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Abstract 

Background  Forensic analysis heavily relies on DNA analysis techniques, notably autosomal Single Nucleotide 
Polymorphisms (SNPs), to expedite the identification of unknown suspects through genomic database searches. 
However, the uniqueness of an individual’s genome sequence designates it as Personal Identifiable Information (PII), 
subjecting it to stringent privacy regulations that can impede data access and analysis, as well as restrict the parties 
allowed to handle the data. Homomorphic Encryption (HE) emerges as a promising solution, enabling the execution 
of complex functions on encrypted data without the need for decryption. HE not only permits the processing of PII 
as soon as it is collected and encrypted, such as at a crime scene, but also expands the potential for data processing 
by multiple entities and artificial intelligence services.

Methods  This study introduces HE-based privacy-preserving methods for SNP DNA analysis, offering a means 
to compute kinship scores for a set of genome queries while meticulously preserving data privacy. We present three 
distinct approaches, including one unsupervised and two supervised methods, all of which demonstrated excep-
tional performance in the iDASH 2023 Track 1 competition.

Results  Our HE-based methods can rapidly predict 400 kinship scores from an encrypted database containing 2000 
entries within seconds, capitalizing on advanced technologies like Intel AVX vector extensions, Intel HEXL, and Micro-
soft SEAL HE libraries. Crucially, all three methods achieve remarkable accuracy levels (ranging from 96% to 100%), 
as evaluated by the auROC score metric, while maintaining robust 128-bit security. These findings underscore 
the transformative potential of HE in both safeguarding genomic data privacy and streamlining precise DNA analysis.

Conclusions  Results demonstrate that HE-based solutions can be computationally practical to protect genomic 
privacy during screening of candidate matches for further genealogy analysis in Forensic Genetic Genealogy (FGG).
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Background
The identification of unknown individuals using their 
DNA sample can be done either directly through DNA 
matching with target candidates or indirectly via famil-
ial tracing [1]. Typically, in the absence of direct evidence 
for DNA matching, the latter method is used to approach 

the identification of the DNA sample. DNA matching is 
particularly relevant for finding unknown perpetrators of 
crime who are unidentifiable with standard DNA profil-
ing. The method is known as Forensic Genetic Geneal-
ogy (FGG) [2]. A typical application is forensic search on 
DNA collected from a crime scene, where the DNA helps 
law enforcement find close relatives of an unknown sus-
pect in a genetic database. Even if the unknown suspect 
individual never had his/her DNA collected, law enforce-
ment will be able to close in on his/her family circle and 
from there orient an investigation in the right direction.
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FGG shall not be confused with Familial DNA Search-
ing (FDS). In FDS, collected DNA evidence is compared 
against the FBI’s CODIS database, which contains DNA 
profiles of known convicted offenders. This process 
aims to find partial matches that closely resemble the 
target DNA profile, primarily focusing on immediate 
relatives like parents and children [2]. Conversely, FGG 
is employed when FDS is unsuccessful, utilizing non-
criminal genetic genealogy databases. FDS and FGG 
also differ in their data types: FDS relies on Short Tan-
dem Repeat (STR) DNA typing, while FGG uses Single 
Nucleotide Polymorphism (SNP) high-density markers. 
Consequently, their DNA matching algorithms use dif-
ferent analysis approaches: SNP array DNA matching 
algorithms commonly rely on probabilistic and heuristic 
methods, while STR DNA profiling algorithms compare 
the number of shared alleles at specific loci to determine 
genetic matches. In summary, FGG leverages genealogy 
and SNP analysis, whereas FDS focuses on CODIS and 
STR markers. As of 2018, several non-criminal genealogy 
databases could be used by law enforcement to resolve 
violent crimes and missing person cases, namely,  [3–5]. 
This process has law enforcement upload the raw DNA 
evidence to different genetic genealogy databases and 
several matches of distant relatives are found and used to 
build family trees to back trace to the identity of the DNA 
sample source.

There could be many more genetic genealogy databases 
to search for matches of relatives. For this reason, it can 
be time consuming and unduly computationally expen-
sive if no matches are found after comparing a query 
DNA sample with all entries in a database. A method that 
could perform a swift screening across all different data-
bases shall alleviate this computational issue. This is the 
matter of this work. In addition, because the unknown 
DNA sample leave custody of law enforcement, it could 
arguably violate the principles of privacy on handling 
and processing genetic data, for which there could be 
unpredictable negative consequences to both investiga-
tion integrity and unwanted discoveries for the related 
matches.

The benefit of enforcing genetic privacy could bring 
some positive gains such as breaking geographical barri-
ers concerning access to genetic databases spread world-
wide, which are protected by international privacy laws 
and regulations. Its value goes beyond prudent accessibil-
ity of genetic databases but also, more generally, to the 
proactive prevention of ethical and privacy issues involv-
ing the general public, which can be sidelined or over-
looked [6] and cause wrongful convictions [7].

The yearly iDASH competition proposes the chal-
lenge of protecting genetic privacy using Homo-
morphic Encryption. The goal of the 2023 edition of 

iDASH is determining whether a DNA sample (query) 
shares any genetic information with genomes com-
prising a target genetic genealogy database. Aiming 
at addressing the iDASH 2023 Track 1 challenge, i.e., 
“Secure Relative Detection in (Forensic) Databases”, 
we devised three methods that utilize HE-based 
approaches to confirm the presence of a person’s rela-
tives’ genetic data within a genomic database. During 
this procedure, the query site initiates the request, 
and the database site provides the response. Both sites 
would like to keep data confidential. The output of 
the method is a score that indicates for each query the 
likelihood rate about the presence of its relatives in the 
genomic database. Our methods enable a secure search 
for the target individual without compromising the 
privacy of the query individual or the genomic data-
base. It also makes consent management more modu-
lar, as individuals can consent to secure searches but 
not searches in clear text. This is particularly relevant 
in the forensic domain, where using genetic genealogy 
databases (e.g., GEDMatch) to rapidly identify sus-
pects and their relatives raises complex ethical issues, 
such as using genomic data without consent for foren-
sic purposes. In the use case we consider, there are 3 
entities (see also Fig. 1): 

1.	 A law enforcement querying entity (QE) that holds 
the genome of a target suspect individual collected 
on a crime scene.

2.	 A Database owner (DE), who manages a genetic 
genealogy database.

3.	 A Non-colluding trusted computing entity (CE) that 
performs genome detection using the encrypted data 
from QE and DE.

QE wants to find out if the genome of the target indi-
vidual (or family relatives) is in the database. Neither 
QE nor DE is allowed to reveal the genomic informa-
tion to the other party. The main challenge is to per-
form this search in a secure manner using a HE-based 
query system such that information exchanged between 
the entities remains encrypted at all time. The use case 
involves two steps: 

1.	 One-to-Many DNA comparisons: a way to compare 
a genetic profile to all other database members. In 
this case, a unique real-value score is computed to 
determine how likely a query individual has a famil-
ial relationship with any other individual in the 
database. This can be accomplished also by directly 
comparing a query to every member in the database 
and then selecting the maximum a real-valued num-
ber out of all comparisons, which directly pinpoints 
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which member is most likely to be related to the que-
ried genome.

2.	 One-to-One autosomal DNA comparison allowing 
to confirm how much DNA an individual share with 
someone before contacting them.

Contributions
The solution to step 1, the focus of this work, can serve 
as a filtering system for forensics analysis of DNA sam-
ples collected on crime scenes. In this case, the problem 
does not require that the relative in the database be iden-
tified exactly, but instead it requires to determine if there 
exists at least one relative to the query individual in the 
database with certain probability. There could be many 
databases to search from. Since comparing a suspect 
with each individual in every database is computationally 
expensive, it pays off to reduce the number of databases 
to search from and to reduce the number of suspect can-
didates for each target database. In this regard, the first 
step would be to determine if a suspect has any relative in 
the target database.

The key contributions of this work are three-fold: 

1.	 Firstly, we propose an HE-friendly mathematical sim-
plification of the equation proposed in  [8] to detect 
contributing trace amounts of DNA to highly com-

plex mixtures using homomorphically encrypted 
high-density SNP genotypes.

2.	 Secondly, we introduce two novel algorithms to pre-
dict evaluation scores rating whether a DNA sample 
query shares genetic data with any other DNA sam-
ple in a genomic database, where one of these two is 
heuristically inspired by the z-test hypothesis test-
ing, and assumes no prior knowledge of the reference 
populations, and the other algorithm uses a Machine 
Learning approach with linear regression model 
trained on a known reference population mixture 
inherited from the genealogy database.

3.	 Finally, we demonstrate through several experi-
ments that our methods perform high accuracy 
predictions in less than 37.5 milliseconds per query 
using encrypted genetic data in a privacy-preserving 
approach with provable 128-bit security.

As follows, in “Forensic Genetic Genealogy (FGG)” sec-
tion, we define the problem scope in the context of FGG 
and present a discussion on relevant related work in 
“Related work” section. In “Methods” section, we present 
the methods in details, including some data analysis and 
design considerations to address the problem statement 
effectively in aspects such as security, computing and 
resource optimizations. We present performance results 
of the methods in detail in “Results” section, including a 
description of the characteristics of the challenge, data, 

Fig. 1  Classic secure outsourcing computing protocol used in the iDASH 2023 Homomorphic Encryption challenge. 400 queries and 2000 
database samples make up the bulk of the data movement, each requires 956KB of storage space. The size of encrypted predictions displayed 
in the picture corresponds to 400 encrypted predictions, i.e. 51MB



Page 4 of 36de Souza et al. BMC Medical Genomics          (2024) 17:273 

evaluation criteria, and computing resource constraints 
in “Secure detection of relatives in forensic genom-
ics” section. Finally, we finalize our discussion in “Discus-
sion” and “Conclusions” sections.

Forensic Genetic Genealogy (FGG)
Forensic Genetic Genealogy (FGG) is an investigative 
tool that combines traditional genealogy research with 
advanced SNP DNA analysis to solve crimes and identify 
unknown individuals. It consists of the following steps: 

1.	 DNA sample collection: DNA sample is collected 
from a crime scene or an unidentified individual.

2.	 SNP testing: this is the process in which DNA is 
analyzed to identify the SNP variations and then 
compiled into an array format (the input data of this 
paper).

3.	 Profile upload: the genetic profile acquired from 
step 2, the SNP array (or genome), is then uploaded 
to a public genetic genealogy database, such as GED-
match or FamilyTreeDNA.

4.	 Database matching: matching algorithms are used 
to compare the uploaded profile with other genetic 
profiles in the database to identify potential relatives 
by measuring the amount of shared DNA segments. 
The scope of our work and the iDASH 2023 competi-
tion intersects with this since it concerns identifying 
whether there are any potential relatives in the data-
base [9].

5.	 Relationship estimation: an algorithm takes two 
genomes and estimates the degree of relatedness 
between them, which can range from close relatives 
(e.g., parents, siblings) to distant cousins. The meth-
ods proposed here can be used to perform relation-
ship estimation but this is out of scope of this work.

6.	 Genealogical research: genealogists use the matches 
found in step 5 to reconstruct family trees, tracking 
common ancestors and descendants to reduce the 
number of potential suspects.

7.	 Identifying the suspect: once a potential match is 
identified, law enforcement collects a DNA sample 
from the suspect to confirm the match through tradi-
tional forensic methods.

Kinship estimation
The kinship score determines the degree of relatedness 
between two individuals based on their genetic data 
(see  [10–12]). The database matching step, described in 
step 4 above, relies on predicting the kinship between 
the uploaded genetic profile and the genetic profiles in 
the database. It is a measure of the probability that a ran-
domly chosen allele from one individual is identical by 

descent (IBD) to a randomly chosen allele from another 
individual. It can be mathematically described (see [13]) 
as

where L is the number of loci (genetic markers or SNP 
variants), xil and xjl are the SNP variants of individuals 
i and j at locus l, and pl is the allele frequency at locus l.

Scope of this work in the FGG context
Step 4 is the subject matter of this work and of the 
iDASH competition task. It concerns kinship predic-
tion. The input data of this work comes from step 2, a 
genome sequence formed of SNP variants represented 
with elements in the set {0, 1, 2} . This genome encoding is 
a sequence of bi-allelic SNP data. In the GDS (Genomic 
Data Structure) data format, which is derived from a VCF 
(Variant Call Format) data file, the genotype encodings 2, 
1, and 0 refer, respectively, to Homozygous for the refer-
ence allele (both alleles match the reference allele), Het-
erozygous (one of the alleles matches the reference allele 
and the other matches the alternate allele), and Homozy-
gous alternate genotype (both alleles match the alternate 
allele). It basically counts how many alleles match with 
the reference allele in a specific position (gene locus) of 
the reference genome (see similar explanation in [9]).

