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SUMMARY

HIV causes susceptibility to respiratory pathogens, including tuberculosis (TB), but the underlying
immunological mechanisms remain incompletely understood. We obtained whole blood and bronchoal-
veolar lavage (BAL) from TB-exposed people in the presence or absence of antiretroviral-naı̈ve HIV
co-infection. Bulk transcriptional profiling demonstrated compartment-specific enrichment of immuno-
logical processes. Systems-level deconvolution of whole blood from people living with HIV identified
elevated type I and type II interferon cytokine activity and T cell proliferation. Transcriptional modules
derived from both peripheral blood and sorted BAL immune cells demonstrated an increased fre-
quency of effector memory CD8 T cells in whole BAL samples. Both compartments displayed
reduced induction of CD8 T-cell-derived interleukin-17A (IL-17A) in people with HIV, associated
with elevated T cell regulatory molecule expression. The data suggest that dysfunctional CD8
T cell responses in uncontrolled HIV may contribute to compromised respiratory immunity to patho-
gens, a process that could be modulated by host-directed therapies that target CD8 T cell effector
functions.

INTRODUCTION

People living with HIV (PLWH) have >18-fold increased risk of respiratory infections, including tuberculosis (TB).1 Uncontrolled HIV

infection results in several immune perturbations, including CD4 T cell depletion, cytotoxic CD8 T cell expansion,2 and elevated

cytokine activity3 (e.g., type I interferons4). Improved mechanistic understanding of HIV’s impact at the site of host-pathogen

interactions may offer insights into immune modulation caused by uncontrolled HIV infection, and in turn, identify putative therapeutic

targets in PLWH. Most studies have focused on immune perturbations in blood but less on target organs for co-infections, such as the

lungs.5–8 Whole compartment transcriptional profiling permits unbiased assessments of disease-mediated perturbation by HIV at the

molecular level, while still retaining the ability to deconvolute differences in immune cell frequency, cytokine activity, and other

functions.9,10

In this study, we aimed to explore the lung mucosal immune landscape, through transcriptomic profiling of bronchoalveolar

lavage (BAL) cells in individuals with untreated HIV infection. We previously established the feasibility of this technique in a small

number of individuals undergoing bronchoscopy for clinical investigations.11 In the current study, we apply this approach to a larger

number of individuals with evidence of Mycobacterium tuberculosis (Mtb) infection (‘‘latent TB’’) in a high TB transmission

setting who were otherwise healthy and volunteered for participation in a research bronchoscopy study. We tested the hypothesis

that HIV results in compartment-specific immune perturbations that may underlie the susceptibility to TB disease and other respiratory

infections.
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RESULTS
Research bronchoscopy cohort characteristics

Samples from 20 participants (10 HIV-negative and 10 HIV-positive; Table 1) were selected from a larger research bronchoscopy cohort and

used to generatewhole compartment transcriptomic data. All participants of the research bronchoscopy cohort had no evidence of any active

lung disease, prior TB, current or prior tobacco consumption, or other chronic diseases and contributed samples of paired blood and BAL

samples (Table S1). Of the 20 participantswhose transcriptomic datawere analyzed,most were female (60%), and themedian agewas 30 years

(IQR 26–34). Sex and age distribution were comparable between the two groups. All PLWH were naive to antiretroviral therapy at the time

of bronchoscopy; median CD4 count in this group was 461 cells/mm3 (IQR 256–586) and median VL 29,256 copies/mL (IQR 14,510–33,565;

Table 1). Based on sample and data availability, some non-transcriptomic analyses were performed on all samples available from the larger

cohort (Table S1).

