entries in
the challenge database are related to at least one of the
200 positive query individuals (see Fig. 3). Note that,
by carefully observing Fig. 3, we may infer that correla-
tion values around 13250 could indicate relatives of 1st
degree, around 12000 will probably determine relatives
of 2nd degree, around 11500 sits relatives of 3rd degree,
and below and beyond lies distant relatives or unrelated
individuals, i.e. individuals from different populations,
with respect to query i (marked along the x-axis). This
implies that, on average, each positive query is associated
with just 1.83 relatives within the challenge database, out
of a potential total of 97 existing relatives. It is worth not-
ing again that only a small minority of these potential
relatives have their genome data present in the challenge
database. These findings validate the robustness of our
unsupervised approach.

Within this framework, Eq. 4 serves the purpose of
quantifying the distance between a query q and the mean
µ of the database considering all genotype variants, from
i = 1 to i = 16344 . Clearly, the database mean aligns
closely with the centroid of the unrelated genomes, given
their substantial presence compared to the related ones.
In fact, the database mean is the average of genotype val-
ues across all genomes from the database. In this manner,
the database mean essentially characterizes “unrelated-
ness to any individual in the database”. This can be con-
firmed by observing that the correlation of any entry in
database with the database mean (see blue x plots on
lower right corner of Fig. 3) has lower correlation values
than a correlation between a query and its relative in the
database (see green solid circles plotted in Fig. 3).

Another way to support this interpretation is by
observing the scatter plot of the correlations between

Table 2  Summary of the security parameters for the algorithms
to run under � = 128-bit security level. Security implementation is
based on the Microsoft SEAL library. N is the polynomial ring size,
logQ is the coefficient modulus size, � is the scaling factor, and L
is the multiplicative depth of the HE algorithm

3 L refers to the multiplicative depth of the algorithm and determines the size
of logQ . The symbol / indicates another parameterization where L and logQ are
different

Method N logQ log� L3

“Unsupervised method” section 213 218 / 188 30 4 / 3

“Clustering-based supervised method” sec-
tion

212 109 29 1

“Linear regression method” section 212 109 29 1

Page 11 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

queries and the database mean in Fig. 4. They appear
entangled and hardly defined to judge if positive or
negative queries correlate more or less to the database
mean. Superficially, it appears there is more correlation
of the mean with the negative queries. This observation
is used to consider that more correlation to the mean
signifies more likelihood to be unrelated to any specific
individual in the database since the mean approximates
the average of the populations. We extend this obser-
vation to interpret and explain the clustering-based

formulation proposed in “Clustering-based supervised
method” section.

In Eq. 4, qℓ is an encrypted genome sample (query)
ℓ , D is the encrypted genomic database, qℓ,i is the
encrypted value of genotype variant at gene locus i
in query qℓ , µi is the average value of genotype vari-
ants at gene locus i across all individuals in admixture

(4)f (qℓ,D) =
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i

.

Fig. 3  This plot shows the correlation value of each query with every sample in the genomic database

Table 3  Estimation of Average Direct Relatives depending upon
average 2022 world fertility rate (2.27)

a Historical world high fertility rate [67]

First degree Second degree Third degree

parents 2

child 2.27a

siblings 1.27

grand-parents 4

grandchild 10.31

aunt-uncle 2.82

niece-nephew 6.41

gt-granparents 8

gt-grandchildren 46.79

gt-uncles/aunts 5.08

first cousins 8.04

Total Relatives 5.54 23.54 67.90

Table 4  Estimation of Average Direct Relatives depending upon
historical average high fertility rate (6.80)

a Historical world high fertility rate [67]

First degree Second degree Third degree

parents 2

child 6.8a

siblings 5.8

grand-parents 4

grandchild 92.48

aunt-uncle 109.43

niece-nephew 744.13

gt-granparents 8

gt-grandchildren 1257.73

gt-uncles/aunts 23.2

first cousins 85.68

Total Relatives 14.6 950.04 1374.61

Page 12 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

population making up D (2000 database samples). Simi-
larly, σ 2

i is the variance of genotype variants at gene
locus i.

Inspired by the one-sample paired z-test, we first
assume that the means µi are continuous and simple
random sample from the population of interest. Second,
we assume that the data in the population is approxi-
mately normally distributed and, third, that we can
compute the population standard deviation from the

genomic database. From that, we proceed with hypoth-
esis testing, making the Eq. 4 an approximation of the
distance from the query to the group of unrelated indi-
viduals. When this distance is small, the query yields an
“unfound” result, whereas a larger distance results in a
“found” outcome. Notably, observations of genotype
variants from related queries exhibit more significant
deviations from the mean compared to those in unre-
lated queries.

Fig. 4  Scatter plot showing the correlation of positive and negative queries with respect to the database mean

Fig. 5  Scatter plot of relatedness determinants per query calculated using Eq. 4. Weighing the distance by the variance allows for better linear
decision boundary

Page 13 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

Experimentally, we verify that the distance values
(scores) derived from related queries using Eq. 4 tend
to be higher in comparison to the reference population,
as opposed to scores from unrelated queries (see Fig. 5).
These scores allow for the projection of related and
unrelated queries into a linearly separable space using a
predefined threshold. Indeed, the choice of a threshold
renders a linear decision boundary to realize the final
classification/detection about whether the query has a
relative in the database or not. Additionally, examining
the classification performance (False Positive Rate, Pre-
cision and Recall) at varying thresholds allows us to plot
the receiver operating characteristics (ROC) curve and
select an optimal threshold value for final predictions of
unseen queries (see Fig. 6).

Optimization for performance
As follows, we make adjustments to Eq. 4 to ensure its
compatibility with Homomorphic Encryption. In Eq. 5,
we add a small constant e to the denominator to avoid
division by zero. In Eq. 6, we replace the variance σ 2 by
the mean µ to avoid computations that would not change
the ranking – this was verified experimentally.

(5)
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i

≈
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i + e

(6)
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i + e

→
n∑

i=1

(
qℓ,i − µi

)2

µi + e

In Eq. 7, we approximate the division by µ with a linear
equation.

Initially, we considered utilizing the Goldschmidt’s
algorithm [68] for variance division calculation. How-
ever, this approach calls for a staggering 26 multiplica-
tive levels (in our implementation, without the need for
bootstrapping), rendering it unsuitable for achieving low
latency. In lieu of Goldschmidt’s, we opted for a linear
approximation of division by the mean µ , even though
it introduces a degree of inaccuracy. The trade-off, how-
ever, is the substantial reduction in latency. Equation 7
requires multiplicative depth L = 4 (i.e. 4 multiplication
levels) with the CKKS scheme. We achieve this by choos-
ing logQ = 218 with scaling factor � = 230 , for which
the choice of smallest polynomial degree to reach 128-
bit security is N = 213 [69]. Note that Q here denotes
the coefficient modulus value and logQ is the number of
bits required to represent it in binary base. The scaling
factor � = 230 , even though small, proved to offer suf-
ficient noise budget to refrain from arithmetic precision
loss, such that the results obtained homomorphically
are equal to the outputs in clear text. Table 5 shows how
we heuristically find the optimal threshold for post-pre-
diction decision making and the small constant e used
in Eq. 7. Figure 6 shows how the auROC varies with the
value e, where each ROC curve is plotted by varying the

(7)

n∑

i=1

(
qℓ,i − µi

)2

µi + e
≈

n∑

i=1

(
qℓ,i − µi

)2
(a(µi + e)+ b)2,

where a(µi + e)+ b ≈ 1√
µi + e

, a = −10.51, b = 12.49

Fig. 6  ROC curve plot of the unsupervised solution for different threshold values and different choices of e. Each ROC curve is plotted by varying
the threshold with fixed e value

Page 14 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

prediction decision threshold value. The optimal thresh-
old value in each ROC curve is located at the point in the
curve that satisfies minx,y(TPR− (1− FPR)) , where FPR
is the false positive rate at the x-axis and TPR is the true
positive rate at the y-axis.

Additionally, we employed OpenMP to parallelize the
addition operations involved in the homomorphic com-
putation of the mean µ . Note that the homomorphic
computation of the mean is only necessary when dealing
with fully unsupervised case, where the order statistics of
the population is unknown; otherwise, the mean can be
precomputed ahead of time and available for inference in
encrypted form to further reduce inference latency. Fur-
thermore, we reorder the sequence of operations to delay
the homomorphic rotations such that they are always
applied to a reduced number of ciphertexts; thus, effec-
tively reducing the number of rotations since they are
only performed in extremely necessary cases. We called
this “lazy” rotation, typically happening for outer sums of
ciphertexts. We also perform multiple query predictions
in parallel using OpenMP.

This algorithm runs in two steps: it first evaluates the
database mean, and secondly it evaluates Eq. 7 to obtain
the prediction score. Step one can be done offline with
the challenge database or online using the competi-
tion database during inference. If computed offline, the
mean database will be encrypted and be part of the input
to the homomorphic evaluation of Eq. 7. Precomputing
the mean allows us to reduce the required multiplica-
tive depth of the homomorphic circuit, in which case the
encryption parameters are set to L = 3 and logQ = 188 ,
which in turn also helps reduce latency.

Security level and parameters selection
A security level of 128 bits is enforced by using a poly-
nomial modulus degree of N = 213 and coefficient mod-
ulus size logQ = 218 . We follow the BKZ.sieve model
discussed in [69] to determine the values for those
parameters, namely logQ and N, to achieve 128-bit secu-
rity level. We set the sequence of co-primes to have bit

lengths {49, 30, 30, 30, 30, 49} whose product approxi-
mates Q, whereas for the case L = 3 with logQ = 188 ,
the sequence has one less inner co-prime and it becomes
{49, 30, 30, 30, 49}.

Packing
In order to reduce computational cost, we streamline
the data packing into as few CKKS ciphertext as pos-
sible. Figure 7 illustrates how by selecting a polynomial
ring degree of N = 213 , there are 4096 slots within a sin-
gle ciphertext where we can effectively store up to 4096
genotype variants out of the 16344. Consequently, merely
4 ciphertexts are needed for encrypting a genome fea-
ture vector encompassing 16344 genotypes variants. This
means that if the polynomials of ciphertexts have degree
N, Microsoft SEAL’s implementation of CKKS offers
enough slots to store N/2 fixed-point numbers. Hence-
forth this same data packing strategy is used across all
solutions presented in this work.