For simplification, the database matching task in step 
4 is a search problem cast as a decision problem. The 
matching task is reduced to finding out whether or not 
the uploaded profile matches with any of the profiles 
in the database, while not requiring that any potential 
matches be exactly identified or retrieved. This means 
that the uploaded profile may not need be compared with 
all, or any, of the database profiles to deliver the answer. 
In this case, step 4 of the FGG task can be split into two 
parts. The first part regards screening each database to 
find out whether there exists any potential matches. All 
that is needed is to identify the nature of the relationship 
between the uploaded profile and the genetic database, 
i.e. answering the question “Is there any relative of the 
query individual in the probed genetic database?”. Once 
the databases that contain relatives are identified, then 
the second part starts, which consists of searching for the 
actual candidate matches in each of the databases where 
the uploaded profile was screened and found to share 
DNA segments with other database profiles. We concen-
trate our efforts on part 1 of step 4 as just described since 
it was the required task in iDASH competition. Steps 1, 2, 
3, 5, 6, and 7 fall outside the scope of this work.

We simplify the problem to obtain the kinship score 
between the individual query and the genomic database. 

(1)φij =
L

l=1

(xil − 2pl)(xjl − 2pl)

2pl(1− pl)
,
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We use homomorphic encryption to devise privacy-
preserving methods to perform the relatedness match-
ing while securing the computation with genetic data. 
The output of our methods can also be used as kinship 
predictions between pairs of genetic profiles and then 
used to estimate relationship types (step 5), but it is not 
the subject of study here. We use the predicted kinship 
scores to estimate the relationship of the uploaded profile 
directly with the genetic genealogy database. Other pri-
vacy-preserving genetic relatedness testing methods have 
been proposed and are discussed in [14–17].

Related work
Current security and privacy protection practices in genomic 
data sharing
Genomic data sharing  [18, 19] is particularly useful 
for precise medicine  [20]. There are a myriad of uni-
fied genomic database knowledge projects (see  [21] for 
a list) that provide researchers with genetic data shar-
ing and analysis [22] capabilities for this purpose. Along 
with that, concerns regarding genomic data security and 
privacy are raised [21]. They implement different strate-
gies to offer security and privacy protection guarantees. 
For instance, control access through administrative pro-
cesses, laws and regulations, data anonymization, and 
encryption.

Administrative processes  To obtain access to controlled 
data from the NCI (National Cancer Institute) Genomic 
Data Commons (GDC)  [20, 23] knowledge database, it 
is required to file a dbGaP (Database of Genotypes and 
Phenotypes) authorization request that will be reviewed, 
approved or disapproved by the NIH (National Institutes 
of Health) Data Access Committee (DAC) on the basis of 
whether or not the usage will conform to the specifica-
tion determined by the NIH Genomic Data Sharing Pol-
icy (see more details at [24]). Once access is granted, the 
recipient is entrusted with and accountable for the secu-
rity, confidentiality, integrity and availability of the data, 
including when utilizing Cloud computing services.

Another example is the European Genome-phenome 
Archive (EGA)’s data access  [25], which operates in a 
similar manner, i.e. through Data Access Agreement 
(DAA) and Data Processing Agreement (DPA) docu-
ments, but enhancing data access security and confiden-
tiality via authenticated encryption of data files using 
Crypt4GH  [26]. Many other public genomic datasets 
exist and implement similar security and privacy protec-
tion practices, as reviewed by [21].

Employing administrative processes only is not suit-
able for privacy-preserving FGG. This implementation of 
access control to sensitive data depends on the integrity 

and goodwill of the authorized individual to self-report 
any agreement violations and data breaches. Once data 
access is granted, there is a lack of oversight to enforce 
policies related to genomic privacy, re-identification, and 
data misuse.

Data anonymization  Data anonymization involves 
obscuring personal identifiers in genetic data to protect 
individual’s privacy. It can also come in the form of aggre-
gated data that shows trends and patterns without reveal-
ing specific identities. Data masking is also a technique 
employed to alter sensitive parts of the data to prevent 
identification [27].

Employing data anonymization only is not suitable 
for privacy-preserving FGG. Genetic data is unique and 
inherently identifiable. Even when anonymized, it can 
often be re-identified through genealogical research and 
cross-referencing with other data sources. Anonymi-
zation of data also bring serious limitations due to the 
uniqueness of every individual’s genome, which can 
be easily subject to proven re-identification attacks 
(see [28]).

Laws and regulations  Laws and regulations play a cru-
cial role in protecting the privacy of genetic data and 
medical information. They legally protect individual’s 
medical record and other PII data, including genetic 
data, by setting standards for the use and disclosure of 
such information by covered entities. Their security rules 
depends on appropriate administrative and technical 
safeguards to ensure confidentiality, integrity and secu-
rity of protected health information. They set the foun-
dation of genetic privacy but carry limitations that pose 
increased risk to individuals’ privacy.

Employing laws and regulations only is not suitable for 
privacy-preserving FGG. There is a lack of standardized 
regulations and ethical guidelines governing the use of 
genetic data in forensic investigations. Legal acts such 
as HIPAA and GINA seem inadequate and leave gaps in 
protection since they focus on who holds the data rather 
than the data itself because it only applies to covered 
entities. For example, they do not regulate consumer-
generated medical and health information or recreational 
genetic sequencing generated by commercial entities 
such as 23andMe and Ancestry.com. Therefore, we can 
argue that these commonly practiced solutions fall short 
in securing genomic data privacy.

In all the aforementioned genomic data sharing data-
base cases, privacy protection is traded by confidentiality 
agreements, which do not offer the same layer of protec-
tion to sensitive data since their compliance is subject to 
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the actions of fallible human beings. The adequate solu-
tion shall enforce privacy protection policies on the data 
regardless of the creator or who has access to it. Cryp-
tographic techniques appear to be the most suitable 
to address it in this manner  (e.g. [29]), where the most 
advanced of them allows making inferences and analyt-
ics while the data is encrypted, while never revealing the 
contents to the user.

Encryption in genomic data sharing  Privacy risks asso-
ciated to accessing and storing genetic data can be miti-
gated by enabling confidentiality through cryptography. 
If either at rest or in transit, genetic data can be guarded 
from unwarranted access using state-of-the-art encryp-
tion schemes  (e.g. [26, 30, 31]). This way, only author-
ized personnel holding the decryption key can reveal the 
contents of the encrypted genetic data. Crypt4GH  [26] 
is an industry standard for genomic data file format to 
keep genomic data secure while at rest, in transit, and 
through random access; thus, allowing secure genomic 
data sharing between separate parties. A solution so-
called SECRAM  [32] data format has been proposed 
for secure storage and retrieval of encrypted and com-
pressed aligned genomic data. To perform data analytics 
with machine learning algorithms in such case, the data 
is required to be decrypted and it becomes vulnerable to 
cybersecurity attacks. This is the major protection limita-
tion of conventional cryptographic encryption schemes, 
i.e. requiring decryption before computing.

On the other hand, encrypting genomic data with 
Homomorphic Encryption (HE) schemes allows com-
putation over encrypted data without ever decrypting 
it; thus, not revealing any sensitive content since the 
data remains encrypted, ensuring true private computa-
tion. This additional layer of security can potentially help 
reduce the time and cost spent on reviewing and approv-
ing data accesses. When computationally demanding data 
analysis is desired, more often than not, processing needs 
to occur in (public) untrusted cloud service providers due 
to limited local computing resources and/or access to a 
restricted number of analytic model IPs. In this context, 
modern cryptography introduces homomorphic encryp-
tion methods (e.g., BGV  [33], and CKKS  [34]), which 
bring the capability of protecting data privacy during 
computation in a semi-honest security model.

Genetic privacy protection with homomorphic encryption
Fully Homomorphic Encryption (FHE) allows compu-
tation of arbitrary functions on encrypted data without 
decryption  [35]. This means the data is also protected 
during computation (processing) since it remains 
encrypted. Its security guarantee stems from the 

hardness of Ring Learning with Errors (RLWE) assump-
tions  [36]. There are two aspects to this assumption, 
namely, decisional and computational. The decisional 
RLWE assumption states that it is infeasible to distin-
guish pairs (a,  b) picked at random from a distribution 
over a ring R2

Q and pairs constructed as (a, a · s + e) 
with a sampled from RQ , where e and s are randomly 
sampled from a noise distribution X  over the ring R . 
The computational assumption states that it is hard to 
discover the secret key s from many different samples 
(a, a · s + e) . This homomorphic encryption construct is 
built on a polynomial ring RQ = ZQ[x]/(XN + 1) , where 
ZQ denotes the ring of integers modulo Q that populate 
the polynomial coefficients, XN + 1 is the Mth cycloto-
mic polynomial φM(x) , and N = M/2 . The choice of N, 
where N is typically a power-of-2 integer, is determined 
by the value of the coefficient modulus Q and the secu-
rity parameter � , such that M = M(�,Q) is a function of 
� and Q.

Various homomorphic encryption schemes built 
on RLWE constructs that work naturally with inte-
gers emerged in the literature  (e.g. [33, 37]). Although 
the genetic data in this work takes values in the set 
G = {0, 1, 2} , the expected output and model param-
eters to perform the data analysis and predictions oper-
ate on numbers in floating-point representation. This 
is especially true when training machine learning mod-
els to make predictions from genotypes. For this rea-
son, it is natural to opt for a homomorphic encryption 
scheme intrinsically designed to accommodate floating-
point arithmetic. Cheon et  al. [34] put forward the first 
homomorphic encryption for arithmetic of approximate 
numbers, also commonly known as the CKKS (short 
for Cheon-Kim-Kim-Song) scheme, that is most suit-
able to operate on real numbers. The CKKS scheme [34] 
is a levelled homomorphic encryption (LHE) public key 
encryption scheme based on the RLWE problem [36]. It 
allows to perform computations on encrypted complex 
numbers; thus, real numbers too. The ability of the CKKS 
method to handle floating-point numbers, approximated 
with fixed-point representation, makes it particularly 
attractive for confidential machine learning (ML) and 
data analysis. In the following, we briefly describe the 
CKKS scheme that we will use throughout this paper.

The same noise e added during the encryption to 
strengthen the security also contributes to limiting the 
number of consecutive multiplications as the noise grows 
as consequence of that, possibly causing decryption 
error. CKKS controls this error-causing noise growth 
with the concept of levels and rescaling. Initially, a fresh 
CKKS ciphertext ct is assumed to encrypt numbers with 
certain initial precision masked by the added noise of 
smaller precision. The initial noise budget of a CKKS 
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ciphertext (see Fig. 2) is determined by the parameter L 
(multiplicative depth). The integer L corresponds to the 
largest ciphertext modulus level permitted by the secu-
rity parameter � . Let the ring dimension N be a power-
of-2, a modulus Q = qL = �L , and ql := �l for 1 ≤ l ≤ L , 
and some integer scaling factor � = 2p , where p is the 
number of bits for the desired (initial) precision.

Before encryption, the message needs to be encoded 
in a plaintext space. Genetic data vector q ∈ G

n is seen 
as a single CKKS message z ∈ C

N/2 , assuming n ≤ N/2 , 
mapped to a plaintext object �m ∈ R . This plain-
text space supports element-wise vector-vector addi-
tion, subtraction, and Hadamard multiplication. For 
encoding and decoding procedures, CKKS relies on 
a field isomorphism called canonical embedding, i.e. 
τ : R[x]/(XN + 1) → C

N/2 . Hence, we have

Equipped with the aforementioned concepts, we now 
define the following CKKS operators:

•	 KeyGen(RqL ,χkey,χerr , 1
�)

–	 Sample s ← χkey and set the secret key as sk = (1, s)

.
–	 Sample a ← U(RqL) (where U denotes the Uni-

form distribution) and e ← χerr.
–	 Set the public key as pk = (b, a) ∈ R

2
qL

 where 
b = [−a · s + e]qL

•	 Encpk( �m)

–	 Given a plaintext message �m ∈ R , sample v ← χenc 
and e0, e1 ← χerr.

–	 Output the ciphertext ct = [v · pk + ( �m+ e0, e1)]qL
.

•	 Decsk(ct)

(2)Encode(z,�) = ⌊� · τ−1(z)⌉

(3)Decode( �m,�) = τ (
1

�
·m)

–	 Given a ciphertext ct ∈ R2
qL
 , where ct as encryp-

tion of �m satisfies �ct, sk� = �m+ e( mod qL) for 
some small e, then the decryption output results in 
�m′ = �ct, sk�( mod qL) , where �m′ is slightly differ-
ent from the original encoded message �m ; indeed, 
an approximated value when ||e||∞ << || �m||∞ 
holds true.

•	 Add/Sub(ct1, ct2)

–	 Given two ciphertexts ct1, ct2 , output the ciphertext 
ctadd/ctsub = [ct1 ± ct2]qL encrypting a plaintext 
vector �m1 ± �m2.

•	 Multevk(ct1, ct2)

–	 Given two ciphertexts ct1, ct2 ∈ R2
qL
 , output a level-

downed ciphertext ctmult ∈ R2
qL−1

 encrypting a plaintext 
vector �m1 ⊙ �m2

•	 Relinevk(ct)

–	 When two ciphertexts ct1 and ct2 are multi-
plied, the results if a larger ciphertext ctMult =

Mu(ct1, ct2) = (d0, d1, d2) , where d0 , d1 , and d2 
are the components of the resulting ciphertext. 
To reduce the ciphertext back to the original 
size, a relinearization key evk is used to trans-
form the ciphertext from three-component form 
back to a two-component form, such that ctrelin =

Relinevk((d0, d1, d2)) = (d′
0
, d′

1
) , where the results 

of applying Relinevk is defined by the expression 
(d0 +

∑2
i=1 evki · di, d1 +

∑2
i=1 evki+2 · di).