Algorithm 1 Drop the moduli of the ciphertext with more levels
to match the ciphertext with less number of levels

Algorithm 2 Computation of the linearly approximated constant fraction
1√
µi+e

Table 5  List of threshold choices. By varying the threshold e we
find the maximum ROCAUC​

a Optimum threshold for this dataset

e auROC TPR FPR Threshold

1 0.5 0.0 0.0 1.0

0.1 0.5 0.0 0.0 1.0

0.01 0.9521 0.87 0.13 114478.50

0.001a 0.9794 0.92 0.08 115447.70

0.0001 0.9794 0.92 0.08 115447.70

Page 15 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

Algorithm 3 Computation of the inner sum of the elements in the slots
of a vector of ciphertexts, which is described by the last two equations
in Eq. 16. N is the polynomial ring size, such that N/2 corresponds
to the number of slots. Here we assume empty slots are filled with zeros

Algorithm 4 Fully Unsupervised Algorithm: Z-Test Inspired
Method (Eq. 7)

Encrypted algorithm
The encrypted algorithm is described in Algorithm 4.
Lines 5 through 12 compute the database mean µ̂ in the
encrypted domain. Lines 13 thru 14 add the small con-
stant that avoid division by zero in the cleartext domain,
where line 14 (see Algorithm 1) ensures that the plaintext
e has the same scale and level of µ̂ . Line 15 sums the
encrypted mean µ̂ with a small constant e. From line 16
(Algorithm 2) to line 19, we compute the encrypted
approximation for 1

µ̂+e
 , i.e. (a(µ+ e)+ b)2 . Lines 20

through 25 compute (qℓ − µ)2 . Lines 26 through 28

multiply the two terms (qℓ − µ)2 and (a(µ+ e)+ b)2 .
Finally, the final score for query qℓ is computed as the
sum of all the elements in the slot of ciphertext χ̂ ′[ℓ] , i.e.
performing the sum n∑

i=1

(
qℓ,i − µi

)2
(a(µi + e)+ b)2

 (see Algo-

rithm 3 for details on the rotation-sum operation).

Clustering‑based supervised method
The clustering-based approach was derived from the
framework put forward in [8] and it is similar in spirit to
the approach by [12], which takes into account sub-pop-
ulations. The database D is represented by a set of clus-
ter centroids cj and the database mean µ . The first term
of Eq. 8 measures the absolute distance between a query
qℓ and the database population mean µ . The smaller this
distance, the more uncertainty to determine whether a
query has a relative in the underlying population mixture.
The second term measures the absolute distance between
a query qℓ and a centroid cj , in which j denotes the jth
centroid. The smaller this second distance, the greater
the likelihood for a query to have a relative in the mix-
ture. The maximum difference between these two terms
across all k centroids results in the final predicted kinship
score. The numerator represents a measurement of the
relationship of a query q (point) with respect to the clus-
ter representing the underlying mixture. The denomina-
tor is a normalization factor for the computed value in
the numerator and is constant for each individual query
prediction; therefore, it can be disregarded in the actual
computation to save on latency.

Initially, within the unveiled procedure, the genomic
database undergoes cleartext domain clustering (on the
database owner’s premise). This clustering is solved using
Lloyd’s k-means algorithm to determine a centroid j for
each underlying sub-population (see [70]). The average
complexity is given by O(kηT) , where η is the number of
samples and T is the number of iterations. Subsequently,
Eq. 10 finds its application in the encrypted domain, lev-
eraging the k encrypted centroids established during the
k-means algorithm’s operation. The selection of param-
eter k is determined by the k-means algorithm’s assess-
ment of the reference database. To minimize latency, a
prudent choice is made to employ a smaller value of k.
More specifically, we set k = 5 as it does not compromise
accuracy.

This cluster-point relationship solution is mathemati-
cally described in Eqs. 8, 9 and 10. Let a centroid cj rep-
resent a sub-population j in the genomic database. When
the difference between the query qℓ and the mean µ is
larger than the difference of query qℓ with centroid cj ,
then the value is positive indicating that it has a relative
in the database. Conversely, if the difference between
the query and the mean is smaller than the difference of

Page 16 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

query with centroids, then the value is negative indicat-
ing that it does not have a relative in the database. These
calculated scores pave the way for projecting both related
and unrelated queries onto a linearly separable space (see
Fig. 8a).

Optimization for performance
Since α is constant for all queries qℓ , the denominator is
normalization factor and can go outside the max func-
tion. Thus, we shall concentrate on the numerator of
Eq. 8 to rank the predictions; thus, we establish f ′(qℓ,D)
in Eq. 9. By eliminating this normalization step, the algo-
rithm becomes more efficient in detriment of possibly
not preserving the original ranking among the queries.
This relaxation to the original equation is valuable to
improve the computational efficiency in the encrypted
domain, and it was empirically verified not to affect the
accuracy.

This effectively reduces the amount of required com-
putation. Then, we further simplify the prediction func-
tion by replacing the operator maxj with

∑k
j=1 , the sum

over all computations across k centroids. The final score
is now the aggregated voting of the k differences between
the distance of query to the mean and the distance of
query to centroid. Empirically, we verify that this does
not alter the final predictions, such that the final objec-
tive becomes

where cj,i is the ith genotype variant of the cluster jth
centroid and n is total number of genotype variants, i.e.
n = 16, 344 . In this framework, Eq. 10 takes on the role
of quantifying the separation between the query and
the database mean, while also subtracting the query’s

(8)

f (qℓ ,D) = max
j

n∑
i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣)

1
n

n∑
i=1

(qℓ,i − µi)
2

f (qℓ ,D) =
1

1
n

n∑
i=1

(qℓ,i − µi)
2

max
j

n∑

i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣)

f (qℓ ,D) = α max
j

n∑

i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣)

(9)

f ′(qℓ,D) = max
j

n∑

i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣),

where f (qℓ,D) = αf ′(qℓ,D)

(10)

f ′′(qℓ,D) =
k∑

j=1

n∑

i=1

(
(
qℓ,i − µi

)2 −
(
qℓ,i − cj,i

)2
),

separation from each sub-population. In the competi-
tion, this method requires 400× k evaluations of Eq. 10
since the challenges consists of testing 400 queries. For a
choice of k = 5 , 2,000 evaluations are required, which is
three orders of magnitude less operations than the naïve
solution that requires 800,000 cross-correlations evalua-
tions, as depicted in Fig. 3. Since, in Eq. 10, the mean µ
and the cluster centroids cj are precomputed offline and
used during inference, we consider it as a supervised
approach. This assumes that the characteristics about the
underlying population mixture from the challenge data-
set are sufficient to generalize predictions to unknown
query data. For this reason, the algorithm to compute
inference as Eq. 10 requires only multiplicative depth
L = 1 , greatly optimizing the multiplicative depth com-
plexity and latency associated to it.

This algorithm runs in two steps: first, it evaluates the
database mean and computes the k cluster centroids in
the clear text domain; secondly, it evaluates Eq. 10 to out-
put the kinship prediction scores. Step one is done offline
with the genomic database still in the database owner’s
premise; then, the database mean and cluster centroids
are encrypted and sent to the computing entity as part of
the input to the encrypted evaluation of Eq. 10.

Security level and parameters selection
This time, the coefficient modulus size logQ does not
have to be comprised of many bits since the multiplica-
tive depth equal 1. Even though a smaller Q is possible,
accordingly the parameters logQ and N, the scaling factor
size log� must be carefully chosen. In this case, the scal-
ing factor � = 2p will dictate how much arithmetic preci-
sion to compute the target workload without corrupting
the decryption. Given those considerations, we select a
scaling factor that allows us minimize as much as possi-
ble the polynomial degree N. We found that the scaling
factor � = 229 is sufficient to keep the arithmetic preci-
sion afloat during computation of Eq. 10. To ensure 128-
bit security level, we use polynomial ring size of degree
of N = 212 and a coefficient modulus of size logQ = 109 .
The coefficient modulus chain comprises co-primes with
bit lengths {40, 29, 40}. This choice of parameters provide
a compact and fast implementation.

Packing
In order to reduce computational cost, it is crucial to
streamline the organization of the CKKS ciphertexts.
We perform data packing and encryption similarly to
what Fig. 7 illustrates. With polynomial ring degree
of N = 212 , there are 2048 slots available to pack data
within a single ciphertext, effectively accommodating all
16,344 genotype variants in 8 ciphertexts.

Page 17 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

Algorithm 5 Cluster-Point Correlation Method (Eq. 10)

Encrypted algorithm
The full instructions of the encrypted algorithm is
described in Algorithm 5. Lines 5 through 8 compute
(qℓ − µ)2 . Lines 15 through 18 compute

(
qℓ − cj

)2 . Lines
19 through 20 compute (qℓ − µ)2 −

(
qℓ − cj

)2 . Lines 21 through
22 store and aggregate the relationship scores of query qℓ
with respect to the mean µ and each centroid cj in sepa-
rate ciphertext γ̂ [ℓ] . Line 26 concludes by performing the
sum of all the scores for query qℓ , as in k∑

j=1

n∑
i=1

.

Linear regression method
Our clustering-based supervised approach lifts accuracy
to highest possible, auROC = 1 , i.e. it achieves perfectly
accurate predictions. Nonetheless, its limitation lies in
knowing how to optimally choose k when no knowledge
about the reference population is available and in hurting
latency performance as the number of reference popula-
tions k increases. The choice of k is important because it
will directly impact accuracy. This technique could also
be regarded as less flexible, compared to the unsuper-
vised approach, since if the reference population expands
or shrinks drastically, it could require re-mining the clus-
ter centroids; therefore, less adaptable to changes than
the unsupervised approach that can handle it naturally.

To mitigate those foreseen potential issues, we envi-
sion another supervised solution based on linear regres-
sion, which does not require tuning of hyperparameter
such as k, even when the characteristics of the reference
population mixture is unknown, and does not increase

the amount of computation as k increases. It relies on
extracting features from queries by apply a masking
procedure with the database mean, and then optimiz-
ing the coefficients of a linear regression model to learn
the underlying patterns, captured by these features, to
discern between having or not having a relative in the
database. As for adaptability, this approach could argu-
ably be more robust to small changes in the reference
mixture, given that its prediction power only depends on
the pattern that has been learned in order to differenti-
ate whether a query has a relative in a genomic database
given its mean, which can be easily recomputed to apply
new feature transformations to the queries.

Linear regression has been widely used for tackling
secure genome problems (e.g. [71–76]). The reason for
this popularity is linked to its arithmetic simplicity and
robustness, and track record (e.g. s[77]), in finding hyper-
planes separating distinct patterns in high-dimensional
spaces [78]. We embrace these virtues to devise a more
robust and efficient approach to the problem, nonethe-
less, under strong assumption that sufficient informa-
tion is available in the data characterizing the reference
population mixture, even if not specifically annotated.
This emphasizes the supervised approaches’ major limi-
tation: robustness and adaptability to changes in the ref-
erence populations are constrained to small variations,
unlike the proposed unsupervised approach described in
“Unsupervised method” section.

Model training
The ground-truth is a collection of 200 annotated pair-
wise relationships between 200 query samples and 200
database samples. Eighty percent out of those pairs are
used for training and the remainder 20% are saved for
testing. Hence, 160 queries known to have at least one
relative in the database (i.e. positive queries) are sepa-
rated for feature selection and model training. From
the challenge query set Q, containing 400 queries, the
remaining 200 that do not appear in the ground-truth
annotation are genomes known not to have their genetic
data shared with any of the 2000 samples from the data-
base; thus, we consider 160 of them (80%) to represent
negative queries, i.e. examples of queries that do not have
a relative in the database, for training and 40 others (20%)
for testing. These samples are unique and provided as
part of the challenge dataset.

First, these 160 positive queries plus 160 negative
queries are used for selecting the most relevant features
(genotype variants) out of 16344. Then, we create more
positive and negative queries out of those 320 queries
to increase the sample-feature ratio, i.e. synthesize as
many samples as possible to reach the ratio of about
10 samples per relevant feature. Training of the linear

Page 18 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

regression model follows suit, fed with the augmented
sample set.

Feature selection  To help the linear regression opti-
mizer find a more robust hyperplane, and be less predis-
posed to overfitting, we perform dimensionality reduc-
tion using the Variable Threshold technique. In this case,
dimensions located at genotype variants whose vari-
ance are less than a certain threshold are disregarded to
represent the genome sequence of a query. For feature
selection, we use all 320 samples reserved for training.
Depending on the value of the variance threshold, more
or less features are deemed as relevant. The goal is to
have as less features are possible. We found that a thresh-
old of 0.11, by varying from 0.2 to 0.1 considering two
digits after the decimal point, yields robust performance
with 3893 features out of the 16344 genotype variants.

Data augmentation  In addition, we increase the num-
ber of samples per features to improve generalization of
the model. It consists of random resampling of the 320
data points with replacement. Resampling is applied to
increase the positive and negative samples by a factor
of 120, such that we end up with about 10 samples per
feature. We use the resample function from the Python’s
sklearn package to accomplish it – we perform oversam-
pling, consisting of repeating some of the samples in the
original collection.

Feature transformation  The original features of a query
q are their genome genotype variants, a sequence of val-
ues in the set G = {0, 1, 2} . We apply a transformation to
the genotype variants to create features that are derived
from computing its relationship with respect to the aver-
age of genotype variants found in the target genomic
database. That is, the transformation uses the genome
mean µ of the database. This transformation is algebrai-
cally described in Eq. 11,

where · corresponds to element-wise multiplication
between q and µ components (in clear text, i.e. non-
encrypted data). The training queries transformed to fea-
tures q′ populate the matrix X in Eq. 13, where each row
of X is either a positive or negative sample, for training
of a logistic regression model that separates queries that
correlates with the mean from those queries that do not.

Training  The transformed queries q′ are samples
indexed as rows of a sparse matrix X that is used to
solve for the linear regression coefficients w. These sam-
ples become further sparse after the feature selection

(11)q′ = q · µ,

procedure, such that certain dimensions i are zeroed
out. We use the Conjugate Gradient Method [79] to opti-
mize the cost function, via ridge regression [80], shown
in Eq. 12, which finds coefficients that minimizes the
squared error of predictions ŷ = Xw against the ground-
truth y. This objective function includes a regularization
term weighted by α = 0.5 that helps minimize the risk of
overfitting in addition to the dimensionality reduction by
the feature selection procedure. The ground-truth vec-
tor y holds values y = 1 for positive queries and y = 0 for
negative queries.

where

We measure the training performance using different
metrics. To assess precision of the predicted values, we
rely on both the R2-score and root-mean-square error
(RMSE). On the training set, the R2-score is reported
to reach 1.0, which means perfect accuracy, and the
RMSE=0.0000014. As for classification accuracy, we
rely on the auROC, which summarizes the reliability on
Recall and False Positive Rates with a single score. On
the training set, it reported 100% successful rate with
auROC=1.0.

Inference  The prediction phase occurs in the encrypted
domain and it consists of two steps. The first step con-
sists of applying the transformation shown in Eq. 11 to
each of the 400 encrypted queries ctqℓ = Encpk(�mqℓ) ,
where �mqℓ = Encode(qℓ,�) . The result is a collection of
transformed input ciphertexts ctq′ℓ computed from the
component-wise multiplication between ctqℓ and ctµ (see
Eq. 14), where ctµ is the encrypted mean of the search-
able genomic database D.

where ctq′ℓ corresponds to the encrypted feature vector of
a query qℓ computed using the feature extraction proce-
dure described in Eq. 11. This implies that the inference
would consume one additional multiplicative depth to
account for this preprocessing step; thus, requiring an
encryption configuration that allows for multiplicative
depth L = 2 instead of L = 1 as explained in “Security

(12)min
w

�Xw − y�2 + α�w�2,

(13)

X =





q1,1 . . . q1,i . . . q1,16344

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

qℓ,i . . . qℓ,i . . . qℓ,16344

.

.

.

.
.
.

.

.

.

.
.
.

.

.

.

q38930,1 . . . q38930,i . . . q38930,16344





,w =





w1

.

.

.

wi

.

.

.

w16344





, y =





1

.

.

.

1

0

.

.

.

0





(14)ctq′ℓ
= Encpk(Encode(qℓ · µ,�)) ≈ ctqℓ ⊙ ctµ,

Page 19 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

level and parameters selection” section. In practice, we
bypass this preprocessing step for efficiency, i.e. to avoid
an additional level, by directly using the encrypted que-
ries ctqℓ with their original values (see Eq. 15) for infer-
ence. We empirically verified that this yields comparable
results, not affecting the accuracy. Hence, we keep the
multiplicative depth of the encrypted circuit of this linear
regression-based approach down to L = 1.

Note that the training step uses q′ℓ as features to learn
the classification hyperplane. The linear regression infer-
ence function for a single query in clear text is defined as
ŷ = qℓw + b . In the encrypted domain, this same inference
function takes a different form and it is defined as follows

where [j] denotes indexing at the jth ciphertext of a col-
lection of M ciphertexts encrypting query qℓ and the
weights w. ctw and ctb denote the encrypted linear regres-
sion coefficients and bias, respectively. ctŷ corresponds
to the encrypted real-valued prediction that measures
the likelihood of query q to share genetic data with any
of the database samples. M equals ⌈16344/(N/2)⌉ , i.e. the
number of ciphertexts used to encrypt all the features of
a single query q. Rotation is executed log2(N/2) times
to iteratively accumulate the sum of all the elements in
the slots of the output ciphertext ctr0 , where ctr0 resulted
from the homomorphic pointwise multiplication of the
encrypted query and the encrypted weights (see Fig. 9 for
a toy illustration). At each iteration, rotation applies 2k
circular-shifting to the ciphertext ctr0 , resulted from pre-
viously rotation and accumulation with ciphertext ctk−1 .
In the end, the sum of all elements in the slots is stored
in all slots of the ciphertext ctrlog2(N/2)

 (see Fig. 10 for a toy
illustration). At last, the encrypted linear regression bias
term, denoted as ctb , is added to ctlog2(N/2) so as to com-
plete the linear regression dot product as the encrypted
prediction ctŷ – the prediction score for the single query
q appears in all the slots of ciphertext ctŷ.

Optimization for performance
While Eq. 14 is an easy-to-compute element-wise vector-
vector multiplication, Eq. 16 is a matrix-vector multipli-
cation that entails matrix-row-number of dot products.
Even though two consecutive multiplications are involved
in this sequence of operations, only 1 level is consumed
since the modulus switch operation is postponed until
after the second multiplication is complete. We also

(15)ctqℓ = Encpk(Encode(qℓ,�)),

(16)

ctr0 =
M∑

j=1

ctqℓ [j] ⊙ ctw[j],

ctrk+1
= ctrk + Rotate(ctrk , 2

k), 0 ≤ k < log2(N/2)− 1

ctŷ = ctb + ctrlog2 (N/2)

optimize the number of rotations needed to accumulate
the results of the element-wise multiplications involved
in a dot product by first adding all the ciphertexts
involved in a single query prediction (see Eq. 16). That is,
an encrypted query containing 16344 features is split into
⌈16344/(N/2)⌉ ciphertexts; therefore, after multiplying
them by the encrypted database mean, instead of apply-
ing log2(N/2) rotations on each of the individual cipher-
texts to sum their internal components first, we first sum
the ciphertexts to obtain a single ciphertext and only then
log2(N/2) rotations are executed to perform the sum of
the dot product.

Security level and parameters selection
Analogous to the clustering-based approach, we man-
age to maintain multiplicative depth L = 1 for the linear
regression-based supervised method. By both providing
precomputed database mean and postponing the modu-
lus switch operation until after the second multiplica-
tion helps achieve that. Additionally, as briefly explained
in “Inference” section, for the inference step we do not
apply the feature transformation to the query but instead
directly use the original data values since that would
demand to set L = 2 . This way, the same parameter val-
ues are used, i.e. coefficient modulus size logQ = 109 ,
polynomial ring size N = 212 , scaling factor � = 229 , and
modulus chain comprising a sequence of co-primes with
bit lengths {40, 29, 40}.

Algorithm 6 Linear Regression Method (Eq. 16)

Encrypted algorithm
The full set of instructions describing the encrypted lin-
ear regression algorithm is shown in Algorithm 6. Lines
5 to 9 perform component-wise multiplication of the lin-
ear coefficients and the query data (see top row of Fig. 9).
Line 10 performs the sum of all of elements in the slots
resulted from the product of linear coefficients and input
data (see bottom row of Fig. 9 and top row of Fig. 10 for

Page 20 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

a toy illustration of the sequence of operations). Line 12
performs the addition of the linear regression dot prod-
uct with the bias term (see bottom row of Fig. 10). The
prediction results are stored in ŷ and returned.

Results
Secure detection of relatives in forensic genomics
In this section, we provide the context, within the scope
of the challenge, under which the secure protocol per-
formance results were obtained. We present the problem
space, data and the computing and software resources
used. We also describe the use case model in which this
application is useful in practice and the performance
evaluation metric. Other design considerations that
affect performance are also discussed before introducing
the performance results of the methods.

Problem and data description
We tackle the problem of creating a secure outsourcing
protocol for kinship prediction, ensuring the protection
of both genotypes and model parameters, using data-
sets assigned in the iDASH 2023 Track1 competition,
which we briefly describe in the following. The problem
involves having a query, a forensic genome comprising
16344 genotype variants, to be matched against a data-
base containing 2000 archived genomes, each of which
have the same sequence of 16344 genotype variants. The
response to a single query will provide the probability (or
likelihood rate) that there exists in the database a relative
of the individual from whom the query genotypes were
extracted. An illustration of the genome sequence data
files for queries and database is shown in Fig. 11.

In addition to the database with 2000 entries, par-
ticipants are given 400 test queries, half of which have
a relative in the database whereas in the other half this
relationship is nonexistent. The primary challenge arises
from the need to optimize the encrypted query search
algorithm, with focus on improving accuracy, minimiz-
ing latency, while enhancing its capability to general-
ize to new data – more details on “Evaluation criteria”
and “Methods” sections.

The challenge database includes a matrix D ∈ G
16344×2000 ,

where G = {0, 1, 2} is the set of genotype kinds, and D has
2000 columns denoting genomic samples of different indi-
viduals and 16344 rows denoting the genotype variants. The
query set Q ∈ G

16344×400 comprises 400 queries as column
vectors, each representing the genome of 16344 genotypes
variants for an unidentified suspect, for which annotation is
provided about whether the query sample has a relative in
the database or not. This annotation is provided as a sepa-
rate file containing a ground truth binary vector of size 400
where 0 indicates no family member in the database while
1 indicates that there exists at least one family member in

the database for the query genome. The inference (or query
kinship prediction) is a response vector ŷ ∈ R

400 (where R
is the set of real numbers) computed from the query set Q,
and when compared to ground truth vector y ∈ I{0, 1}400
yields the prediction accuracy rates. The goal is to compute
the function ŷi = f (Qi,D) as accurately as possible in the
encrypted domain, for all i ∈ {1, · · · , 400} , where matrix
D contains all 2000 genomes of known subjects and their
pedigrees, Qi denotes the query genome i, i.e. Q indexed at
column i, and the ŷi is the predicted relatedness score for
query Qi.