•	 Rotaterk(ct, r)

–	 This operator is also called automorphism. For 
a ciphertext ct encrypting a plaintext vector �m =
(m1, . . . ,mn) , output a ciphertext ct ′ encrypting a 
plaintext vector �m′ = (mr+1, . . . ,mn,m1, . . . ,mr) , 
which is the (left) rotated plaintext vector of ct by r 
positions.

•	 Rescale(ct)
–	 When two ciphertexts ct1 and ct2 are multiplied, the 

resulting ciphertext ctMult = Multevk(ct1, ct2) has 
a scale that is the product of the scales of ct1 and 
ct2 , i.e. �Mult = �1 ·�2 . Rescaling brings the scale 
back to a manageable level. It involves dividing the 
ciphertext by a factor � , i.e. ctrs = ⌊ ctMult

�
⌋.

•	 ModSwitch(ct, q′)

Fig. 2  CKKS ciphertext structure depicting the noise budget in a freshly encrypted ciphertext
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–	 Modulus switching in CKKS is used to reduce the 
modulus of the ciphertext to help manage the noise 
(and plaintext) growth and to match levels of 
ciphertexts operating together. To switch to a 
smaller modulus q′ < q , the ciphertext components 
ct0 and ct1 are scaled down and rounded according 
to ct ′ = (⌊ q′q · ct0⌋, ⌊ q

′
q · ct1⌋) mod q′.

The distribution χenc and χerr denote the discrete 
Gaussian distributions for some fixed standard deviation 
σ . The distribution χkey outputs a polynomial of {−1, 0, 1} 
coefficients. We denote the rounding function ⌊·⌉ and 
modulo q operation [·]q . The encoding technique allows 
parallel computation over encryption in a Single-Instruc-
tion-Multiple-Data (SIMD) way making it efficient once 
the computation is amortized on the vector size.

DNA matching methods
There are two lines of work relevant to our topic: first, 
database queries on cleartext data that could be adapted 
to Homomorphic Encryption and second, encrypted 
genomic database queries. Not all popular methods in 
the unencrypted domain are good candidates to run in 
the encrypted domain. Depending upon the Homomor-
phic Encryption scheme, mathematical functions like 
max, min, greater than, less than, is equal to and algo-
rithm like loops and sorts are not easily implementa-
ble on encrypted data. We are looking for methods that 
enable swift kinship searches for relatives up to the third 
degree, while observing the aforementioned constraints 
imposed by the difficulties to transform it into a homo-
morphic encryption arithmetic circuit.

Cleartext protocols for DNA matching  Genetic related-
ness or kinship between two individuals can be described 
as the likelihood that, at a randomly chosen genomic 
location, the alleles in their genomes are inherited from a 
common ancestor. This phenomenon is known as Identi-
cal-by-Descent (IBD). This concept of relatedness should 
not be confused with Kinship coefficient and metrics 
closely connected to other genetic measures, including 
the inbreeding coefficient and probabilities associated 
with sharing IBD segments.

To identify biological relationships beyond immedi-
ate family, the segment approach and extended IBD 
segments are effective but require high density mark-
ers, typically not available in forensic samples. Forensic 
samples typically rely on STR (Short Term Repeat) DNA 
typing, the preferred data format of forensic searches 
in criminal databases (i.e., Familial DNA Searching) to 
obtain partial matches with immediate relatives. Find-
ing matches beyond immediate relatives is more suit-
able using single nucleotide polymorphism (SNP) data 

format. The main challenge in DNA kinship matching is 
choosing the right method for the computations. Most 
methods rely on observed allele sharing, Identity-By-
State (IBS), to estimate probabilities of shared ancestry 
(IBD) or kinship coefficients and many of these are too 
complex to run on encrypted data. Methods available for 
DNA kinship matching up to the third degree (e.g., sib-
lings, half-siblings, or first cousins) differ in complexity, 
accuracy and latency.

[12] distinguish four categories of kinship methods. 
The first category entails moment estimators such as 
KING [10], REAP [11], plink [38], GCTA [39], GRAF [9] 
and PC-Relate  [40] that use Identical-by-State (IBS) 
markers and genotype distances to estimate expected 
kinship statistics. The second category is represented by 
the maximum-likelihood methods RelateAdmix [41] and 
ERSA  [42], which use expectation- maximization (EM) 
to jointly estimate the kinship statistics. The third and 
fourth families of methods use IBD-matching on phased 
genotypes  (e.g. [43, 44]), and kinship estimation from 
low-coverage next-generation sequencing data  [45, 13, 
46]. All these methods use one or more of three types of 
analysis, namely:

•	 Identity by Descent (IBD) Analysis by considering 
shared alleles across the entire genome, provides 
insights into relatedness at different temporal scales 
and levels of relatedness. Dou et al. [47] use mutual 
information between the relatives’ degree of related-
ness and a tuple of their kinship coefficient to build a 
Bayes classifier to predict first through sixth-degree 
relationships.  Smith et  al. [48] developed IBIS, an 
IBD detector that locates long regions of allele shar-
ing between unphased individuals.

•	 Morimoto et  al. [49] use Identity by State (IBS) 
Analysis to identify regions of the genome where two 
individuals share the same alleles. The proportion of 
the genome that is IBS will indicate the level of relat-
edness.

•	 Ramstetter et al. [50] use Haplotype Sharing Analy-
sis to look at shared haplotypes within particular 
genomic regions to uncover recent common ancestry.

Nonetheless, these methods can be too complex to 
yield the low latency required for demanding elaborate 
polynomial approximations of non-linear functions to 
transform them into a homomorphic encryption arith-
metic circuit. Moreover, while the competition challenge 
is well-suited for search methods that calculate kinship 
scores between each query and every entry in the data-
base, it can also be re-framed as a decision problem to 
become more amenable to resolution through decision 
algorithms. Specifically, the challenge involves the task 
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of establishing kinship scores that quantify the degree 
of genetic relatedness between a given query and any 
sample within a genomic database. Homer et al. [8] sug-
gest an algorithm working on clear text using clustering 
of admixed population. They demonstrate experimen-
tally the identification of the presence of genomic DNA 
of specific individuals within a series of highly complex 
genomic mixtures. This is significant for two reasons: 
first, it brings back to the forefront SNPs for identifying 
individual trace contributors within a forensics mixture, 
when STRs were the preferred method. Second, we will 
show (see “Clustering-based supervised method”  sec-
tion) that this method is low latency, accurate and ame-
nable to Homomorphic Encryption.

The choice of method depends on the quality and 
quantity of genetic data available, as well as the specific 
relationships being investigated and the population struc-
ture. The fastest methods to compute kinship are IBD 
methods. These methods, however, are not Homomor-
phic Encryption friendly and may require large comput-
ing resources and long latency running in the encrypted 
domain. Table  1 shows the fastest available methods to 
compute kinship on unencrypted data [51].

Private queries on encrypted data
Over the last 10 years there has been a number of papers 
demonstrating private queries on encrypted data.  Ram-
stetter et al. [52] suggest a secure biometric authentica-
tion method that employs fully homomorphic encryption 
TFHE scheme. They match biometric data from a local 
device, to an encrypted biometric template on a remote-
server encrypted database.  Pradel and  Mitchell [53] 
introduce Private Collection Matching (PCM) problems, 
in which a client aims to determine whether a collec-
tion of sets owned by a database server matches their 
interests.

EdalatNejad et al. [54] propose a string matching pro-
tocol for querying the presence of particular mutations 
in a genome database. They combine Homomorphic 
Encrytion scheme BGV  [55] and private set intersec-
tion [56] to search for similar string segments.  Chen 
et al. [57] compute private queries on encrypted data in 
a multi-user setting. Bao et al. [58] compute conjunctive 

queries on encrypted data.  Saha and  Koshiba [59] exe-
cute comparison queries while [60] compute range 
queries on encrypted data. Boneh and Waters [61] com-
pute relatedness scores within the protective confined 
Trusted Execution Environment of SGX, a hardware 
approach.  Chen et  al. [62] proposed “sketching”, [63] 
worked on “fingerprinting”, while [64] implemented a 
differential privacy scheme. Wang et al. [12] proposed a 
method to compute relatedness in the encrypted domain 
using Homomorphic Encryption taking into account 
admixed populations. This projection-based approach 
utilizes existing reference genotype datasets for estimat-
ing admixture rates for each individual and use these to 
estimate kinship in admixed populations. Dervishi et al. 
[65] implements a k-means algorithm on encrypted data 
using CKKS. This algorithm shows the feasibility of our 
clustering scheme should we require to implement it fully 
encrypted as proposed by [66].

Methods
The relatedness measurement of a genetic sample query 
to a population of individuals comprising a genetic gene-
alogy database can be framed as a decision algorithm: its 
purpose is to ascertain whether a given forensic genomic 
sample has a relative (match) in the database, extend-
ing up to the 3rd degree of kinship. For each individual 
query, a score is calculated, and this score is designed to 
be high when a relative is found and low when there is 
no relative in the database. Data discovery and analysis 
reveal the necessity of having a reference frame for map-
ping the query. Interestingly, any genome can act as this 
reference frame, particularly because the competition 
genomic database is derived from the same statistical 
data as the genomes in the challenge database, resulting 
in identical second-order statistics. Consequently, for 
practicality, we have opted to utilize the mean genome 
(allele average across all genome samples) from the chal-
lenge database, which is calculated offline and encrypted 
at runtime, as our reference.

To assess genetic relatedness, we design a metric built 
on one-sample paired z-test hypothesis testing. This 
turns into our unsupervised method discussed in “Unsu-
pervised method”  section. In this approach, we assign 

Table 1  The fastest kinship methods on unencrypted data are IBD based. These performance numbers were reported in Table 1 of 
paper by [51]. These methods were evaluated on the SAMAFS dataset and their performance was measured on a sample that included 
32154 pairs of annotated related individuals and 3051598 pairs of annotated unrelated individuals

Method Type Pre-processing Runtime Output

PLINK Allele frequency IBD estimate N/A 18.1s IBD proportions

KING Allele frequency IBD estimate N/A 4.6m IBD proportions

REAP Allele frequency IBD estimate 2.8h 3.8h IBD proportions
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weights to each coordinate when mapping the query 
onto the aforementioned reference frame. In order to 
improve accuracy and latency performances, we propose 
two supervised approaches. In “Clustering-based super-
vised method” section, we present the one that uses the 
k-means algorithm on the challenge database to discover 
k data points to represent the underlying population 
mixture. This method uses the distance between a query 
and these k data points to gauge whether it relates to any 
of the k reference populations comprising the probed 
genetic database. The second method, discussed in “Lin-
ear regression method” section, transforms the query by 
correlating it with the database mean. This transforma-
tion is an attempt to unveil an underlying pattern that 
could discern a query whose relative genetic data is pre-
sent in the database from a query whose genetic data 
is absent. The output of these transformations are then 
used as features to learn a linear regression model trained 
to predict 1 if a query has a relative in the database and 0 
if otherwise. On what concerns data privacy protection 
of the methods, a summarized description of the secu-
rity parameters used for encryption is shown in Table 2, 
while a more detailed discussion is carried out in their 
respective security subsections.

Unsupervised method
Unsupervised algorithms present a natural choice 
for addressing the relatedness problem. They require 
minimal assumptions about the dataset and contrib-
ute to more robust generalization. We proceed with 
the assumption that the genomic database primarily 
comprises genomes from individuals who are unre-
lated to the query individual. This assumption is 
grounded in the fact that on average fertility rate in the 
world population is 2.27 [67]; an individual is on aver-
age likely to have less than 97 relatives up to the third 
degree (see Table  3). In addition, it is unlikely that all 
relative genomes have found their way to the database; 

however, if we use the historical highest average fer-
tility rate of 6.8  [67], the number of third degree rela-
tives could reach 2339 (see Table 4), which is still much 
lower than a typical genomic database size but greater 
than our challenge dataset, in which case, our method 
could not be used. That is, if we rely on the assumption 
that our database characteristics follow the fertility rate 
is 6.8, implying 2339 relatives up to 3rd degree, then 
our assumption that the individuals in the database are 
mostly unrelated, on which our method relies, would 
not be suitable since the challenge database has only 
2000 samples. In the real-world scenario, where the 
databases have tens to hundreds of thousands of sam-
ples, then our assumption that the samples in the data-
base are mostly unrelated might still hold, for which 
our method could still be functionally suitable.

We precomputed offline the correlations (dot prod-
ucts) between known queries that are confirmed to have 
a relative within the challenge database and every entry 
in the database. Our analysis reveals that 367 entries in 
the challenge database are related to at least one of the 
200 positive query individuals (see Fig.  3). Note that, 
by carefully observing Fig. 3, we may infer that correla-
tion values around 13250 could indicate relatives of 1st 
degree, around 12000 will probably determine relatives 
of 2nd degree, around 11500 sits relatives of 3rd degree, 
and below and beyond lies distant relatives or unrelated 
individuals, i.e. individuals from different populations, 
with respect to query i (marked along the x-axis). This 
implies that, on average, each positive query is associated 
with just 1.83 relatives within the challenge database, out 
of a potential total of 97 existing relatives. It is worth not-
ing again that only a small minority of these potential 
relatives have their genome data present in the challenge 
database. These findings validate the robustness of our 
unsupervised approach.