Problem setting and secure protocol
There are three parties: Query Client (QE, short for
query entity), Data and Model Owner (DE, short for
database entity), and Evaluator (CE, short for comput-
ing entity). The QE wants to use her sensitive genotype
data to perform kinship prediction by using either the
DE’s models or database entries directly. The DE builds
the kinship prediction models that take genotypes as
input. Models contain sensitive information (e.g. IP that
could be monetized) and cannot be shared in plain form.
Therefore, the modeler, i.e. DE, releases her models only
in encrypted form. The CE performs model evaluation
using encrypted genomes and encrypted model param-
eters. The challenge involves generating cryptographic
keys (Client), building the models (Data and Model
Owner) and the secure evaluation of the models and
functions on encrypted genotype data (Evaluator). As
described above, the models and genomic data are sen-
sitive and must be encrypted before they are sent to the
Evaluator. See a detailed depiction of this secure protocol
in Fig. 1.

Design considerations
The challenge involves the computation of 400 kinship
scores using encrypted data and an encrypted search
model. There are three primary design considerations in
this task. Firstly, performing computations on encrypted
data is notably slow, potentially taking hours or even days
instead of just minutes to complete. Secondly, conduct-
ing computations on encrypted floating-point data may
introduce errors due to limitations in precision and noise
budgets. Finally, it is crucial to configure the permissible
number of consecutive multiplications, also known as
multiplicative depth (L), in a way that prevents data cor-
ruption during the decryption of the output. Techniques
like bootstrapping to increase the multiplicative depth
cannot be used for this competition because low latency
is the focus. These limitations might restrict the use of
advanced algorithms, such as deep neural networks,
which, from the perspective of homomorphic encryp-
tion and this competition, demand excessive latency.

Page 21 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

Therefore only low complexity homomorphic encryption
friendly algorithms are viable solutions to address these
constraints.

This is due to heavy computations with polynomi-
als, the basic construct of the homomorphic encryp-
tion schemes. In addition, if the prediction algorithm
involves non-linear functions, the polynomial approxi-
mation of these functions operating in encrypted domain
could become the main bottleneck or even require sev-
eral calls to the most expensive homomorphic opera-
tion, the bootstrapping. We tailor the algorithm steps
and optimization strategies to avoid both. To avoid the
use of high-degree polynomial approximations, we con-
straint to specific data ranges that are sufficiently general
– this may depend heavily on the dataset characteristics
and the datapath of the algorithm. Additionally, we also
avoid certain non-linear functions by replacing them
with linear and polynomial approximations and oth-
ers HE-friendly reformulations. Those alternatives were
empirically verified to retain the functionality and behave
equivalently to the original formulation. Bootstrapping
operations can be avoided by carefully selecting the scal-
ing factor � to achieve sufficient multiplicative depth so
as to compute the algorithm without running out of noise
budget while keeping the precision afloat.

Optimizing computing and resources
We opted to use the CKKS [34] Homomorphic Encryp-
tion scheme implemented in the Microsoft SEAL library
[81], including Intel® HEXL (Homomorphic Encryption
Accelerated) library by [82]. Our choice is motivated by
the following reasons: it can work with real numbers
through fixed-point arithmetic, it has an efficient packing
method that allows computations in an SIMD fashion,
and its implementation in the Microsoft SEAL library
is fast, especially when accelerated with Intel® HEXL
1.2.3 library, in which case the code takes full advantage
of the hardware features such as Intel® AVX512, avail-
able in several Intel servers, including in the iDASH
competition.

The choice of data packing strategy is important
because it dictates how data will be organized in the
ciphertexts. This impacts on reduction in the number
of operations and simplification of the algorithm steps
with homomorphic operations. Additionally, it can also
affect reordering of the sequence of operations in order
to decrease the multiplicative depth required. The data
packing step happens before encoding and encryption.
It is technically independent of the type of encoding
and encryption employed but it determines the number
of ciphertexts required to encrypt all data. As a result,
not only does it influence on computing latency savings
and optimizations in the steps of the algorithms but also

on the required memory footprint, storage capacity in
DRAM and disk, and memory bandwidth. When choos-
ing the data packing strategy, all of these computing
resource aspects should be taken into account together
to conceive a good design for the target application. We
decided to pack the genotypes of the one same genome
sequence in the available slots of the same ciphertext
in its original order – if a single ciphertext is not suffi-
cient, then a single genome will be encrypted by multi-
ple ciphertexts. We found this strategy to be sufficiently
good and optimal for the target algorithms out of a few
evaluated strategies, for which detailed analysis is out of
scope of this manuscript. Figure 7 depicts the data pack-
ing strategy used in this work.

Computation environments
To provide a performance characterization of our solu-
tions in the context of the iDASH 2023 competition, we
evaluated our solutions on a dual-socket server that hosts
two Intel® Xeon® Gold 6140 CPUs, carrying 18 physical
cores each. The system also hosts 32GB DDR SDRAM
and 745GB of storage. As per the competition rule, by
default the execution is constrained to run on exactly 4
physical CPU cores, unless specified, on a single NUMA
node. Although obsolete and discontinued, this hard-
ware configuration approximates the one employed in
the competition and we perform experiments with it for
the sake of completeness of this study. We implement the
source code in C++, using Microsoft SEAL 4.0 APIs ena-
bled with the acceleration kernels provided by the Intel®
HEXL 1.2.3 library. Finally, the code compilation uses
GCC 10 on CentOS 7. These results are discussed across
subsections of “Methods” section as we introduce imple-
mentation details of the different algorithms and they are
expanded in Table 7 and Fig. 12.

A comparative performance analysis for all the three
different proposed algorithms, using the same secure
protocol described in Fig. 1, outside the context of the
iDASH competition is performed on more contemporary
system configuration. Its hardware configuration con-
sists of a dual-socket server that hosts two Intel® Xeon®
Platinum 8480+ CPUs, carrying 56 physical cores each.
This is a more modern processor and likely to be readily
available in mainstream cloud service providers. The sys-
tem also hosts 256GB DDR5 SDRAM and 447GB of disk
storage. All experiments are run on a single NUMA node
varying the number of cores to a maximum of 32 cores.
To scale the execution across multiple cores, we use
OpenMP 4.5. We implement the source code in C++ and
program the HE support using the Microsoft SEAL 4.0
APIs. We also analyze the performance impact of ena-
bling the acceleration kernels optimized with AVX512
offered in the Intel® HEXL 1.2.3 library. The Intel®

Page 22 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

AVX512 extension is a set of instructions that can boost
performance for vector processing–intensive workloads.
With wide 512-bit vector-operations capabilities, the
CPU largest register supports 32 double-precision and 64
single-precision floating-point numbers or, alternatively,
8 64-bit and 16 32-bit integers. Intel® AVX512 also pro-
vides up to two 512-bit fused-multiply add (FMA) units.
Doubling the width of the vector processing doubles the
number of registers compared to its predecessor, Intel®
AVX2. Intel® HEXL 1.2.3 library offerings are currently
integrated into the Microsoft SEAL 4.0 library and can be
enabled at compilation time. The compiler used is GCC
11.4 and the OS is Ubuntu 22.4. The results are discussed
in detail in “Comparative performance analysis” section.

Evaluation criteria
All tests were performed on a hold-out dataset of 400
genomes in an isolated environment in terms of perfor-
mance. Accuracy and time/memory requirements were
used for the benchmark and ranking of the solutions. The
formula used to rank the fitness of the solutions was

where auROC is the area under (au) the receiver operat-
ing characteristic (ROC) curve, metric used to assess the
accuracy of predictions, and t is the execution time in
minutes. Observe that the ranking is highly impacted by

(17)score = auROC

exp
(
t
5

) ,

Table 6  Performance Results of 400 Kinship Predictions. The first two rows approximates and summarizes the results obtained in
the iDASH 2023 Competition. The third row includes the linear regression solution, which was not submitted to the competition. The
fourth row presents an estimate of the naïve solution

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex

Approach Database
encryption

Latency Throughput Inferences auROC Score

“Unsupervised method” section 8.22 s 14.44 s 27.7 q/s 400 0.96 0.923

“Clustering-based supervised method” section 5.73 s 13.36 s 29.9 q/s 2000 1.0 0.956

“Linear regression method” section 5.73 s 11.63 s 34 q/s 400 1.0 0.962

Naïve > 5 min > 10 min <1 q/m >800400 1.0 < 0.135

Fig. 7  This figure shows the ciphertext packing that allows SIMD computation

http://www.Intel.com/PerformanceIndex

Page 23 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

the exponential weight factor of the demanded computa-
tional time, regardless of the prediction accuracy.

Performance on iDASH competition
Firstly, we discuss the performance results where the
algorithm performance was tuned for the iDASH com-
petition, from “Fully unsupervised method” to “Lin-
ear regression model” sections. Then, in “Comparative

performance analysis” section, we discuss a broader com-
parative performance analysis that goes beyond the con-
straints of the competition.

Fully unsupervised method
The fully unsupervised solution is inspired by the z-test
hypothesis test. It is targeted to the cases where the data-
base owner has to encrypted the whole database and

Fig. 8  Summary plots of the clustering-based solution

Page 24 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

send the encrypted samples to the computing entity
because it is unable to perform any pre-computation to
reduce the computational burden on the server. Thus, the
encrypted computation is fully unsupervised in the sense
that there is no pre-computation needed for the predic-
tion step on the server. Since no training is done for this
approach, lower accuracy is expected.

We obtain 0.90 in accuracy, recall and precision, which
naturally yields F1-score=0.90. The optimal auROC is
0.9794 out of all of the ones plotted in Fig. 6; however,
in the encrypted domain the auROC value lowers to
0.9685 due to replacement of the variance by the mean
as discussed above. Its computing efficiency is marked
by latency of t = 14.44 seconds to execute the full secure
protocol including database encryption, while running on
4 CPU cores. The database encryption alone takes 8.22
seconds (see Table 6). Note that the database encryption
requirement imposed by the rules of the iDASH 2023
competition implies that the problem should be solved
in an unsupervised manner, although not necessary
since the mean could be precomputed ahead of time and
encrypted before leaving custody of the database owner.

In fact, if this is the case, the latency of the full proto-
col reduces from 14.44 to 6.22 seconds (see Table 7), an
improvement by a factor of 2.32x.

The ranking score of this solution, including the data
encryption overhead, has value aucROC× e

−t
5 = 0.92305 ,

which shows that the accuracy is heavily penalized by
compute resources and total time of the protocol. This
yields a throughput of about 27.7 queries per seconds
(q/s). The unsupervised algorithm required minimal
assumptions about the dataset and offered more robust
generalization at the cost of sub-optimal accuracy and
recall. As previously stated, this approach does not
assume any knowledge of the database, and it is com-
pletely unsupervised, requiring computing the database
mean using the encrypted database samples in the third-
party computing entity. In practice, if future predictions
are known to be drawn from a similar data distribution
with same first-order and second-order statistics of the
underlying mixture, then we can further optimize the
required computation during the inference process by
providing encrypted precomputed mean (and possi-
bly inverse of variance if higher accuracy is desired). As

Fig. 9  Toy illustration of SIMD dot product with CKKS ciphertexts

Fig. 10  Toy illustration of how the Rotation operation helps sum all the elements in the slots of a CKKS ciphertext

Page 25 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

Fig. 11  Illustration of genome sequence data. Genome sequences are organized as columns and their genotypes organized as rows

Fig. 12  Graph showing how all three methods scale latency with increasing availability of CPU cores for inference of 400 queries

Page 26 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

discussed earlier, we are able to reduce the number of
levels to L = 3 to speed up computation even more. All
the results discussed in “Comparative performance anal-
ysis” section were obtained using this version since it is
outside the iDASH competition context and we assume
that it is acceptable to have the mean precomputed.