Within this framework, Eq.  4 serves the purpose of 
quantifying the distance between a query q and the mean 
µ of the database considering all genotype variants, from 
i = 1 to i = 16344 . Clearly, the database mean aligns 
closely with the centroid of the unrelated genomes, given 
their substantial presence compared to the related ones. 
In fact, the database mean is the average of genotype val-
ues across all genomes from the database. In this manner, 
the database mean essentially characterizes “unrelated-
ness to any individual in the database”. This can be con-
firmed by observing that the correlation of any entry in 
database with the database mean (see blue x plots on 
lower right corner of Fig. 3) has lower correlation values 
than a correlation between a query and its relative in the 
database (see green solid circles plotted in Fig. 3).

Another way to support this interpretation is by 
observing the scatter plot of the correlations between 

Table 2  Summary of the security parameters for the algorithms 
to run under � = 128-bit security level. Security implementation is 
based on the Microsoft SEAL library. N is the polynomial ring size, 
logQ is the coefficient modulus size, � is the scaling factor, and L 
is the multiplicative depth of the HE algorithm

3 L refers to the multiplicative depth of the algorithm and determines the size 
of logQ . The symbol / indicates another parameterization where L and logQ are 
different

Method N logQ log� L3

“Unsupervised method” section 213 218 / 188 30 4 / 3

“Clustering-based supervised method” sec-
tion

212 109 29 1

“Linear regression method” section 212 109 29 1
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queries and the database mean in Fig.  4. They appear 
entangled and hardly defined to judge if positive or 
negative queries correlate more or less to the database 
mean. Superficially, it appears there is more correlation 
of the mean with the negative queries. This observation 
is used to consider that more correlation to the mean 
signifies more likelihood to be unrelated to any specific 
individual in the database since the mean approximates 
the average of the populations. We extend this obser-
vation to interpret and explain the clustering-based 

formulation proposed in “Clustering-based supervised 
method” section.

In Eq.  4, qℓ is an encrypted genome sample (query) 
ℓ , D is the encrypted genomic database, qℓ,i is the 
encrypted value of genotype variant at gene locus i 
in query qℓ , µi is the average value of genotype vari-
ants at gene locus i across all individuals in admixture 

(4)f (qℓ,D) =
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i

.

Fig. 3  This plot shows the correlation value of each query with every sample in the genomic database

Table 3  Estimation of Average Direct Relatives depending upon 
average 2022 world fertility rate (2.27)

a Historical world high fertility rate [67]

First degree Second degree Third degree

parents 2

child 2.27a

siblings 1.27

grand-parents 4

grandchild 10.31

aunt-uncle 2.82

niece-nephew 6.41

gt-granparents 8

gt-grandchildren 46.79

gt-uncles/aunts 5.08

first cousins 8.04

Total Relatives 5.54 23.54 67.90

Table 4  Estimation of Average Direct Relatives depending upon 
historical average high fertility rate (6.80)

a Historical world high fertility rate [67]

First degree Second degree Third degree

parents 2

child 6.8a

siblings 5.8

grand-parents 4

grandchild 92.48

aunt-uncle 109.43

niece-nephew 744.13

gt-granparents 8

gt-grandchildren 1257.73

gt-uncles/aunts 23.2

first cousins 85.68

Total Relatives 14.6 950.04 1374.61



Page 12 of 36de Souza et al. BMC Medical Genomics          (2024) 17:273 

population making up D (2000 database samples). Simi-
larly, σ 2

i  is the variance of genotype variants at gene 
locus i.

Inspired by the one-sample paired z-test, we first 
assume that the means µi are continuous and simple 
random sample from the population of interest. Second, 
we assume that the data in the population is approxi-
mately normally distributed and, third, that we can 
compute the population standard deviation from the 

genomic database. From that, we proceed with hypoth-
esis testing, making the Eq.  4 an approximation of the 
distance from the query to the group of unrelated indi-
viduals. When this distance is small, the query yields an 
“unfound” result, whereas a larger distance results in a 
“found” outcome. Notably, observations of genotype 
variants from related queries exhibit more significant 
deviations from the mean compared to those in unre-
lated queries.

Fig. 4  Scatter plot showing the correlation of positive and negative queries with respect to the database mean

Fig. 5  Scatter plot of relatedness determinants per query calculated using Eq. 4. Weighing the distance by the variance allows for better linear 
decision boundary
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Experimentally, we verify that the distance values 
(scores) derived from related queries using Eq.  4 tend 
to be higher in comparison to the reference population, 
as opposed to scores from unrelated queries (see Fig. 5). 
These scores allow for the projection of related and 
unrelated queries into a linearly separable space using a 
predefined threshold. Indeed, the choice of a threshold 
renders a linear decision boundary to realize the final 
classification/detection about whether the query has a 
relative in the database or not. Additionally, examining 
the classification performance (False Positive Rate, Pre-
cision and Recall) at varying thresholds allows us to plot 
the receiver operating characteristics (ROC) curve and 
select an optimal threshold value for final predictions of 
unseen queries (see Fig. 6).

Optimization for performance
As follows, we make adjustments to Eq.  4 to ensure its 
compatibility with Homomorphic Encryption. In Eq.  5, 
we add a small constant e to the denominator to avoid 
division by zero. In Eq. 6, we replace the variance σ 2 by 
the mean µ to avoid computations that would not change 
the ranking – this was verified experimentally.

(5)
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i

≈
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i + e

(6)
n∑

i=1

(
qℓ,i − µi

)2

σ 2
i + e

→
n∑

i=1

(
qℓ,i − µi

)2

µi + e

In Eq. 7, we approximate the division by µ with a linear 
equation.

Initially, we considered utilizing the Goldschmidt’s 
algorithm  [68] for variance division calculation. How-
ever, this approach calls for a staggering 26 multiplica-
tive levels (in our implementation, without the need for 
bootstrapping), rendering it unsuitable for achieving low 
latency. In lieu of Goldschmidt’s, we opted for a linear 
approximation of division by the mean µ , even though 
it introduces a degree of inaccuracy. The trade-off, how-
ever, is the substantial reduction in latency. Equation  7 
requires multiplicative depth L = 4 (i.e. 4 multiplication 
levels) with the CKKS scheme. We achieve this by choos-
ing logQ = 218 with scaling factor � = 230 , for which 
the choice of smallest polynomial degree to reach 128-
bit security is N = 213  [69]. Note that Q here denotes 
the coefficient modulus value and logQ is the number of 
bits required to represent it in binary base. The scaling 
factor � = 230 , even though small, proved to offer suf-
ficient noise budget to refrain from arithmetic precision 
loss, such that the results obtained homomorphically 
are equal to the outputs in clear text. Table 5 shows how 
we heuristically find the optimal threshold for post-pre-
diction decision making and the small constant e used 
in Eq. 7. Figure 6 shows how the auROC varies with the 
value e, where each ROC curve is plotted by varying the 

(7)

n∑

i=1

(
qℓ,i − µi

)2

µi + e
≈

n∑

i=1

(
qℓ,i − µi

)2
(a(µi + e)+ b)2,

where a(µi + e)+ b ≈ 1√
µi + e

, a = −10.51, b = 12.49

Fig. 6  ROC curve plot of the unsupervised solution for different threshold values and different choices of e. Each ROC curve is plotted by varying 
the threshold with fixed e value
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prediction decision threshold value. The optimal thresh-
old value in each ROC curve is located at the point in the 
curve that satisfies minx,y(TPR− (1− FPR)) , where FPR 
is the false positive rate at the x-axis and TPR is the true 
positive rate at the y-axis.

Additionally, we employed OpenMP to parallelize the 
addition operations involved in the homomorphic com-
putation of the mean µ . Note that the homomorphic 
computation of the mean is only necessary when dealing 
with fully unsupervised case, where the order statistics of 
the population is unknown; otherwise, the mean can be 
precomputed ahead of time and available for inference in 
encrypted form to further reduce inference latency. Fur-
thermore, we reorder the sequence of operations to delay 
the homomorphic rotations such that they are always 
applied to a reduced number of ciphertexts; thus, effec-
tively reducing the number of rotations since they are 
only performed in extremely necessary cases. We called 
this “lazy” rotation, typically happening for outer sums of 
ciphertexts. We also perform multiple query predictions 
in parallel using OpenMP.

This algorithm runs in two steps: it first evaluates the 
database mean, and secondly it evaluates Eq. 7 to obtain 
the prediction score. Step one can be done offline with 
the challenge database or online using the competi-
tion database during inference. If computed offline, the 
mean database will be encrypted and be part of the input 
to the homomorphic evaluation of Eq.  7. Precomputing 
the mean allows us to reduce the required multiplica-
tive depth of the homomorphic circuit, in which case the 
encryption parameters are set to L = 3 and logQ = 188 , 
which in turn also helps reduce latency.

Security level and parameters selection
A security level of 128 bits is enforced by using a poly-
nomial modulus degree of N = 213 and coefficient mod-
ulus size logQ = 218 . We follow the BKZ.sieve model 
discussed in [69] to determine the values for those 
parameters, namely logQ and N, to achieve 128-bit secu-
rity level. We set the sequence of co-primes to have bit 

lengths {49, 30, 30, 30, 30, 49} whose product approxi-
mates Q, whereas for the case L = 3 with logQ = 188 , 
the sequence has one less inner co-prime and it becomes 
{49, 30, 30, 30, 49}.

Packing
In order to reduce computational cost, we streamline 
the data packing into as few CKKS ciphertext as pos-
sible. Figure  7 illustrates how by selecting a polynomial 
ring degree of N = 213 , there are 4096 slots within a sin-
gle ciphertext where we can effectively store up to 4096 
genotype variants out of the 16344. Consequently, merely 
4 ciphertexts are needed for encrypting a genome fea-
ture vector encompassing 16344 genotypes variants. This 
means that if the polynomials of ciphertexts have degree 
N, Microsoft SEAL’s implementation of CKKS offers 
enough slots to store N/2 fixed-point numbers. Hence-
forth this same data packing strategy is used across all 
solutions presented in this work.

Algorithm 1 Drop the moduli of the ciphertext with more levels 
to match the ciphertext with less number of levels

Algorithm 2 Computation of the linearly approximated constant fraction 
1√
µi+e

Table 5  List of threshold choices. By varying the threshold e we 
find the maximum ROCAUC​

a Optimum threshold for this dataset

e auROC TPR FPR Threshold

1 0.5 0.0 0.0 1.0

0.1 0.5 0.0 0.0 1.0

0.01 0.9521 0.87 0.13 114478.50

0.001a 0.9794 0.92 0.08 115447.70

0.0001 0.9794 0.92 0.08 115447.70
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Algorithm 3 Computation of the inner sum of the elements in the slots 
of a vector of ciphertexts, which is described by the last two equations 
in Eq. 16. N is the polynomial ring size, such that N/2 corresponds 
to the number of slots. Here we assume empty slots are filled with zeros

Algorithm 4 Fully Unsupervised Algorithm: Z-Test Inspired 
Method (Eq. 7)

Encrypted algorithm
The encrypted algorithm is described in Algorithm  4. 
Lines 5 through 12 compute the database mean µ̂ in the 
encrypted domain. Lines 13 thru 14 add the small con-
stant that avoid division by zero in the cleartext domain, 
where line 14 (see Algorithm 1) ensures that the plaintext 
e has the same scale and level of µ̂ . Line 15 sums the 
encrypted mean µ̂ with a small constant e. From line 16 
(Algorithm  2) to line 19, we compute the encrypted 
approximation for 1

µ̂+e
 , i.e. (a(µ+ e)+ b)2 . Lines 20 

through 25 compute (qℓ − µ)2 . Lines 26 through 28 

multiply the two terms (qℓ − µ)2 and (a(µ+ e)+ b)2 . 
Finally, the final score for query qℓ is computed as the 
sum of all the elements in the slot of ciphertext χ̂ ′[ℓ] , i.e. 
performing the sum n∑

i=1

(
qℓ,i − µi

)2
(a(µi + e)+ b)2

 (see Algo-

rithm 3 for details on the rotation-sum operation).

Clustering‑based supervised method
The clustering-based approach was derived from the 
framework put forward in [8] and it is similar in spirit to 
the approach by [12], which takes into account sub-pop-
ulations. The database D is represented by a set of clus-
ter centroids cj and the database mean µ . The first term 
of Eq. 8 measures the absolute distance between a query 
qℓ and the database population mean µ . The smaller this 
distance, the more uncertainty to determine whether a 
query has a relative in the underlying population mixture. 
The second term measures the absolute distance between 
a query qℓ and a centroid cj , in which j denotes the jth 
centroid. The smaller this second distance, the greater 
the likelihood for a query to have a relative in the mix-
ture. The maximum difference between these two terms 
across all k centroids results in the final predicted kinship 
score. The numerator represents a measurement of the 
relationship of a query q (point) with respect to the clus-
ter representing the underlying mixture. The denomina-
tor is a normalization factor for the computed value in 
the numerator and is constant for each individual query 
prediction; therefore, it can be disregarded in the actual 
computation to save on latency.

Initially, within the unveiled procedure, the genomic 
database undergoes cleartext domain clustering (on the 
database owner’s premise). This clustering is solved using 
Lloyd’s k-means algorithm to determine a centroid j for 
each underlying sub-population (see  [70]). The average 
complexity is given by O(kηT ) , where η is the number of 
samples and T is the number of iterations. Subsequently, 
Eq. 10 finds its application in the encrypted domain, lev-
eraging the k encrypted centroids established during the 
k-means algorithm’s operation. The selection of param-
eter k is determined by the k-means algorithm’s assess-
ment of the reference database. To minimize latency, a 
prudent choice is made to employ a smaller value of k. 
More specifically, we set k = 5 as it does not compromise 
accuracy.

This cluster-point relationship solution is mathemati-
cally described in Eqs. 8, 9 and 10. Let a centroid cj rep-
resent a sub-population j in the genomic database. When 
the difference between the query qℓ and the mean µ is 
larger than the difference of query qℓ with centroid cj , 
then the value is positive indicating that it has a relative 
in the database. Conversely, if the difference between 
the query and the mean is smaller than the difference of 



Page 16 of 36de Souza et al. BMC Medical Genomics          (2024) 17:273 

query with centroids, then the value is negative indicat-
ing that it does not have a relative in the database. These 
calculated scores pave the way for projecting both related 
and unrelated queries onto a linearly separable space (see 
Fig. 8a).

Optimization for performance
Since α is constant for all queries qℓ , the denominator is 
normalization factor and can go outside the max func-
tion. Thus, we shall concentrate on the numerator of 
Eq. 8 to rank the predictions; thus, we establish f ′(qℓ,D) 
in Eq. 9. By eliminating this normalization step, the algo-
rithm becomes more efficient in detriment of possibly 
not preserving the original ranking among the queries. 
This relaxation to the original equation is valuable to 
improve the computational efficiency in the encrypted 
domain, and it was empirically verified not to affect the 
accuracy.

This effectively reduces the amount of required com-
putation. Then, we further simplify the prediction func-
tion by replacing the operator maxj with 

∑k
j=1 , the sum 

over all computations across k centroids. The final score 
is now the aggregated voting of the k differences between 
the distance of query to the mean and the distance of 
query to centroid. Empirically, we verify that this does 
not alter the final predictions, such that the final objec-
tive becomes

where cj,i is the ith genotype variant of the cluster jth 
centroid and n is total number of genotype variants, i.e. 
n = 16, 344 . In this framework, Eq. 10 takes on the role 
of quantifying the separation between the query and 
the database mean, while also subtracting the query’s 

(8)

f (qℓ ,D) = max
j

n∑
i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣)

1
n

n∑
i=1

(qℓ,i − µi)
2

f (qℓ ,D) =
1

1
n

n∑
i=1

(qℓ,i − µi)
2

max
j

n∑

i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣)

f (qℓ ,D) = α max
j

n∑

i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣)

(9)

f ′(qℓ,D) = max
j

n∑

i=1

(
∣∣qℓ,i − µi

∣∣−
∣∣qℓ,i − cj,i

∣∣),

where f (qℓ,D) = αf ′(qℓ,D)

(10)

f ′′(qℓ,D) =
k∑

j=1

n∑

i=1

(
(
qℓ,i − µi

)2 −
(
qℓ,i − cj,i

)2
),

separation from each sub-population. In the competi-
tion, this method requires 400× k evaluations of Eq. 10 
since the challenges consists of testing 400 queries. For a 
choice of k = 5 , 2,000 evaluations are required, which is 
three orders of magnitude less operations than the naïve 
solution that requires 800,000 cross-correlations evalua-
tions, as depicted in Fig. 3. Since, in Eq. 10, the mean µ 
and the cluster centroids cj are precomputed offline and 
used during inference, we consider it as a supervised 
approach. This assumes that the characteristics about the 
underlying population mixture from the challenge data-
set are sufficient to generalize predictions to unknown 
query data. For this reason, the algorithm to compute 
inference as Eq.  10 requires only multiplicative depth 
L = 1 , greatly optimizing the multiplicative depth com-
plexity and latency associated to it.

This algorithm runs in two steps: first, it evaluates the 
database mean and computes the k cluster centroids in 
the clear text domain; secondly, it evaluates Eq. 10 to out-
put the kinship prediction scores. Step one is done offline 
with the genomic database still in the database owner’s 
premise; then, the database mean and cluster centroids 
are encrypted and sent to the computing entity as part of 
the input to the encrypted evaluation of Eq. 10.

Security level and parameters selection
This time, the coefficient modulus size logQ does not 
have to be comprised of many bits since the multiplica-
tive depth equal 1. Even though a smaller Q is possible, 
accordingly the parameters logQ and N, the scaling factor 
size log� must be carefully chosen. In this case, the scal-
ing factor � = 2p will dictate how much arithmetic preci-
sion to compute the target workload without corrupting 
the decryption. Given those considerations, we select a 
scaling factor that allows us minimize as much as possi-
ble the polynomial degree N. We found that the scaling 
factor � = 229 is sufficient to keep the arithmetic preci-
sion afloat during computation of Eq. 10. To ensure 128-
bit security level, we use polynomial ring size of degree 
of N = 212 and a coefficient modulus of size logQ = 109 . 
The coefficient modulus chain comprises co-primes with 
bit lengths {40, 29, 40}. This choice of parameters provide 
a compact and fast implementation.

Packing
In order to reduce computational cost, it is crucial to 
streamline the organization of the CKKS ciphertexts. 
We perform data packing and encryption similarly to 
what Fig.  7 illustrates. With polynomial ring degree 
of N = 212 , there are 2048 slots available to pack data 
within a single ciphertext, effectively accommodating all 
16,344 genotype variants in 8 ciphertexts.
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Algorithm 5 Cluster-Point Correlation Method (Eq. 10)

Encrypted algorithm
The full instructions of the encrypted algorithm is 
described in Algorithm  5. Lines 5 through 8 compute 
(qℓ − µ)2 . Lines 15 through 18 compute 

(
qℓ − cj

)2 . Lines 
19 through 20 compute (qℓ − µ)2 −

(
qℓ − cj

)2 . Lines 21 through 
22 store and aggregate the relationship scores of query qℓ 
with respect to the mean µ and each centroid cj in sepa-
rate ciphertext γ̂ [ℓ] . Line 26 concludes by performing the 
sum of all the scores for query qℓ , as in k∑

j=1

n∑
i=1

.

Linear regression method
Our clustering-based supervised approach lifts accuracy 
to highest possible, auROC = 1 , i.e. it achieves perfectly 
accurate predictions. Nonetheless, its limitation lies in 
knowing how to optimally choose k when no knowledge 
about the reference population is available and in hurting 
latency performance as the number of reference popula-
tions k increases. The choice of k is important because it 
will directly impact accuracy. This technique could also 
be regarded as less flexible, compared to the unsuper-
vised approach, since if the reference population expands 
or shrinks drastically, it could require re-mining the clus-
ter centroids; therefore, less adaptable to changes than 
the unsupervised approach that can handle it naturally.

To mitigate those foreseen potential issues, we envi-
sion another supervised solution based on linear regres-
sion, which does not require tuning of hyperparameter 
such as k, even when the characteristics of the reference 
population mixture is unknown, and does not increase 

the amount of computation as k increases. It relies on 
extracting features from queries by apply a masking 
procedure with the database mean, and then optimiz-
ing the coefficients of a linear regression model to learn 
the underlying patterns, captured by these features, to 
discern between having or not having a relative in the 
database. As for adaptability, this approach could argu-
ably be more robust to small changes in the reference 
mixture, given that its prediction power only depends on 
the pattern that has been learned in order to differenti-
ate whether a query has a relative in a genomic database 
given its mean, which can be easily recomputed to apply 
new feature transformations to the queries.

Linear regression has been widely used for tackling 
secure genome problems  (e.g. [71–76]). The reason for 
this popularity is linked to its arithmetic simplicity and 
robustness, and track record (e.g. s[77]), in finding hyper-
planes separating distinct patterns in high-dimensional 
spaces  [78]. We embrace these virtues to devise a more 
robust and efficient approach to the problem, nonethe-
less, under strong assumption that sufficient informa-
tion is available in the data characterizing the reference 
population mixture, even if not specifically annotated. 
This emphasizes the supervised approaches’ major limi-
tation: robustness and adaptability to changes in the ref-
erence populations are constrained to small variations, 
unlike the proposed unsupervised approach described in 
“Unsupervised method” section.

Model training
The ground-truth is a collection of 200 annotated pair-
wise relationships between 200 query samples and 200 
database samples. Eighty percent out of those pairs are 
used for training and the remainder 20% are saved for 
testing. Hence, 160 queries known to have at least one 
relative in the database (i.e. positive queries) are sepa-
rated for feature selection and model training. From 
the challenge query set Q, containing 400 queries, the 
remaining 200 that do not appear in the ground-truth 
annotation are genomes known not to have their genetic 
data shared with any of the 2000 samples from the data-
base; thus, we consider 160 of them (80%) to represent 
negative queries, i.e. examples of queries that do not have 
a relative in the database, for training and 40 others (20%) 
for testing. These samples are unique and provided as 
part of the challenge dataset.

First, these 160 positive queries plus 160 negative 
queries are used for selecting the most relevant features 
(genotype variants) out of 16344. Then, we create more 
positive and negative queries out of those 320 queries 
to increase the sample-feature ratio, i.e. synthesize as 
many samples as possible to reach the ratio of about 
10 samples per relevant feature. Training of the linear 
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regression model follows suit, fed with the augmented 
sample set.

Feature selection  To help the linear regression opti-
mizer find a more robust hyperplane, and be less predis-
posed to overfitting, we perform dimensionality reduc-
tion using the Variable Threshold technique. In this case, 
dimensions located at genotype variants whose vari-
ance are less than a certain threshold are disregarded to 
represent the genome sequence of a query. For feature 
selection, we use all 320 samples reserved for training. 
Depending on the value of the variance threshold, more 
or less features are deemed as relevant. The goal is to 
have as less features are possible. We found that a thresh-
old of 0.11, by varying from 0.2 to 0.1 considering two 
digits after the decimal point, yields robust performance 
with 3893 features out of the 16344 genotype variants.

Data augmentation  In addition, we increase the num-
ber of samples per features to improve generalization of 
the model. It consists of random resampling of the 320 
data points with replacement. Resampling is applied to 
increase the positive and negative samples by a factor 
of 120, such that we end up with about 10 samples per 
feature. We use the resample function from the Python’s 
sklearn package to accomplish it – we perform oversam-
pling, consisting of repeating some of the samples in the 
original collection.

Feature transformation  The original features of a query 
q are their genome genotype variants, a sequence of val-
ues in the set G = {0, 1, 2} . We apply a transformation to 
the genotype variants to create features that are derived 
from computing its relationship with respect to the aver-
age of genotype variants found in the target genomic 
database. That is, the transformation uses the genome 
mean µ of the database. This transformation is algebrai-
cally described in Eq. 11,

where · corresponds to element-wise multiplication 
between q and µ components (in clear text, i.e. non-
encrypted data). The training queries transformed to fea-
tures q′ populate the matrix X in Eq. 13, where each row 
of X is either a positive or negative sample, for training 
of a logistic regression model that separates queries that 
correlates with the mean from those queries that do not.

Training  The transformed queries q′ are samples 
indexed as rows of a sparse matrix X that is used to 
solve for the linear regression coefficients w. These sam-
ples become further sparse after the feature selection 

(11)q′ = q · µ,

procedure, such that certain dimensions i are zeroed 
out. We use the Conjugate Gradient Method [79] to opti-
mize the cost function, via ridge regression  [80], shown 
in Eq.  12, which finds coefficients that minimizes the 
squared error of predictions ŷ = Xw against the ground-
truth y. This objective function includes a regularization 
term weighted by α = 0.5 that helps minimize the risk of 
overfitting in addition to the dimensionality reduction by 
the feature selection procedure. The ground-truth vec-
tor y holds values y = 1 for positive queries and y = 0 for 
negative queries.

where

We measure the training performance using different 
metrics. To assess precision of the predicted values, we 
rely on both the R2-score and root-mean-square error 
(RMSE). On the training set, the R2-score is reported 
to reach 1.0, which means perfect accuracy, and the 
RMSE=0.0000014. As for classification accuracy, we 
rely on the auROC, which summarizes the reliability on 
Recall and False Positive Rates with a single score. On 
the training set, it reported 100% successful rate with 
auROC=1.0.