Clustering‑based supervised
Clustering is an unsupervised technique to mine and
organize data points of similar characteristics into dis-
tinct groups. We consider this approach supervised
for the sole fact of re-utilizing the representative enti-
ties of these groups, the cluster centroids, as anchors of
knowledge for the inference on incoming queries. Essen-
tially, the assumption is that these distinct representa-
tive groups summarize all information about the target
underlying populations. For the iDASH 2023 competi-
tion, the centroids are fixed but, in practice, they could
evolve as the underlying mixture changes, such that clus-
tering could be performed offline as often as necessary,
before the time for querying an unknown suspect.

The accuracy obtained for the iDASH 2023 competi-
tion hits 100% success rate (Recall=1.0, Precision=1.0,
False Positive Rate=0.0) for all 400 queries and is summa-
rized by F1-score=1.0 and auROC=1.0 (see Figs. 8a and
13). This was achieved both on the 400 queries from the
challenge dataset and on the 400 unknown queries of the
competition. In Fig. 8b, we observe forced assignment
of the negative queries to clusters 1 and 4. This type of
behavior is expected since in this case we only rely on the
existing clusters (patterns of population characteristics)
for the final decision. This issue is resolved by subtracting

the distance between the query and the assigned cluster
centroid (right term of Eq. 10) from the distance of the
query and the database mean (left term of Eq. 10). This
mechanism allows us to reject the wrong assignments by
producing reliable prediction values (shown along y-axis
of Fig. 8a) that facilitate to decide whether it is a positive
or negative query with the choice of a threshold value;
thus, achieving perfect results (see Fig. 13). Figure 8b also
shows that setting k = 5 probably led to overfitting of the
centroids, having two or more centroids representing one
same true underlying cluster. This probably means there
are less populations than anticipated (i.e. k = 5 ), and we
can visually inspect and suggest that number of popula-
tions might be k = 2 . We make an educated guess about
k by analyzing the performance with the validation set
with k varying from 2 to 25.

As for computing performance, the time to complete
the prediction of all 400 queries amounts to t = 13.36
seconds (see Table 6), which includes the database
encryption. However, database encryption is not needed
since only the encrypted centroids are required for
the inference step. The database encryption is merely a
requirement imposed by the rules of the iDASH 2023
competition. In practice, this can be ignored since the
encrypted database samples are not directly utilized for
inference. Having considered this, it provides a through-
put of about 29.9 queries per seconds (q/s) due to the
database encryption overhead. This solution ranking
score is auROC× e

t
5 = 0.9565 , which is a significant

improvement over the unsupervised solution score of
0.923. As for the classification performance, this method

Fig. 13  ROC curve of the clustering-based solution

Page 27 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

creates a clear separation between related queries and
unrelated queries (see Fig. 8a).

Note that, in practice, our solution can be deployed
more efficiently in a more general setting, achieving bet-
ter latency and higher throughput. Without the data
encryption overhead, the full protocol completes in 7.53
seconds, yielding a higher throughput of 53q/s. We meas-
ure the computing performance of the full protocol with-
out the iDASH competition constraints and verified that
latency can be as low as 2.38 seconds, for all 400 query

predictions, by running with 32 CPU cores (see Table 7
for more details). As a result, throughput can be as high
as 168 query predictions per second (see Table 7 for more
details), while keeping the required computation lean
(i.e., avoiding unhelpful computing work).

Linear regression model
As for the trained linear regression model, the per-
formance was evaluated on a test set containing 40
positive queries and 40 negative queries. The model

Fig. 14  Linear Regression-based prediction performance: a plot of the ROC curve showing perfect prediction, and b scatter plot of the predicted
values for each query showing linearly separable classification decision boundary

Page 28 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

achieves perfect accuracy, precision and recall, yielding
F1-score=1.0 and auROC=1.0 (see Fig. 14a and b). As
for precision of the predicted values in comparison with
the expected, the model reaches R2-score=0.8363 and
RMSE=0.2022 on the test set. Computing performance is
characterized by an average latency of t = 5.92 seconds
for predicting a batch of 400 queries using 4 CPU cores
(see Table 7). This yields a throughput of about 68 que-
ries per seconds (see Table 7). The estimated iDASH 2023
score for this solution is auROC× e

−t
5 = 0.9804 , which is

an improvement of about 2.5% over the clustering-based
solution. This method creates a clear separation between
related queries and unrelated queries (see Fig. 14b). For
a more general understanding of latency performance,

we show in Fig. 12 that the latency scales almost linearly
with the number of cores, predicting 400 queries in 2.22
seconds when running on 16 CPU cores. It also outputs
prediction values in a range [-0.2,1.2] that approximates
the probability range [0.0,1.0] (finding optimal predic-
tion threshold value at 0.4958); thus, more naturally
interpretable.

It is instructive to discuss why true positive rate and
precision are remarkably perfect, yielding an auROC
score of 1.0. We refer to a few factors to justify it and
claim that this does not mean overfitting of the trained
model. First, we employ feature selection to find the most
relevant predictors (features) capturing the main charac-
teristics of underlying mixture, which in turn contributes

Fig. 15  Performance gain due to algorithm choice

Fig. 16  Performance gain due to vector instructions

Page 29 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

to avoid overfitting of the linear regression model. Addi-
tionally, we resort to data augmentation to increase the
number of samples per feature to encourage better gen-
eralization of the model, even though the curated dataset
is not imbalanced. Finally, during the optimization of the
objective function, we introduce a regularization term
that also minimize the chances of the model from over-
fitting and instead guide it to achieve better generaliza-
tion. However, it is true that the model is trained to make
predictions under the assumption of a known underlying
mixture and that the provided dataset holds sufficient
and representative statistics of the target populations.

Comparative performance analysis
We contrast and compare the throughput and latency
performance of the three different prediction algo-
rithms. Our analysis is conducted using a contempo-
rary Intel server processor, in particular, the Intel®
Xeon® Platinum 8480+ CPU. In the previous sec-
tion, the performance results were carried out with
an older generation Intel processor that approximates
the specification of the one used by the iDASH 2023
competition. Ideally, these workloads shall run on
later generations with the latest and greatest of per-
formance features. This section is intended to discuss
performance gains due to different software configura-
tions and choice of algorithm on a platform powered
by Intel® Xeon® Platinum 8480+ server processor.

Experimental setup
The performance benchmark is organized into 4 differ-
ent scenarios. The first scenario consists of the baseline
performance configuration. Two others bring specific
capabilities in isolation, namely, the usage of vectorized
instructions with Intel® AVX512 feature and the use of
OpenMP 4.5 to parallelize encryption, decryption and
the inference code with multicore execution. The fourth

scenario is a combination of the last two configurations,
i.e. simultaneously leveraging the instruction-level and
core-level data parallelism. As follows, we describe the
scenarios in detail. The baseline performance configu-
ration entails a single-core execution of the workloads
programmed with the Microsoft SEAL 4.0 API. In the
second scenario the workload is programmed to execute
with vectorized instructions using Intel® AVX512 by
enabling at compilation time Intel® HEXL 1.2.3 in the
Microsoft SEAL 4.0 API. The third scenario involves ena-
bling parallel processing with OpenMP 4.5, where SIMD-
friendly parts of the workloads are executed on multiple
cores - the number of cores varies from 2 to 32. The
fourth scenario combines scenarios 3 and 4. The perfor-
mance metrics used for analysis are throughput (queries
per second), latency (seconds), and normalized perfor-
mance (throughput divided by baseline throughput). The
experiments consist of the workload processing a batch
of 400 inference predictions.

Performance gain due to algorithm choice
The choice of the algorithm for the application depends
on several factors, including security, accuracy, and
computing efficiency. For example, if little knowledge is
known about the population mixture, then the z-test-
inspired approach, i.e. the unsupervised method, can
generalize better than the supervised approaches and
can be less predisposed to overfitting; thus, provid-
ing less biased predictions. If statistically sufficient
information about the population mixture is known,
then parameter learning techniques allow more com-
putationally efficient inference and can deliver more
accurate predictions. In this regard, we assume the lat-
ter case, and analyze how much performance gain is
expected if sufficient knowledge about the population
mixture is known a priori. This means that we precom-
pute the mean and variance for the z-test-inspired

Table 7  Extended performance results obtained on equivalent hardware configuration used in the iDASH competition, more
specifically Intel® Xeon® Gold 6140 (see “Computation environments” section for more details). The results illustrate how latency and
throughput scales when more than 4 CPU cores are utilized for parallel processing of the workload

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex.

 Latency of the different approaches described in “Methods” section running on multiple cores.

 Throughput of the different approaches described in “Methods” section running on multiple cores

Latencya(s) Throughput2(q/s)

Cores # Cores

Method 4 8 16 32 4 8 16 32

“Unsupervised method” section 6.24 3.43 2.44 2.17 64 117 164 184

“Clustering-based supervised method” section 7.53 4.26 2.83 2.38 53 94 141 168

“Linear regression method” section 5.92 3.06 2.26 1.85 68 131 177 216

http://www.Intel.com/PerformanceIndex

Page 30 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

Ta
bl

e 
8 

Th
ro

ug
hp

ut
 n

um
be

rs
 u

se
d

to
 c

om
pu

te
 th

e
ex

pe
ct

ed
 p

er
fo

rm
an

ce
 g

ai
ns

 s
ho

w
n

in
 F

ig
. 1

5.
 R

aw
 th

ro
ug

hp
ut

 n
um

be
rs

 to
 c

om
pu

te
 th

e
ra

tio
s

in
 th

is
 ta

bl
e

ar
e

av
ai

la
bl

e
in

Ta

bl
es

 9
 a

nd
 1

0

 T A
/
T
B
 (i

f t
hr

ou
gh

pu
t o

f A
 >

 th
ro

ug
hp

ut
 o

f B
)

 M
et

ho
d

Si
ng

le
 c

or
e

AV
X5

12
M

ul
tic

or
e

AV
X5

12
 +

 m
ul

tic
or

e

A
 /

B
 U

ns
up

er
vi

se
d

m
et

ho
d

Cl
us

te
ri

ng
-

ba
se

d
su

pe
rv

is
ed

m

et
ho

d

Li
ne

ar

re
gr

es
si

on

m
et

ho
d

 U
ns

up
er

vi
se

d
m

et
ho

d
Cl

us
te

ri
ng

-
ba

se
d

su
pe

rv
is

ed

m
et

ho
d

Li
ne

ar

re
gr

es
si

on

m
et

ho
d

 U
ns

up
er

vi
se

d
m

et
ho

d
Cl

us
te

ri
ng

-
ba

se
d

su
pe

rv
is

ed

m
et

ho
d

Li
ne

ar

re
gr

es
si

on

m
et

ho
d

 U
ns

up
er

vi
se

d
m

et
ho

d
Cl

us
te

ri
ng

-
ba

se
d

su
pe

rv
is

ed

m
et

ho
d

Li
ne

ar

re
gr

es
si

on

m
et

ho
d

z-
te

st

(U
ns

u-
pe

rv
is

ed

m
et

ho
d)

-
1.