Inference  The prediction phase occurs in the encrypted 
domain and it consists of two steps. The first step con-
sists of applying the transformation shown in Eq.  11 to 
each of the 400 encrypted queries ctqℓ = Encpk( �mqℓ ) , 
where �mqℓ = Encode(qℓ,�) . The result is a collection of 
transformed input ciphertexts ctq′ℓ computed from the 
component-wise multiplication between ctqℓ and ctµ (see 
Eq. 14), where ctµ is the encrypted mean of the search-
able genomic database D.

where ctq′ℓ corresponds to the encrypted feature vector of 
a query qℓ computed using the feature extraction proce-
dure described in Eq. 11. This implies that the inference 
would consume one additional multiplicative depth to 
account for this preprocessing step; thus, requiring an 
encryption configuration that allows for multiplicative 
depth L = 2 instead of L = 1 as explained in “Security 

(12)min
w

�Xw − y�2 + α�w�2,
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= Encpk(Encode(qℓ · µ,�)) ≈ ctqℓ ⊙ ctµ,
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level and parameters selection”  section. In practice, we 
bypass this preprocessing step for efficiency, i.e. to avoid 
an additional level, by directly using the encrypted que-
ries ctqℓ with their original values (see Eq.  15) for infer-
ence. We empirically verified that this yields comparable 
results, not affecting the accuracy. Hence, we keep the 
multiplicative depth of the encrypted circuit of this linear 
regression-based approach down to L = 1.

Note that the training step uses q′ℓ as features to learn 
the classification hyperplane. The linear regression infer-
ence function for a single query in clear text is defined as 
ŷ = qℓw + b . In the encrypted domain, this same inference 
function takes a different form and it is defined as follows

where [j] denotes indexing at the jth ciphertext of a col-
lection of M ciphertexts encrypting query qℓ and the 
weights w. ctw and ctb denote the encrypted linear regres-
sion coefficients and bias, respectively. ctŷ corresponds 
to the encrypted real-valued prediction that measures 
the likelihood of query q to share genetic data with any 
of the database samples. M equals ⌈16344/(N/2)⌉ , i.e. the 
number of ciphertexts used to encrypt all the features of 
a single query q. Rotation is executed log2(N/2) times 
to iteratively accumulate the sum of all the elements in 
the slots of the output ciphertext ctr0 , where ctr0 resulted 
from the homomorphic pointwise multiplication of the 
encrypted query and the encrypted weights (see Fig. 9 for 
a toy illustration). At each iteration, rotation applies 2k 
circular-shifting to the ciphertext ctr0 , resulted from pre-
viously rotation and accumulation with ciphertext ctk−1 . 
In the end, the sum of all elements in the slots is stored 
in all slots of the ciphertext ctrlog2(N/2)

 (see Fig. 10 for a toy 
illustration). At last, the encrypted linear regression bias 
term, denoted as ctb , is added to ctlog2(N/2) so as to com-
plete the linear regression dot product as the encrypted 
prediction ctŷ – the prediction score for the single query 
q appears in all the slots of ciphertext ctŷ.

Optimization for performance
While Eq. 14 is an easy-to-compute element-wise vector-
vector multiplication, Eq. 16 is a matrix-vector multipli-
cation that entails matrix-row-number of dot products. 
Even though two consecutive multiplications are involved 
in this sequence of operations, only 1 level is consumed 
since the modulus switch operation is postponed until 
after the second multiplication is complete. We also 

(15)ctqℓ = Encpk(Encode(qℓ,�)),

(16)

ctr0 =
M∑

j=1

ctqℓ [j] ⊙ ctw[j],

ctrk+1
= ctrk + Rotate(ctrk , 2

k ), 0 ≤ k < log2(N/2)− 1

ctŷ = ctb + ctrlog2 (N/2)

optimize the number of rotations needed to accumulate 
the results of the element-wise multiplications involved 
in a dot product by first adding all the ciphertexts 
involved in a single query prediction (see Eq. 16). That is, 
an encrypted query containing 16344 features is split into 
⌈16344/(N/2)⌉ ciphertexts; therefore, after multiplying 
them by the encrypted database mean, instead of apply-
ing log2(N/2) rotations on each of the individual cipher-
texts to sum their internal components first, we first sum 
the ciphertexts to obtain a single ciphertext and only then 
log2(N/2) rotations are executed to perform the sum of 
the dot product.

Security level and parameters selection
Analogous to the clustering-based approach, we man-
age to maintain multiplicative depth L = 1 for the linear 
regression-based supervised method. By both providing 
precomputed database mean and postponing the modu-
lus switch operation until after the second multiplica-
tion helps achieve that. Additionally, as briefly explained 
in “Inference”  section, for the inference step we do not 
apply the feature transformation to the query but instead 
directly use the original data values since that would 
demand to set L = 2 . This way, the same parameter val-
ues are used, i.e. coefficient modulus size logQ = 109 , 
polynomial ring size N = 212 , scaling factor � = 229 , and 
modulus chain comprising a sequence of co-primes with 
bit lengths {40, 29, 40}.

Algorithm 6 Linear Regression Method (Eq. 16)

Encrypted algorithm
The full set of instructions describing the encrypted lin-
ear regression algorithm is shown in Algorithm 6. Lines 
5 to 9 perform component-wise multiplication of the lin-
ear coefficients and the query data (see top row of Fig. 9). 
Line 10 performs the sum of all of elements in the slots 
resulted from the product of linear coefficients and input 
data (see bottom row of Fig. 9 and top row of Fig. 10 for 
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a toy illustration of the sequence of operations). Line 12 
performs the addition of the linear regression dot prod-
uct with the bias term (see bottom row of Fig.  10). The 
prediction results are stored in ŷ and returned.

Results
Secure detection of relatives in forensic genomics
In this section, we provide the context, within the scope 
of the challenge, under which the secure protocol per-
formance results were obtained. We present the problem 
space, data and the computing and software resources 
used. We also describe the use case model in which this 
application is useful in practice and the performance 
evaluation metric. Other design considerations that 
affect performance are also discussed before introducing 
the performance results of the methods.

Problem and data description
We tackle the problem of creating a secure outsourcing 
protocol for kinship prediction, ensuring the protection 
of both genotypes and model parameters, using data-
sets assigned in the iDASH 2023 Track1 competition, 
which we briefly describe in the following. The problem 
involves having a query, a forensic genome comprising 
16344 genotype variants, to be matched against a data-
base containing 2000 archived genomes, each of which 
have the same sequence of 16344 genotype variants. The 
response to a single query will provide the probability (or 
likelihood rate) that there exists in the database a relative 
of the individual from whom the query genotypes were 
extracted. An illustration of the genome sequence data 
files for queries and database is shown in Fig. 11.

In addition to the database with 2000 entries, par-
ticipants are given 400 test queries, half of which have 
a relative in the database whereas in the other half this 
relationship is nonexistent. The primary challenge arises 
from the need to optimize the encrypted query search 
algorithm, with focus on improving accuracy, minimiz-
ing latency, while enhancing its capability to general-
ize to new data – more details on  “Evaluation criteria” 
and “Methods” sections.

The challenge database includes a matrix D ∈ G
16344×2000 , 

where G = {0, 1, 2} is the set of genotype kinds, and D has 
2000 columns denoting genomic samples of different indi-
viduals and 16344 rows denoting the genotype variants. The 
query set Q ∈ G

16344×400 comprises 400 queries as column 
vectors, each representing the genome of 16344 genotypes 
variants for an unidentified suspect, for which annotation is 
provided about whether the query sample has a relative in 
the database or not. This annotation is provided as a sepa-
rate file containing a ground truth binary vector of size 400 
where 0 indicates no family member in the database while 
1 indicates that there exists at least one family member in 

the database for the query genome. The inference (or query 
kinship prediction) is a response vector ŷ ∈ R

400 (where R 
is the set of real numbers) computed from the query set Q, 
and when compared to ground truth vector y ∈ I{0, 1}400 
yields the prediction accuracy rates. The goal is to compute 
the function ŷi = f (Qi,D) as accurately as possible in the 
encrypted domain, for all i ∈ {1, · · · , 400} , where matrix 
D contains all 2000 genomes of known subjects and their 
pedigrees, Qi denotes the query genome i, i.e. Q indexed at 
column i, and the ŷi is the predicted relatedness score for 
query Qi.

Problem setting and secure protocol
There are three parties: Query Client (QE, short for 
query entity), Data and Model Owner (DE, short for 
database entity), and Evaluator (CE, short for comput-
ing entity). The QE wants to use her sensitive genotype 
data to perform kinship prediction by using either the 
DE’s models or database entries directly. The DE builds 
the kinship prediction models that take genotypes as 
input. Models contain sensitive information (e.g. IP that 
could be monetized) and cannot be shared in plain form. 
Therefore, the modeler, i.e. DE, releases her models only 
in encrypted form. The CE performs model evaluation 
using encrypted genomes and encrypted model param-
eters. The challenge involves generating cryptographic 
keys (Client), building the models (Data and Model 
Owner) and the secure evaluation of the models and 
functions on encrypted genotype data (Evaluator). As 
described above, the models and genomic data are sen-
sitive and must be encrypted before they are sent to the 
Evaluator. See a detailed depiction of this secure protocol 
in Fig. 1.

Design considerations
The challenge involves the computation of 400 kinship 
scores using encrypted data and an encrypted search 
model. There are three primary design considerations in 
this task. Firstly, performing computations on encrypted 
data is notably slow, potentially taking hours or even days 
instead of just minutes to complete. Secondly, conduct-
ing computations on encrypted floating-point data may 
introduce errors due to limitations in precision and noise 
budgets. Finally, it is crucial to configure the permissible 
number of consecutive multiplications, also known as 
multiplicative depth (L), in a way that prevents data cor-
ruption during the decryption of the output. Techniques 
like bootstrapping to increase the multiplicative depth 
cannot be used for this competition because low latency 
is the focus. These limitations might restrict the use of 
advanced algorithms, such as deep neural networks, 
which, from the perspective of homomorphic encryp-
tion and this competition, demand excessive latency. 



Page 21 of 36de Souza et al. BMC Medical Genomics          (2024) 17:273 	

Therefore only low complexity homomorphic encryption 
friendly algorithms are viable solutions to address these 
constraints.

This is due to heavy computations with polynomi-
als, the basic construct of the homomorphic encryp-
tion schemes. In addition, if the prediction algorithm 
involves non-linear functions, the polynomial approxi-
mation of these functions operating in encrypted domain 
could become the main bottleneck or even require sev-
eral calls to the most expensive homomorphic opera-
tion, the bootstrapping. We tailor the algorithm steps 
and optimization strategies to avoid both. To avoid the 
use of high-degree polynomial approximations, we con-
straint to specific data ranges that are sufficiently general 
– this may depend heavily on the dataset characteristics 
and the datapath of the algorithm. Additionally, we also 
avoid certain non-linear functions by replacing them 
with linear and polynomial approximations and oth-
ers HE-friendly reformulations. Those alternatives were 
empirically verified to retain the functionality and behave 
equivalently to the original formulation. Bootstrapping 
operations can be avoided by carefully selecting the scal-
ing factor � to achieve sufficient multiplicative depth so 
as to compute the algorithm without running out of noise 
budget while keeping the precision afloat.

Optimizing computing and resources
We opted to use the CKKS [34] Homomorphic Encryp-
tion scheme implemented in the Microsoft SEAL library 
[81], including Intel® HEXL (Homomorphic Encryption 
Accelerated) library by  [82]. Our choice is motivated by 
the following reasons: it can work with real numbers 
through fixed-point arithmetic, it has an efficient packing 
method that allows computations in an SIMD fashion, 
and its implementation in the Microsoft SEAL library 
is fast, especially when accelerated with Intel® HEXL 
1.2.3 library, in which case the code takes full advantage 
of the hardware features such as Intel® AVX512, avail-
able in several Intel servers, including in the iDASH 
competition.

The choice of data packing strategy is important 
because it dictates how data will be organized in the 
ciphertexts. This impacts on reduction in the number 
of operations and simplification of the algorithm steps 
with homomorphic operations. Additionally, it can also 
affect reordering of the sequence of operations in order 
to decrease the multiplicative depth required. The data 
packing step happens before encoding and encryption. 
It is technically independent of the type of encoding 
and encryption employed but it determines the number 
of ciphertexts required to encrypt all data. As a result, 
not only does it influence on computing latency savings 
and optimizations in the steps of the algorithms but also 

on the required memory footprint, storage capacity in 
DRAM and disk, and memory bandwidth. When choos-
ing the data packing strategy, all of these computing 
resource aspects should be taken into account together 
to conceive a good design for the target application. We 
decided to pack the genotypes of the one same genome 
sequence in the available slots of the same ciphertext 
in its original order – if a single ciphertext is not suffi-
cient, then a single genome will be encrypted by multi-
ple ciphertexts. We found this strategy to be sufficiently 
good and optimal for the target algorithms out of a few 
evaluated strategies, for which detailed analysis is out of 
scope of this manuscript. Figure 7 depicts the data pack-
ing strategy used in this work.

Computation environments
To provide a performance characterization of our solu-
tions in the context of the iDASH 2023 competition, we 
evaluated our solutions on a dual-socket server that hosts 
two Intel® Xeon® Gold 6140 CPUs, carrying 18 physical 
cores each. The system also hosts 32GB DDR SDRAM 
and 745GB of storage. As per the competition rule, by 
default the execution is constrained to run on exactly 4 
physical CPU cores, unless specified, on a single NUMA 
node. Although obsolete and discontinued, this hard-
ware configuration approximates the one employed in 
the competition and we perform experiments with it for 
the sake of completeness of this study. We implement the 
source code in C++, using Microsoft SEAL 4.0 APIs ena-
bled with the acceleration kernels provided by the Intel® 
HEXL 1.2.3 library. Finally, the code compilation uses 
GCC 10 on CentOS 7. These results are discussed across 
subsections of “Methods” section as we introduce imple-
mentation details of the different algorithms and they are 
expanded in Table 7 and Fig. 12.

A comparative performance analysis for all the three 
different proposed algorithms, using the same secure 
protocol described in Fig.  1, outside the context of the 
iDASH competition is performed on more contemporary 
system configuration. Its hardware configuration con-
sists of a dual-socket server that hosts two Intel® Xeon® 
Platinum 8480+ CPUs, carrying 56 physical cores each. 
This is a more modern processor and likely to be readily 
available in mainstream cloud service providers. The sys-
tem also hosts 256GB DDR5 SDRAM and 447GB of disk 
storage. All experiments are run on a single NUMA node 
varying the number of cores to a maximum of 32 cores. 
To scale the execution across multiple cores, we use 
OpenMP 4.5. We implement the source code in C++ and 
program the HE support using the Microsoft SEAL 4.0 
APIs. We also analyze the performance impact of ena-
bling the acceleration kernels optimized with AVX512 
offered in the Intel® HEXL 1.2.3 library. The Intel® 
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AVX512 extension is a set of instructions that can boost 
performance for vector processing–intensive workloads. 
With wide 512-bit vector-operations capabilities, the 
CPU largest register supports 32 double-precision and 64 
single-precision floating-point numbers or, alternatively, 
8 64-bit and 16 32-bit integers. Intel® AVX512 also pro-
vides up to two 512-bit fused-multiply add (FMA) units. 
Doubling the width of the vector processing doubles the 
number of registers compared to its predecessor, Intel® 
AVX2. Intel® HEXL 1.2.3 library offerings are currently 
integrated into the Microsoft SEAL 4.0 library and can be 
enabled at compilation time. The compiler used is GCC 
11.4 and the OS is Ubuntu 22.4. The results are discussed 
in detail in “Comparative performance analysis” section.

Evaluation criteria
All tests were performed on a hold-out dataset of 400 
genomes in an isolated environment in terms of perfor-
mance. Accuracy and time/memory requirements were 
used for the benchmark and ranking of the solutions. The 
formula used to rank the fitness of the solutions was

where auROC is the area under (au) the receiver operat-
ing characteristic (ROC) curve, metric used to assess the 
accuracy of predictions, and t is the execution time in 
minutes. Observe that the ranking is highly impacted by 

(17)score = auROC

exp
(
t
5

) ,

Table 6  Performance Results of 400 Kinship Predictions. The first two rows approximates and summarizes the results obtained in 
the iDASH 2023 Competition. The third row includes the linear regression solution, which was not submitted to the competition. The 
fourth row presents an estimate of the naïve solution

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex

Approach Database 
encryption

Latency Throughput Inferences auROC Score

“Unsupervised method” section 8.22 s 14.44 s 27.7 q/s 400 0.96 0.923

“Clustering-based supervised method” section 5.73 s 13.36 s 29.9 q/s 2000 1.0 0.956

“Linear regression method” section 5.73 s 11.63 s 34 q/s 400 1.0 0.962

Naïve > 5 min > 10 min <1 q/m >800400 1.0 < 0.135

Fig. 7  This figure shows the ciphertext packing that allows SIMD computation

http://www.Intel.com/PerformanceIndex
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the exponential weight factor of the demanded computa-
tional time, regardless of the prediction accuracy.

Performance on iDASH competition
Firstly, we discuss the performance results where the 
algorithm performance was tuned for the iDASH com-
petition, from “Fully unsupervised method” to  “Lin-
ear regression model”  sections. Then, in “Comparative 

performance analysis” section, we discuss a broader com-
parative performance analysis that goes beyond the con-
straints of the competition.

Fully unsupervised method
The fully unsupervised solution is inspired by the z-test 
hypothesis test. It is targeted to the cases where the data-
base owner has to encrypted the whole database and 

Fig. 8  Summary plots of the clustering-based solution
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send the encrypted samples to the computing entity 
because it is unable to perform any pre-computation to 
reduce the computational burden on the server. Thus, the 
encrypted computation is fully unsupervised in the sense 
that there is no pre-computation needed for the predic-
tion step on the server. Since no training is done for this 
approach, lower accuracy is expected.

We obtain 0.90 in accuracy, recall and precision, which 
naturally yields F1-score=0.90. The optimal auROC is 
0.9794 out of all of the ones plotted in Fig.  6; however, 
in the encrypted domain the auROC value lowers to 
0.9685 due to replacement of the variance by the mean 
as discussed above. Its computing efficiency is marked 
by latency of t = 14.44 seconds to execute the full secure 
protocol including database encryption, while running on 
4 CPU cores. The database encryption alone takes 8.22 
seconds (see Table 6). Note that the database encryption 
requirement imposed by the rules of the iDASH 2023 
competition implies that the problem should be solved 
in an unsupervised manner, although not necessary 
since the mean could be precomputed ahead of time and 
encrypted before leaving custody of the database owner. 

In fact, if this is the case, the latency of the full proto-
col reduces from 14.44 to 6.22 seconds (see Table 7), an 
improvement by a factor of 2.32x.

The ranking score of this solution, including the data 
encryption overhead, has value aucROC× e

−t
5 = 0.92305 , 

which shows that the accuracy is heavily penalized by 
compute resources and total time of the protocol. This 
yields a throughput of about 27.7 queries per seconds 
(q/s). The unsupervised algorithm required minimal 
assumptions about the dataset and offered more robust 
generalization at the cost of sub-optimal accuracy and 
recall. As previously stated, this approach does not 
assume any knowledge of the database, and it is com-
pletely unsupervised, requiring computing the database 
mean using the encrypted database samples in the third-
party computing entity. In practice, if future predictions 
are known to be drawn from a similar data distribution 
with same first-order and second-order statistics of the 
underlying mixture, then we can further optimize the 
required computation during the inference process by 
providing encrypted precomputed mean (and possi-
bly inverse of variance if higher accuracy is desired). As 

Fig. 9  Toy illustration of SIMD dot product with CKKS ciphertexts

Fig. 10  Toy illustration of how the Rotation operation helps sum all the elements in the slots of a CKKS ciphertext
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Fig. 11  Illustration of genome sequence data. Genome sequences are organized as columns and their genotypes organized as rows

Fig. 12  Graph showing how all three methods scale latency with increasing availability of CPU cores for inference of 400 queries
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discussed earlier, we are able to reduce the number of 
levels to L = 3 to speed up computation even more. All 
the results discussed in “Comparative performance anal-
ysis”  section were obtained using this version since it is 
outside the iDASH competition context and we assume 
that it is acceptable to have the mean precomputed.

Clustering‑based supervised
Clustering is an unsupervised technique to mine and 
organize data points of similar characteristics into dis-
tinct groups. We consider this approach supervised 
for the sole fact of re-utilizing the representative enti-
ties of these groups, the cluster centroids, as anchors of 
knowledge for the inference on incoming queries. Essen-
tially, the assumption is that these distinct representa-
tive groups summarize all information about the target 
underlying populations. For the iDASH 2023 competi-
tion, the centroids are fixed but, in practice, they could 
evolve as the underlying mixture changes, such that clus-
tering could be performed offline as often as necessary, 
before the time for querying an unknown suspect.

The accuracy obtained for the iDASH 2023 competi-
tion hits 100% success rate (Recall=1.0, Precision=1.0, 
False Positive Rate=0.0) for all 400 queries and is summa-
rized by F1-score=1.0 and auROC=1.0 (see Figs. 8a and 
13). This was achieved both on the 400 queries from the 
challenge dataset and on the 400 unknown queries of the 
competition. In Fig.  8b, we observe forced assignment 
of the negative queries to clusters 1 and 4. This type of 
behavior is expected since in this case we only rely on the 
existing clusters (patterns of population characteristics) 
for the final decision. This issue is resolved by subtracting 

the distance between the query and the assigned cluster 
centroid (right term of Eq.  10) from the distance of the 
query and the database mean (left term of Eq. 10). This 
mechanism allows us to reject the wrong assignments by 
producing reliable prediction values (shown along y-axis 
of Fig. 8a) that facilitate to decide whether it is a positive 
or negative query with the choice of a threshold value; 
thus, achieving perfect results (see Fig. 13). Figure 8b also 
shows that setting k = 5 probably led to overfitting of the 
centroids, having two or more centroids representing one 
same true underlying cluster. This probably means there 
are less populations than anticipated (i.e. k = 5 ), and we 
can visually inspect and suggest that number of popula-
tions might be k = 2 . We make an educated guess about 
k by analyzing the performance with the validation set 
with k varying from 2 to 25.

As for computing performance, the time to complete 
the prediction of all 400 queries amounts to t = 13.36 
seconds (see Table  6), which includes the database 
encryption. However, database encryption is not needed 
since only the encrypted centroids are required for 
the inference step. The database encryption is merely a 
requirement imposed by the rules of the iDASH 2023 
competition. In practice, this can be ignored since the 
encrypted database samples are not directly utilized for 
inference. Having considered this, it provides a through-
put of about 29.9 queries per seconds (q/s) due to the 
database encryption overhead. This solution ranking 
score is auROC× e

t
5 = 0.9565 , which is a significant 

improvement over the unsupervised solution score of 
0.923. As for the classification performance, this method 

Fig. 13  ROC curve of the clustering-based solution
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creates a clear separation between related queries and 
unrelated queries (see Fig. 8a).

Note that, in practice, our solution can be deployed 
more efficiently in a more general setting, achieving bet-
ter latency and higher throughput. Without the data 
encryption overhead, the full protocol completes in 7.53 
seconds, yielding a higher throughput of 53q/s. We meas-
ure the computing performance of the full protocol with-
out the iDASH competition constraints and verified that 
latency can be as low as 2.38 seconds, for all 400 query 

predictions, by running with 32 CPU cores (see Table 7 
for more details). As a result, throughput can be as high 
as 168 query predictions per second (see Table 7 for more 
details), while keeping the required computation lean 
(i.e., avoiding unhelpful computing work).

Linear regression model
As for the trained linear regression model, the per-
formance was evaluated on a test set containing 40 
positive queries and 40 negative queries. The model 

Fig. 14  Linear Regression-based prediction performance: a plot of the ROC curve showing perfect prediction, and b scatter plot of the predicted 
values for each query showing linearly separable classification decision boundary
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achieves perfect accuracy, precision and recall, yielding 
F1-score=1.0 and auROC=1.0 (see Fig.  14a and  b). As 
for precision of the predicted values in comparison with 
the expected, the model reaches R2-score=0.8363 and 
RMSE=0.2022 on the test set. Computing performance is 
characterized by an average latency of t = 5.92 seconds 
for predicting a batch of 400 queries using 4 CPU cores 
(see Table 7). This yields a throughput of about 68 que-
ries per seconds (see Table 7). The estimated iDASH 2023 
score for this solution is auROC× e

−t
5 = 0.9804 , which is 

an improvement of about 2.5% over the clustering-based 
solution. This method creates a clear separation between 
related queries and unrelated queries (see Fig. 14b). For 
a more general understanding of latency performance, 

we show in Fig. 12 that the latency scales almost linearly 
with the number of cores, predicting 400 queries in 2.22 
seconds when running on 16 CPU cores. It also outputs 
prediction values in a range [-0.2,1.2] that approximates 
the probability range [0.0,1.0] (finding optimal predic-
tion threshold value at 0.4958); thus, more naturally 
interpretable.

It is instructive to discuss why true positive rate and 
precision are remarkably perfect, yielding an auROC 
score of 1.0. We refer to a few factors to justify it and 
claim that this does not mean overfitting of the trained 
model. First, we employ feature selection to find the most 
relevant predictors (features) capturing the main charac-
teristics of underlying mixture, which in turn contributes 

Fig. 15  Performance gain due to algorithm choice

Fig. 16  Performance gain due to vector instructions
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to avoid overfitting of the linear regression model. Addi-
tionally, we resort to data augmentation to increase the 
number of samples per feature to encourage better gen-
eralization of the model, even though the curated dataset 
is not imbalanced. Finally, during the optimization of the 
objective function, we introduce a regularization term 
that also minimize the chances of the model from over-
fitting and instead guide it to achieve better generaliza-
tion. However, it is true that the model is trained to make 
predictions under the assumption of a known underlying 
mixture and that the provided dataset holds sufficient 
and representative statistics of the target populations.

Comparative performance analysis
We contrast and compare the throughput and latency 
performance of the three different prediction algo-
rithms. Our analysis is conducted using a contempo-
rary Intel server processor, in particular, the Intel® 
Xeon® Platinum 8480+ CPU. In the previous sec-
tion, the performance results were carried out with 
an older generation Intel processor that approximates 
the specification of the one used by the iDASH 2023 
competition. Ideally, these workloads shall run on 
later generations with the latest and greatest of per-
formance features. This section is intended to discuss 
performance gains due to different software configura-
tions and choice of algorithm on a platform powered 
by Intel® Xeon® Platinum 8480+ server processor.