29
-

-
1.

25
-

-
1.

03
-

-
1.

00
3

-

cl
us

te
r

(C
lu

st
er

in
g-

ba
se

d
su

pe
rv

is
ed

m

et
ho

d)

-
-

-
-

-
-

-
-

-
-

-
-

lin
 re

g
(L

in
ea

r
re

gr
es

si
on

m

et
ho

d)

1.
38

1.
79

-
1.

55
1.

94
-

1.
44

1.
49

-
1.

61
1.

6
-

Page 31 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

method, turning it into a supervised approach, such
that it becomes more computationally efficient for
requiring a lesser number of levels (multiplicative
depth).

In Fig. 15, each bar represents the expected perfor-
mance gain in a specific scenario (i.e., baseline as sin-
gle core execution, vector instructions, multicore, and
multicore plus vector instructions). In each scenario,
we collect the performance numbers of all three algo-
rithms. We then compute the normalized performance
between each algorithm as the throughput ratio TA/TB ,
where the workload A performed significantly better

than the workload B; thus, the ratio corresponds to the
performance gain of algorithm A over algorithm B (see
more in Table 8). We say that the expected performance
gain due to the choice of the algorithm, if an algorithm
performs better than the other, is given by the geo-
metric mean of all the ratios TA/TB , where TA >> TB ,
under the constraints of a particular execution envi-
ronment scenario. In short, we pick each algorithm’s
throughput and calculate its relative performance
gain over each worse counterpart, then we report the
expected performance gain, shown in Fig. 15, as the
geometric mean over all these ratios computed within a

Fig. 17  Latency with varying number of cores under the third scenario, i.e. multicore execution without the use of vectorized instructions

Fig. 18  Performance gain due to parallel processing with multiple cores alone. The performance gain (normalized performance to baseline)
is calculated as the throughput ratio between the execution using multiple cores over single core. The optimal number of cores for all
the workloads is 32

Page 32 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

specific scenario. In Table 8, we can observe that in the
multicore execution environment, the workloads z-test
and cluster perform comparably, in which case one
could choose either; therefore, we do not consider their
ratios to compute the geometric mean of the perfor-
mance gain. Additionally, the linear regression method
notably benefits the most from the multicore execution
environment for the simplicity of its set of instructions.
Overall, the expected performance gain considering all
scenarios due to algorithm choice is characterized by a
geometric mean of 1.52x.

Performance gain due to vector instructions
Intel® has actively participated in open-source code
contributions to accelerate HE’s arithmetic computing
kernels. Subproducts of these efforts are Intel® HE Accel-
eration Library (Intel® HEXL) and Intel® HE Acceleration
Library for FPGAs (Intel® HEXL-FPGA). Several exist-
ing HE API libraries, such as Microsoft SEAL, incorpo-
rate Intel® HEXL kernels to accelerate their HE API calls
on Intel platforms. These tools leverage AVX512 vector
instructions offered as hardware features by Intel® Xeon®
CPUs, e.g. Intel® Xeon® Platinum 8480+. The results

Fig. 19  Performance gain due to parallel processing with vectorized instructions and usage of multiple cores together. The performance gain
(normalized performance to baseline) is calculated as the throughput ratio between the execution using vectorized instructions plus multiple
cores over single core. The optimal number of cores for both z-test and linear reg workloads is 16 due to reaching AVX512 overhead, whereas
for the cluster workload is 32, less affected by AVX512 overhead

Fig. 20  Latency with varying number of cores under the fourth scenario, i.e. multicore execution with the use of vector instructions

Page 33 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

are summarized in Fig. 16. Overall, the expected perfor-
mance gain across all workloads has a geometric mean
2.06x. The throughput achieved when enabling execution
with vector instructions is normalized against the base-
line. It is worth noting that this gain is based on single-
core execution. The performance impact of capitalizing
the use of vector instructions when running with multi-
ple working cores is discussed in “Performance gain due
to vector instructions and parallel processing” section.

Performance gain due to parallel processing
To increase throughput, executing on multiple cores is
essential. We test the scalability of throughput for these
workloads through data parallel processing under execu-
tion with multiple cores. Each core gets shards of the 400
inferences and other parallelizable areas of code are also
executed with multiple threads, each pinned to a specific
physical core. In Fig. 17, we show how latency scales with
increasing number of cores for each workload. The final
performance gain for each workload is the highest speed-
up achieved with a specific number of cores, i.e. the opti-
mal number of cores to run that workload. Typically,
either 16 or 32 cores performs the best. The performance

gain is the throughput using multiple cores normal-
ized by the baseline (single core), as presented in Fig. 18.
Overall, the expected performance gain across all scenar-
ios owing to parallel processing using optimal number of
cores amounts to geometric mean of 15.39x.

Performance gain due to vector instructions and parallel
processing
We also assess the performance gain achieved out of
the combination of vector instructions and parallel pro-
cessing using multiple cores. The performance analysis
for this scenario can be summarized in Fig. 19 and fol-
lows the same methodology used to compute the per-
formance gain for parallel processing only. On average,
the expected performance gain is 18.59x. In Fig. 20, we
observe that the latency of the workloads on multicore
execution with AVX512 does not scale at equivalent
rates as it does during multicore execution alone (see
Fig. 17), despite displaying lower latency as reported
in Table 10 in contrast to the values in Table 9. Note
also that the clustering-based workload scales more
effectively in both scenarios. This phenomenon can be
attributed to the clustering-based method algorithm

Table 9  Raw performance results without the use of vectorized instructions (AVX512) are presented beyond the scope of the iDASH
competition. These experiments were conducted on a distinct hardware setup featuring a more contemporary processor, specifically,
the Intel® Xeon® Platinum 8480+. This table illustrates the scaling of latency and throughput for the workloads as the number of
working cores varies

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex.

 aDecimal digits were truncated to leave only the integer part for a more conservative measurement

Latency (s) Throughputa (q/s)

Cores # Cores

Method 1 2 4 8 16 32 1 2 4 8 16 32

“Unsupervised method” section 19.73 10.96 6.34 3.14 1.92 1.39 20 36 63 127 208 287

“Clustering-based supervised method” section 25.42 13.83 7.73 3.72 2.15 1.45 15 28 51 107 185 276

“Linear regression method” section 14.2 8.06 4.73 2.18 1.34 0.97 28 49 84 183 299 413

Table 10  Raw performance results with the use of vector instructions (AVX512) are presented beyond the scope of the iDASH
competition. These experiments were conducted on a distinct hardware setup featuring a more contemporary processor, specifically,
the Intel® Xeon® Platinum 8480+. This table illustrates the scaling of latency and throughput for the workloads as the number of
working cores varies

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex.

 aDecimal digits were truncated to leave only the integer part for a more conservative measurement

Latency (s) Throughputa (q/s)

Cores # Cores

Method 1 2 4 8 16 32 1 2 4 8 16 32

“Unsupervised method” section 10.01 5.99 3.7 1.74 1.21 1.3 40 66 108 229 308 329

“Clustering-based supervised method” section 12.52 7.32 4.41 2.02 1.29 1.21 32 54 90 197 310 330

“Linear regression method” section 6.44 4.08 2.66 1.08 0.75 0.85 62.1 98 150 370 472 531

http://www.Intel.com/PerformanceIndex
http://www.Intel.com/PerformanceIndex

Page 34 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

featuring more parallelism-friendly code sections com-
pared to the other algorithms. Specifically, in the linear
regression code, homomorphic rotations are executed
sequentially due to data dependency, constituting a
substantial portion of the computational time. In the
case of the z-test-inspired workload, a significant por-
tion of the algorithm code is non-parallelizable, par-
ticularly the linear approximation involving division by
the mean.

Discussion
We propose three different methods to query kinship in
genomic database. We submitted two of these methods,
specifically the ones described in “Unsupervised method”
and “Clustering-based supervised method” sections, as
solutions to the iDASH 2023 Track 1 competition. The
submissions served us as study cases to validate their
robustness on unseen data. Accordingly, we put emphasis
on low latency since it bears an exponential weight on the
final score used to rank the submissions. To comply with
these rules we also avoided any processing in the cleart-
ext domain at runtime during inference on unseen data.
Our solutions improve the computing latency by three
orders of magnitude over the naive solution. The per-
formance results of the submissions to the iDASH 2023
competition are summarized in Table 6. We placed 3rd
with the supervised solution described in “Clustering-
based supervised method” section. They also guarantee
128-bit security (through a lattice cryptography scheme),
ensuring genomic data privacy protection during com-
putation of the predictions. This directly addresses the
weakness of the other methodologies of privacy protec-
tion discussed in “Current security and privacy protec-
tion practices in genomic data sharing” section, in which
the private data can still leak or become unprotected.

Although our methods are strongly influenced by the
iDASH2023 competition challenge, a broader study on
performance and design was carried out in “Compara-
tive performance analysis” section, allowing us to expand
the scope of our findings. The proposed methods are
sufficiently functional, adaptable and practically feasi-
ble to address secure computation in genomics applica-
tions related to the FGG use case. Their applicability
goes beyond what it has been demonstrated in this work.
For example, changing the comparison reference from
the database mean to an individual genome leads to
expand the scope of application to predict exact or par-
tial matches between pairs of genomes and to estimate
their familial relationship (step 5 in the FGG task) given
the predicted score. Generally, we also note that con-
siderable streamlining of the prediction algorithm and

reformulation of its objectives are imperative for ren-
dering it amenable to Homomorphic Encryption while
ensuring computational efficiency. In scenarios where
the domain is well-established and constrained, super-
vised solutions prove to be the more efficient and pre-
cise choice, particularly, with admixture populations.
Conversely, unsupervised solutions, although entailing
greater computational cost and higher number of mul-
tiplicative levels, tend to exhibit superior generalization
capabilities when the population statistics is uncertain.

Conclusions
The obtained results demonstrate that privacy-preserv-
ing solutions based on homomorphic encryption can be
computationally practical to protect genomic privacy
during the stage of filtering candidate matches for further
genealogy study in Forensic Genetic Genealogy (FGG).
The screening of the searchable databases can happen
in seconds and with high accuracy; thus, providing the
ability to expedite the identification process of unknown
suspects by narrowing down the number of databases in
which to perform genealogy analysis without compro-
mising genomic privacy.

Acknowledgements
We would like to thank Duhyeong Kim and Kylan Race for providing feedback
on the revised versions of this manuscript.

Authors’ contributions
All authors, namely, Fillipe D. M. de Souza, Hubert de Lassus, and Ro Cam-
marota, contributed equally for the completion and review of the manuscript.

Funding
Not applicable.

Data availability
The dataset is publicly available upon request from the organizers of the
iDASH 2023 challenge at http://​www.​human​genom​epriv​acy.​org/​2023/​conta​
ct.​html. Raw data from experiments are available upon request by emailing to
fillipe.souza@intel.com. Other relevant data is provided within the manuscript.

Code availability
Code is available at https://​github.​com/​Intel​Labs/​secure-​genome-​relat​ive-​
detec​tion.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 29 March 2024 Accepted: 29 October 2024

http://www.humangenomeprivacy.org/2023/contact.html
http://www.humangenomeprivacy.org/2023/contact.html
https://github.com/IntelLabs/secure-genome-relative-detection
https://github.com/IntelLabs/secure-genome-relative-detection

Page 35 of 36de Souza et al. BMC Medical Genomics (2024) 17:273 	

References
	1.	 Clayton EW, Evans BJ, Hazel JW, Rothstein MA. The law of genetic privacy:

applications, implications, and limitations. J Law Biosci. 2019;6(1):1–36.
	2.	 Glynn CL. Bridging disciplines to form a new one: the emergence of

forensic genetic genealogy. Genes. 2022;13(8):1381.
	3.	 GEDmatchPRO. GEDmatch PRO. 2023. https://​pro.​gedma​tch.​com/​user/​

login?​desti​nation. Accessed 29 Dec 2023
	4.	 FamilyTreeDNA. DNA Testing for Ancestry and Genealogy | Family Tree

DNA. 2023. https://​www.​famil​ytree​dna.​com/. Accessed 29 Dec 2023
	5.	 DNASolves. DNASolves. 2023. https://​dnaso​lves.​com/. Accessed 29 Dec

2023.
	6.	 Wolf LE, Brown EF, Kerr R, Razick G, Tanner G, Duvall B, et al. The web of

legal protections for participants in genomic research. Health Matrix
(Cleveland, Ohio: 1991). 2019;29(1).

	7.	 American Bar Association A. A call for judicial oversight of DNA analysis
to protect privacy. 2023. https://​www.​ameri​canbar.​org/​news/​abane​ws/​
aba-​news-​archi​ves/​2023/​08/​call-​for-​judic​ial-​overs​ight-​to-​prote​ct-​priva​
cy/. Accessed 4 Dec 2023.

	8.	 Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J,
et al. Resolving individuals contributing trace amounts of DNA to highly
complex mixtures using high-density SNP genotyping microarrays. PLoS
Genet. 2008;4(8). https://​doi.​org/​10.​1371/​journ​al.​pgen.​10001​67.

	9.	 Jin Y, Schäffer AA, Sherry ST, Feolo M. Quickly identifying identical and
closely related subjects in large databases using genotype data. PLoS
ONE. 2017;12(6):e0179106.

	10.	 Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust
relationship inference in genome-wide association studies. Bioinformat-
ics. 2010;26(22):2867–73. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btq559.

	11.	 Thornton T, Tang H, Hoffmann TJ, Ochs-Balcom HM, Caan BJ, Risch
N. Estimating kinship in admixed populations. Am J Hum Genet.
2012;91(1):122–38.

	12.	 Wang S, Miran-Kim, Wentao-Li, Jiang X, Chen H, Harmanci A. Privacy-
aware estimation of relatedness in admixed populations. Brief Bioinform.
2022;23(6):1–16. https://​doi.​org/​10.​1093/​bib/​bbac4​73.

	13.	 Dou J, Sun B, Sim X, Hughes JD, Reilly DF, Tai ES, et al. Estimation of
kinship coefficient in structured and admixed populations using sparse
sequencing data. PLoS Genet. 2017;13(9):e1007021.

	14.	 Chen J, Miao W, Wu W, Yang L, Yuan H. Secure Relative Detection in
(Forensic) Database with Homomorphic Encryption. In: International
Symposium on Bioinformatics Research and Applications. Springer; 2024.
pp. 410–422.

	15.	 Kale G, Ayday E, Tastan O. A utility maximizing and privacy preserving
approach for protecting kinship in genomic databases. Bioinformatics.
2018;34(2):181–9.

	16.	 De Cristofaro E, Liang K, Zhang Y. Privacy-preserving genetic relatedness
test. 2016. arXiv preprint arXiv:​1611.​03006.

	17.	 Hormozdiari F, Joo JWJ, Wadia A, Guan F, Ostrosky R, Sahai A, et al. Privacy
preserving protocol for detecting genetic relatives using rare variants.
Bioinformatics. 2014;30(12):i204–11.

	18.	 Knoppers B, Joly Y. Introduction: the why and whither of genomic data
sharing. Springer; 2018.

	19.	 Grossman RL. Data lakes, clouds, and commons: a review of platforms for
analyzing and sharing genomic data. Trends Genet. 2019;35(3):223–34.

	20.	 Jensen MA, Ferretti V, Grossman RL, Staudt LM. The NCI Genomic Data
Commons as an engine for precision medicine. Blood J Am Soc Hematol.
2017;130(4):453–9.

	21.	 Alsaffar MM, Hasan M, McStay GP, Sedky M. Digital dna lifecycle security
and privacy: an overview. Brief Bioinform. 2022;23(2):bbab607.

	22.	 Zhang Z, Hernandez K, Savage J, Li S, Miller D, Agrawal S, et al. Uniform
genomic data analysis in the NCI Genomic Data Commons. Nat Com-
mun. 2021;12(1):1226.

	23.	 Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA,
et al. Toward a shared vision for cancer genomic data. N Engl J Med.
2016;375(12):1109–12.

	24.	 NIH-GDS-Policy. NIH Security Best Practices for Controlled-Access Data
Subject to the NIH Genomic Data Sharing (GDS) Policy. 2021. https://​shari​
ng.​nih.​gov/​sites/​defau​lt/​files/​flmngr/​NIH_​Best_​Pract​ices_​for_​Contr​olled-​
Access_​Data_​Subje​ct_​to_​the_​NIH_​GDS_​Policy.​pdf. Accessed 1 July 2024.

	25.	 Freeberg MA, Fromont LA, D’Altri T, Romero AF, Ciges JI, Jene A, et al.
The European genome-phenome archive in 2021. Nucleic Acids Res.
2022;50(D1):D980–7.

	26.	 Senf A, Davies R, Haziza F, Marshall J, Troncoso-Pastoriza J, Hofmann
O, et al. Crypt4GH: a file format standard enabling native access to
encrypted data. Bioinformatics. 2021;37(17):2753–4.

	27.	 Hekel R, Budis J, Kucharik M, Radvanszky J, Pös Z, Szemes T. Privacy-
preserving storage of sequenced genomic data. BMC Genomics.
2021;22:1–13.

	28.	 Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal
genomes by surname inference. Science. 2013;339(6117):321–4.

	29.	 Das A. Approaches in Genomic Privacy [Bachelor’s Thesis]. Brown Univer-
sity; 2018.

	30.	 Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures
and public-key cryptosystems. Commun ACM. 1978;21(2):120–6.

	31.	 Rijmen V, Daemen J. Advanced encryption standard. Proceedings of
federal information processing standards publications, vol. 19. National
Institute of Standards and Technology; 2001. p. 22.

	32.	 Huang Z, Ayday E, Lin H, Aiyar RS, Molyneaux A, Xu Z, et al. A privacy-
preserving solution for compressed storage and selective retrieval of
genomic data. Genome Res. 2016;26(12):1687–96.

	33.	 Brakerski Z, Gentry C, Vaikuntanathan V. (Leveled) fully homomor-
phic encryption without bootstrapping. ACM Trans Comput Theory.
2014;6(3):1–36.

	34.	 Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic
of approximate numbers. In: Advances in Cryptology–ASIACRYPT 2017:
23rd International Conference on the Theory and Applications of Cryptol-
ogy and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I 23. Springer; 2017. pp. 409–437.

	35.	 Gentry C. Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the forty-first annual ACM symposium on Theory of computing.
2009. pp. 169–178.

	36.	 Regev O. On lattices, learning with errors, random linear codes and cryp-
tography. J ACM. 2009;51(6):899–942.

	37.	 Fan J, Vercauteren F. Somewhat practical fully homomorphic encryption.
Cryptol ePrint Arch. 2012.

	38.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al.
PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am J Hum Genet. 2007;81(3):559–75. https://​doi.​org/​10.​
1086/​519795.

	39.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide
complex trait analysis. Am J Hum Genet. 2010;88(1):76–82.

	40.	 Conomos MP, Reiner AP, Weir BS, Thornton TA. Model-free Estimation of
Recent Genetic Relatedness. Am J Hum Genet. 2016;98(1):127–48.

	41.	 Moltke I, Albrechtsen A. RelateAdmix: a software tool for estimating relat-
edness between admixed individuals. Bioinformatics. 2013;30(7):1027–8.

	42.	 Huff CD, Witherspoon DJ, Simonson TS, Xing J, Watkins WS, Zhang Y,
et al. Maximum-likelihood estimation of recent shared ancestry (ERSA).
Genome Res. 2011;21(5):768–74.

	43.	 Naseri A, Shi J, Lin X, Zhang S, Zhi D. RAFFI: Accurate and fast familial rela-
tionship inference in large scale biobank studies using RaPID. PLoS Genet.
2021;17(1):e1009315. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10093​15.

	44.	 Zhou Y, Browning SR, Browning BL. IBDkin: fast estimation of kin-
ship coefficients from identity by descent segments. Bioinformatics.
2020;36(16):4519–20. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa5​69.

	45.	 Nøhr AK, Hanghøj K, Garcia-Erill G, Li Z, Moltke I, Albrechtsen A. NGSremix:
a software tool for estimating pairwise relatedness between admixed
individuals from next-generation sequencing data. G3 (Bethesda).
2021;11(8). https://​doi.​org/​10.​1093/​g3jou​rnal/​jkab1​74.

	46.	 Wang C, Zhan X, Liang L, Abecasis GR, Lin X. Improved ancestry
estimation for both genotyping and sequencing data using projec-
tion procrustes analysis and genotype imputation. Am J Hum Genet.
2015;96(6):926–37. https://​doi.​org/​10.​1016/j.​ajhg.​2015.​04.​018.

	47.	 Smith J, Qiao Y, Williams AL. Evaluating the utility of identity-by-descent
segment numbers for relatedness inference via information theory and
classification. G3 (Bethesda). 2022;12(6).

	48.	 Seidman DN, Shenoy SA, Kim M, Babu R, Woods IG, Dyer TD, et al.
Rapid, Phase-free Detection of Long Identity-by-Descent Segments
Enables Effective Relationship Classification. Am J Hum Genet.
2020;106(4):453–66.

	49.	 Bishop DT, Williamson JA. The power of identity-by-state methods for
linkage analysis. Am J Hum Genet. 1990;46(2):254–65.

	50.	 Morimoto C, Manabe S, Kawaguchi T, Kawai C, Fujimoto S, Hamano Y,
et al. Pairwise Kinship Analysis by the Index of Chromosome Sharing

https://pro.gedmatch.com/user/login?destination
https://pro.gedmatch.com/user/login?destination
https://www.familytreedna.com/
https://dnasolves.com/
https://www.americanbar.org/news/abanews/aba-news-archives/2023/08/call-for-judicial-oversight-to-protect-privacy/
https://www.americanbar.org/news/abanews/aba-news-archives/2023/08/call-for-judicial-oversight-to-protect-privacy/
https://www.americanbar.org/news/abanews/aba-news-archives/2023/08/call-for-judicial-oversight-to-protect-privacy/
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1093/bib/bbac473
http://arxiv.org/abs/1611.03006
https://sharing.nih.gov/sites/default/files/flmngr/NIH_Best_Practices_for_Controlled-Access_Data_Subject_to_the_NIH_GDS_Policy.pdf
https://sharing.nih.gov/sites/default/files/flmngr/NIH_Best_Practices_for_Controlled-Access_Data_Subject_to_the_NIH_GDS_Policy.pdf
https://sharing.nih.gov/sites/default/files/flmngr/NIH_Best_Practices_for_Controlled-Access_Data_Subject_to_the_NIH_GDS_Policy.pdf
https://doi.org/10.1086/519795
https://doi.org/10.1086/519795
https://doi.org/10.1371/journal.pgen.1009315
https://doi.org/10.1093/bioinformatics/btaa569
https://doi.org/10.1093/g3journal/jkab174
https://doi.org/10.1016/j.ajhg.2015.04.018

Page 36 of 36de Souza et al. BMC Medical Genomics (2024) 17:273

Using High-Density Single Nucleotide Polymorphisms. PLoS ONE.
2016;11(7):e0160287. https://​doi.​org/​10.​1371/​journ​al.​pone.​01602​87.