Experimental setup
The performance benchmark is organized into 4 differ-
ent scenarios. The first scenario consists of the baseline 
performance configuration. Two others bring specific 
capabilities in isolation, namely, the usage of vectorized 
instructions with Intel® AVX512 feature and the use of 
OpenMP 4.5 to parallelize encryption, decryption and 
the inference code with multicore execution. The fourth 

scenario is a combination of the last two configurations, 
i.e. simultaneously leveraging the instruction-level and 
core-level data parallelism. As follows, we describe the 
scenarios in detail. The baseline performance configu-
ration entails a single-core execution of the workloads 
programmed with the Microsoft SEAL 4.0 API. In the 
second scenario the workload is programmed to execute 
with vectorized instructions using Intel® AVX512 by 
enabling at compilation time Intel® HEXL 1.2.3 in the 
Microsoft SEAL 4.0 API. The third scenario involves ena-
bling parallel processing with OpenMP 4.5, where SIMD-
friendly parts of the workloads are executed on multiple 
cores - the number of cores varies from 2 to 32. The 
fourth scenario combines scenarios 3 and 4. The perfor-
mance metrics used for analysis are throughput (queries 
per second), latency (seconds), and normalized perfor-
mance (throughput divided by baseline throughput). The 
experiments consist of the workload processing a batch 
of 400 inference predictions.

Performance gain due to algorithm choice
The choice of the algorithm for the application depends 
on several factors, including security, accuracy, and 
computing efficiency. For example, if little knowledge is 
known about the population mixture, then the z-test-
inspired approach, i.e. the unsupervised method, can 
generalize better than the supervised approaches and 
can be less predisposed to overfitting; thus, provid-
ing less biased predictions. If statistically sufficient 
information about the population mixture is known, 
then parameter learning techniques allow more com-
putationally efficient inference and can deliver more 
accurate predictions. In this regard, we assume the lat-
ter case, and analyze how much performance gain is 
expected if sufficient knowledge about the population 
mixture is known a priori. This means that we precom-
pute the mean and variance for the z-test-inspired 

Table 7  Extended performance results obtained on equivalent hardware configuration used in the iDASH competition, more 
specifically Intel® Xeon® Gold 6140 (see “Computation environments” section for more details). The results illustrate how latency and 
throughput scales when more than 4 CPU cores are utilized for parallel processing of the workload

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex.

 Latency of the different approaches described in “Methods” section running on multiple cores.

 Throughput of the different approaches described in “Methods” section running on multiple cores

Latencya(s) Throughput2(q/s)

# Cores # Cores

Method 4 8 16 32 4 8 16 32

“Unsupervised method” section 6.24 3.43 2.44 2.17 64 117 164 184

“Clustering-based supervised method” section 7.53 4.26 2.83 2.38 53 94 141 168

“Linear regression method” section 5.92 3.06 2.26 1.85 68 131 177 216

http://www.Intel.com/PerformanceIndex
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method, turning it into a supervised approach, such 
that it becomes more computationally efficient for 
requiring a lesser number of levels (multiplicative 
depth).

In Fig.  15, each bar represents the expected perfor-
mance gain in a specific scenario (i.e., baseline as sin-
gle core execution, vector instructions, multicore, and 
multicore plus vector instructions). In each scenario, 
we collect the performance numbers of all three algo-
rithms. We then compute the normalized performance 
between each algorithm as the throughput ratio TA/TB , 
where the workload A performed significantly better 

than the workload B; thus, the ratio corresponds to the 
performance gain of algorithm A over algorithm B (see 
more in Table 8). We say that the expected performance 
gain due to the choice of the algorithm, if an algorithm 
performs better than the other, is given by the geo-
metric mean of all the ratios TA/TB , where TA >> TB , 
under the constraints of a particular execution envi-
ronment scenario. In short, we pick each algorithm’s 
throughput and calculate its relative performance 
gain over each worse counterpart, then we report the 
expected performance gain, shown in Fig.  15, as the 
geometric mean over all these ratios computed within a 

Fig. 17  Latency with varying number of cores under the third scenario, i.e. multicore execution without the use of vectorized instructions

Fig. 18  Performance gain due to parallel processing with multiple cores alone. The performance gain (normalized performance to baseline) 
is calculated as the throughput ratio between the execution using multiple cores over single core. The optimal number of cores for all 
the workloads is 32
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specific scenario. In Table 8, we can observe that in the 
multicore execution environment, the workloads z-test 
and cluster perform comparably, in which case one 
could choose either; therefore, we do not consider their 
ratios to compute the geometric mean of the perfor-
mance gain. Additionally, the linear regression method 
notably benefits the most from the multicore execution 
environment for the simplicity of its set of instructions. 
Overall, the expected performance gain considering all 
scenarios due to algorithm choice is characterized by a 
geometric mean of 1.52x.

Performance gain due to vector instructions
Intel® has actively participated in open-source code 
contributions to accelerate HE’s arithmetic computing 
kernels. Subproducts of these efforts are Intel® HE Accel-
eration Library (Intel® HEXL) and Intel® HE Acceleration 
Library for FPGAs (Intel® HEXL-FPGA). Several exist-
ing HE API libraries, such as Microsoft SEAL, incorpo-
rate Intel® HEXL kernels to accelerate their HE API calls 
on Intel platforms. These tools leverage AVX512 vector 
instructions offered as hardware features by Intel® Xeon® 
CPUs, e.g. Intel® Xeon® Platinum 8480+. The results 

Fig. 19  Performance gain due to parallel processing with vectorized instructions and usage of multiple cores together. The performance gain 
(normalized performance to baseline) is calculated as the throughput ratio between the execution using vectorized instructions plus multiple 
cores over single core. The optimal number of cores for both z-test and linear reg workloads is 16 due to reaching AVX512 overhead, whereas 
for the cluster workload is 32, less affected by AVX512 overhead

Fig. 20  Latency with varying number of cores under the fourth scenario, i.e. multicore execution with the use of vector instructions



Page 33 of 36de Souza et al. BMC Medical Genomics          (2024) 17:273 	

are summarized in Fig. 16. Overall, the expected perfor-
mance gain across all workloads has a geometric mean 
2.06x. The throughput achieved when enabling execution 
with vector instructions is normalized against the base-
line. It is worth noting that this gain is based on single-
core execution. The performance impact of capitalizing 
the use of vector instructions when running with multi-
ple working cores is discussed in “Performance gain due 
to vector instructions and parallel processing” section.

Performance gain due to parallel processing
To increase throughput, executing on multiple cores is 
essential. We test the scalability of throughput for these 
workloads through data parallel processing under execu-
tion with multiple cores. Each core gets shards of the 400 
inferences and other parallelizable areas of code are also 
executed with multiple threads, each pinned to a specific 
physical core. In Fig. 17, we show how latency scales with 
increasing number of cores for each workload. The final 
performance gain for each workload is the highest speed-
up achieved with a specific number of cores, i.e. the opti-
mal number of cores to run that workload. Typically, 
either 16 or 32 cores performs the best. The performance 

gain is the throughput using multiple cores normal-
ized by the baseline (single core), as presented in Fig. 18. 
Overall, the expected performance gain across all scenar-
ios owing to parallel processing using optimal number of 
cores amounts to geometric mean of 15.39x.

Performance gain due to vector instructions and parallel 
processing
We also assess the performance gain achieved out of 
the combination of vector instructions and parallel pro-
cessing using multiple cores. The performance analysis 
for this scenario can be summarized in Fig. 19 and fol-
lows the same methodology used to compute the per-
formance gain for parallel processing only. On average, 
the expected performance gain is 18.59x. In Fig. 20, we 
observe that the latency of the workloads on multicore 
execution with AVX512 does not scale at equivalent 
rates as it does during multicore execution alone (see 
Fig.  17), despite displaying lower latency as reported 
in Table  10 in contrast to the values in Table  9. Note 
also that the clustering-based workload scales more 
effectively in both scenarios. This phenomenon can be 
attributed to the clustering-based method algorithm 

Table 9  Raw performance results without the use of vectorized instructions (AVX512) are presented beyond the scope of the iDASH 
competition. These experiments were conducted on a distinct hardware setup featuring a more contemporary processor, specifically, 
the Intel® Xeon® Platinum 8480+. This table illustrates the scaling of latency and throughput for the workloads as the number of 
working cores varies

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex.

 aDecimal digits were truncated to leave only the integer part for a more conservative measurement

Latency (s) Throughputa (q/s)

# Cores # Cores

Method 1 2 4 8 16 32 1 2 4 8 16 32

“Unsupervised method” section 19.73 10.96 6.34 3.14 1.92 1.39 20 36 63 127 208 287

“Clustering-based supervised method” section 25.42 13.83 7.73 3.72 2.15 1.45 15 28 51 107 185 276

“Linear regression method” section 14.2 8.06 4.73 2.18 1.34 0.97 28 49 84 183 299 413

Table 10  Raw performance results with the use of vector instructions (AVX512) are presented beyond the scope of the iDASH 
competition. These experiments were conducted on a distinct hardware setup featuring a more contemporary processor, specifically, 
the Intel® Xeon® Platinum 8480+. This table illustrates the scaling of latency and throughput for the workloads as the number of 
working cores varies

Disclaimer: Performance varies by use, configuration and other factors. Learn more at www.​Intel.​com/​Perfo​rmanc​eIndex.

 aDecimal digits were truncated to leave only the integer part for a more conservative measurement

Latency (s) Throughputa (q/s)

# Cores # Cores

Method 1 2 4 8 16 32 1 2 4 8 16 32

“Unsupervised method” section 10.01 5.99 3.7 1.74 1.21 1.3 40 66 108 229 308 329

“Clustering-based supervised method” section 12.52 7.32 4.41 2.02 1.29 1.21 32 54 90 197 310 330

“Linear regression method” section 6.44 4.08 2.66 1.08 0.75 0.85 62.1 98 150 370 472 531

http://www.Intel.com/PerformanceIndex
http://www.Intel.com/PerformanceIndex
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featuring more parallelism-friendly code sections com-
pared to the other algorithms. Specifically, in the linear 
regression code, homomorphic rotations are executed 
sequentially due to data dependency, constituting a 
substantial portion of the computational time. In the 
case of the z-test-inspired workload, a significant por-
tion of the algorithm code is non-parallelizable, par-
ticularly the linear approximation involving division by 
the mean.

Discussion
We propose three different methods to query kinship in 
genomic database. We submitted two of these methods, 
specifically the ones described in “Unsupervised method” 
and  “Clustering-based supervised method”  sections, as 
solutions to the iDASH 2023 Track 1 competition. The 
submissions served us as study cases to validate their 
robustness on unseen data. Accordingly, we put emphasis 
on low latency since it bears an exponential weight on the 
final score used to rank the submissions. To comply with 
these rules we also avoided any processing in the cleart-
ext domain at runtime during inference on unseen data. 
Our solutions improve the computing latency by three 
orders of magnitude over the naive solution. The per-
formance results of the submissions to the iDASH 2023 
competition are summarized in Table  6. We placed 3rd 
with the supervised solution described in “Clustering-
based supervised method”  section. They also guarantee 
128-bit security (through a lattice cryptography scheme), 
ensuring genomic data privacy protection during com-
putation of the predictions. This directly addresses the 
weakness of the other methodologies of privacy protec-
tion discussed in “Current security and privacy protec-
tion practices in genomic data sharing” section, in which 
the private data can still leak or become unprotected.

Although our methods are strongly influenced by the 
iDASH2023 competition challenge, a broader study on 
performance and design was carried out in “Compara-
tive performance analysis” section, allowing us to expand 
the scope of our findings. The proposed methods are 
sufficiently functional, adaptable and practically feasi-
ble to address secure computation in genomics applica-
tions related to the FGG use case. Their applicability 
goes beyond what it has been demonstrated in this work. 
For example, changing the comparison reference from 
the database mean to an individual genome leads to 
expand the scope of application to predict exact or par-
tial matches between pairs of genomes and to estimate 
their familial relationship (step 5 in the FGG task) given 
the predicted score. Generally, we also note that con-
siderable streamlining of the prediction algorithm and 

reformulation of its objectives are imperative for ren-
dering it amenable to Homomorphic Encryption while 
ensuring computational efficiency. In scenarios where 
the domain is well-established and constrained, super-
vised solutions prove to be the more efficient and pre-
cise choice, particularly, with admixture populations. 
Conversely, unsupervised solutions, although entailing 
greater computational cost and higher number of mul-
tiplicative levels, tend to exhibit superior generalization 
capabilities when the population statistics is uncertain.

Conclusions
The obtained results demonstrate that privacy-preserv-
ing solutions based on homomorphic encryption can be 
computationally practical to protect genomic privacy 
during the stage of filtering candidate matches for further 
genealogy study in Forensic Genetic Genealogy (FGG). 
The screening of the searchable databases can happen 
in seconds and with high accuracy; thus, providing the 
ability to expedite the identification process of unknown 
suspects by narrowing down the number of databases in 
which to perform genealogy analysis without compro-
mising genomic privacy.
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