	51.	 Ramstetter MD, Dyer† TD, Lehman DM, Curran JE, Duggirala R, Blangero
J, et al. Benchmarking relatedness inference methods with genome-wide
data from thousands of relatives. Genetics. 2017. https://​doi.​org/​10.​1534/​
genet​ics.​117.​1122.

	52.	 Pradel G, Mitchell C. Privacy-preserving biometric matching using homo-
morphic encryption. In: 2021 IEEE 20th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom).
IEEE; 2021. pp. 494–505. arXiv:​2111.​12372.

	53.	 EdalatNejad K, Raynal M, Lueks W, Troncoso C. Private Collection Match-
ing Protocols. In: Proceedings on Privacy Enhancing Technologies (In
Press). PoPETs; 2023. https://​petsy​mposi​um.​org/​popets/​2023/​popets-​
2023-​0091.​pdf.

	54.	 Çetin GS, Chen H, Laine K, Lauter K, Rindal P, Xia Y. Private queries on
encrypted genomic data. BMC Med Genomics. 2017;10(Suppl2)(45).
https://​doi.​org/​10.​1186/​s12920-​017-​0276-z.

	55.	 Fan J, Vercauteren F. Somewhat Practical Fully Homomorphic Encryption.
IACR Cryptol ePrint Arch. 2012;2012:144. https://​api.​seman​ticsc​holar.​org/​
Corpu​sID:​14675​71.

	56.	 Chen H, Laine K, Rindal P. Fast Private Set Intersection from Homomor-
phic Encryption. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. CCS ’17. New York, NY, USA:
Association for Computing Machinery. 2017. pp. 1243–1255. https://​doi.​
org/​10.​1145/​31339​56.​31340​61.

	57.	 Bao F, Deng RH, Ding X, Yang Y. Private Query on Encrypted Data in Multi-
user Settings. In: Chen L, Mu Y, Susilo W, editors. Information Security
Practice and Experience. Berlin, Heidelberg: Springer Berlin Heidelberg;
2008. pp. 71–85. https://​doi.​org/​10.​1007/​978-3-​540-​79104-1_6.

	58.	 Saha TK, Koshiba T. Efficient Private Conjunctive Query Protocol Over
Encrypted Data. Cryptography. 2021;5(1):2. https://​doi.​org/​10.​3390/​crypt​
ograp​hy501​0002.

	59.	 Tan BHM, Lee HT, Wang H, Ren S, Aung KMM. Efficient Private Com-
parison Queries Over Encrypted Databases Using Fully Homomorphic
Encryption With Finite Fields. IEEE Trans Dependable Secure Comput.
2021;18(6):2861–74. https://​doi.​org/​10.​1109/​TDSC.​2020.​29677​40.

	60.	 Boneh D, Waters B. Conjunctive, subset and range queries on encrypted
data. 2007. https://​crypto.​stanf​ord.​edu/​~dabo/​pubs/​papers/​search.​pdf.
Accessed 7 Oct 2023.

	61.	 Chen F, Dow M, Ding S, Lu Y, Jiang X, Tang H, et al. PREMIX: PRivacy-
preserving EstiMation of Individual admiXture. AMIA Annu Symp Proc.
2017;2016:1747–55.

	62.	 He D, Furlotte NA, Hormozdiari F, Joo JWJ, Wadia A, Ostrovsky R, et al.
Identifying genetic relatives without compromising privacy. Genome Res.
2014;24(4):664–72.

	63.	 Robinson M, Glusman G. Genotype Fingerprints Enable Fast and Private
Comparison of Genetic Testing Results for Research and Direct-to-Con-
sumer Applications. Genes (Basel). 2018;9(10).

	64.	 Dervishi L, Wang X, Li W, Halimi A, Vaidya J, Jiang X, et al. Facilitating Fed-
erated Genomic Data Analysis by Identifying Record Correlations while
Ensuring Privacy. AMIA Annu Symp Proc. 2023;2022:395–404. arXiv:​2203.​
05664.

	65.	 Sustronk JJ. In: Analysing Cyber Threat Intelligence Data Using Fully
Homomorphic Encryption. Drienerlolaan 5, 7522 NB Enschede, Nether-
lands: University of Twente; 2022. https://​essay.​utwen​te.​nl/​93355/1/​Sustr​
onk_​MA_​EEMCS.​pdf.

	66.	 Cheon JH, Kim D, Park JH. Towards a practical cluster analysis over
encrypted data. In: International Conference on Selected Areas in Cryp-
tography. Springer; 2019. pp. 227–249.

	67.	 United Nations DoE, Social Affairs PD. World Population Prospects 2022,
Summary of Results. 2022. https://​www.​un.​org/​devel​opment/​desa/​pd/​
sites/​www.​un.​org.​devel​opment.​desa.​pd/​files/​wpp20​22_​summa​ry_​of_​
resul​ts.​pdf.

	68.	 Panda S. Polynomial approximation of inverse sqrt function for fhe. In:
International Symposium on Cyber Security, Cryptology, and Machine
Learning. Springer; 2022. pp. 366–376.

	69.	 Albrecht M, Chase M, Chen H, Ding J, Goldwasser S, Gorbunov S, et al.
In: Lauter K, Dai W, Laine K, editors. Homomorphic Encryption Standard.
Cham: Springer International Publishing; 2021. pp. 31–62. https://​doi.​org/​
10.​1007/​978-3-​030-​77287-1_2.

	70.	 Jin X, Han J. In: Sammut C, Webb GI, editors. K-Means Clustering. Boston:
Springer US; 2010. pp. 563–564.https://​doi.​org/​10.​1007/​978-0-​387-​30164-
8_​425.

	71.	 Aziz MMA, Sadat MN, Alhadidi D, Wang S, Jiang X, Brown CL, et al. Privacy-
preserving techniques of genomic data—a survey. Brief Bioinform.
2019;20(3):887–95.

	72.	 Kim A, Song Y, Kim M, Lee K, Cheon JH. Logistic regression model training
based on the approximate homomorphic encryption. BMC Med Genom-
ics. 2018;11(4):23–31.

	73.	 Kim M, Song Y, Li B, Micciancio D. Semi-parallel logistic regression for
GWAS on encrypted data. BMC Med Genomics. 2020;13:1–13.

	74.	 Blatt M, Gusev A, Polyakov Y, Rohloff K, Vaikuntanathan V. Optimized
homomorphic encryption solution for secure genome-wide association
studies. BMC Med Genomics. 2020;13(7):1–13.

	75.	 De Cock M, Dowsley R, Nascimento AC, Railsback D, Shen J, Todoki A.
High performance logistic regression for privacy-preserving genome
analysis. BMC Med Genomics. 2021;14:1–18.

	76.	 Zhou J, Lei B, Lang H, Panaousis E, Liang K, Xiang J. Secure geno-
type imputation using homomorphic encryption. J Inf Secur Appl.
2023;72:103386.

	77.	 Gascón A, Schoppmann P, Balle B, Raykova M, Doerner J, Zahur S, et al.
Privacy-preserving distributed linear regression on high-dimensional
data. Cryptol ePrint Archive. 2016.

	78.	 Battey HS, Reid N. On inference in high-dimensional regression. J R Stat
Soc Ser B Stat Methodol. 2023;85(1):149–75.

	79.	 Nocedal J, Wright SJ. Numerical optimization. Springer; 1999.
	80.	 Nikolaenko V, Weinsberg U, Ioannidis S, Joye M, Boneh D, Taft N, Privacy-

preserving ridge regression on hundreds of millions of records. In: 2013
IEEE symposium on security and privacy. IEEE; 2013. pp. 334–48.

	81.	 Microsoft SEAL (release 4.0). Redmond: Microsoft Research; 2022. https://​
github.​com/​Micro​soft/​SEAL.

	82.	 Boemer F, Kim S, Seifu G, de Souza FD, Gopal V, et al. Intel HEXL (release
1.2). 2021. https://​github.​com/​intel/​hexl.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1371/journal.pone.0160287
https://doi.org/10.1534/genetics.117.1122
https://doi.org/10.1534/genetics.117.1122
http://arxiv.org/abs/2111.12372
https://petsymposium.org/popets/2023/popets-2023-0091.pdf
https://petsymposium.org/popets/2023/popets-2023-0091.pdf
https://doi.org/10.1186/s12920-017-0276-z
https://api.semanticscholar.org/CorpusID:1467571
https://api.semanticscholar.org/CorpusID:1467571
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1007/978-3-540-79104-1_6
https://doi.org/10.3390/cryptography5010002
https://doi.org/10.3390/cryptography5010002
https://doi.org/10.1109/TDSC.2020.2967740
https://crypto.stanford.edu/%7edabo/pubs/papers/search.pdf
http://arxiv.org/abs/2203.05664
http://arxiv.org/abs/2203.05664
https://essay.utwente.nl/93355/1/Sustronk_MA_EEMCS.pdf
https://essay.utwente.nl/93355/1/Sustronk_MA_EEMCS.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
https://doi.org/10.1007/978-3-030-77287-1_2
https://doi.org/10.1007/978-3-030-77287-1_2
https://doi.org/10.1007/978-0-387-30164-8_425
https://doi.org/10.1007/978-0-387-30164-8_425
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/intel/hexl

	Private detection of relatives in forensic genomics using homomorphic encryption
	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Contributions
	Forensic Genetic Genealogy (FGG)
	Kinship estimation
	Scope of this work in the FGG context

	Related work
	Current security and privacy protection practices in genomic data sharing
	Genetic privacy protection with homomorphic encryption
	DNA matching methods
	Private queries on encrypted data

	Methods
	Unsupervised method
	Optimization for performance
	Security level and parameters selection
	Packing
	Encrypted algorithm

	Clustering-based supervised method
	Optimization for performance
	Security level and parameters selection
	Packing
	Encrypted algorithm

	Linear regression method
	Model training
	Optimization for performance
	Security level and parameters selection
	Encrypted algorithm

	Results
	Secure detection of relatives in forensic genomics
	Problem and data description
	Problem setting and secure protocol
	Design considerations
	Optimizing computing and resources
	Computation environments
	Evaluation criteria

	Performance on iDASH competition
	Fully unsupervised method
	Clustering-based supervised
	Linear regression model

	Comparative performance analysis
	Experimental setup
	Performance gain due to algorithm choice
	Performance gain due to vector instructions
	Performance gain due to parallel processing
	Performance gain due to vector instructions and parallel processing

	Discussion
	Conclusions
	Acknowledgements
	References