HIV infection is associated with distinct transcriptional effects in lung and blood

Principal-component analyses of baseline blood and BAL transcriptomes from 10 HIV-positive and 10 HIV-negative individuals revealed clear

divergence between the two compartments (Figure 1A, left). This differencemost likely reflected differential enrichment of immune cell types

between the compartments, with neutrophils and lymphocytes predominating in blood and macrophages predominating in BAL as was

evident through computational deconvolution of the transcriptomic data (Figure 1B) and cytological interpretation of cellular morphology

(Figure S1).We observed greater variance in gene expressionwithin the blood compartment than in BAL, but the effect of HIV in either setting

could not be discerned using this approach alone (Figure 1A, right). Therefore, we performed unsupervised whole-genome differential gene

expression analyses, identifying 139 upregulated and 44 downregulated genes in blood of PLWH (Figure 1C, left; Table S2), in contrast to 13

upregulated and 1 downregulated, in BAL (Figure 1C, right; Table S3). Of the 152 genes elevated in PLWH across both compartments, only

three (2%) were increased in both blood and BAL (Figure 1D), highlighting that HIV infection induced distinct transcriptional changes in the

two compartments.

Systems level analyses of differentially expressed transcripts revealed blood, but not BAL, in HIV was characterized by enrichment of cell

proliferation pathways (Figure 2A), elevated expression ofMki67 gene (Figure 1C), and of an independently derived transcriptional module12

corresponding to T cell proliferation (Table S4; Figure 2B). We explored further the immune pathways dysregulated in HIV by predicting the

signaling activity of cytokines and transmembrane receptors associated with genes overexpressed in either compartment in the context of

HIV (Figure 2C). These data confirmed that untreatedHIV infectionwas associatedwith widespread immune overactivity, particularly in blood.

Predicted immune dysregulation included greater activity of type I and II interferons (IFNs) in blood and of cytokines associated with T cell

biology (e.g., interleukin-2 [IL-2], IL-15, and IL-27) in both compartments.

To verify this predicted cytokine activity in PLWH, wequantified the expression of independently derived cytokine-inducible transcriptional

modules of cell-mediated immunity13 in the transcriptional profiles from blood and BAL samples (Figure 3; Table S5). These data confirmed

elevated functional activity in blood of both type I and II IFN responses and of cytokines that drive T cell proliferation and activation (IL-2, IL-15,

IL-21, and IL-27), as well as more modest increased activity of pleiotropic pro-inflammatory cytokines, such as IL-1b, IL-6, and tumor necrosis

factor alpha (TNFa) (Figure 3). Notably, there was no clear enrichment for cytokine activity in BAL samples from PLWH, indicating the differ-

ential gene expression observed in this compartment may relate more to the relative enrichment of immune cell subsets than the action of

cytokines. Indeed, despite the BAL cellular composition being dominated by alveolar macrophages (Figure 1B), several of the 13 genes over-

expressed in PLWHwere lymphocyte-associated (Figure 1C, right), and many of these genes showed predictive signaling through Beta-2 mi-

croglobulin component of the MHC class I (Figure 2C), suggesting an enrichment of CD8 T cells in BAL in the context of HIV.

Dysfunctional effector memory CD8 T cells in HIV infection

Validated transcriptional modules that quantify the relative abundance of immune cells in bulk transcriptomic data (Table S4) demonstrated

relative depletion of CD4 T cell transcripts in both blood and BAL in PLWH,9 an expansion of CD8 T cells in both compartments, and no dif-

ferences in natural killer (NK) cell frequency in either compartment (Figure 4A, left). As these validatedmodules were derived from peripheral

blood cells, and might not accurately reflect the transcriptional state of BAL lymphocytes,9 we generated an independent set of modules

derived from genes differentially expressed in sorted BAL cells (gating strategy in Figure S2). The BAL-derived module specificity was

Table 1. Demographic and clinical characteristics of the enrolled participants with whole transcriptomics data

Characteristics HIV-Negative HIV-Positive p valuea

N 10 10 –

Females n (%) 7 (70%) 5 (50%) 0.6499

Age median (IQR) 31 (26–32) 30 (26–35) 0.9872

CD4 counts (cells/mm3) median (IQR) 956 (854–1307) 461 (256–582) 0.0003

Viral load (copies/mL) median (IQR) ND 29256 (14510–33565) –

aMann-Whitney between HIV-negative and HIV-positive people; ND, not detected; –, not applicable.
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Figure 1. HIV infection associated with different transcriptional profiles in blood compared to the bronchoalveolar space

(A) Principal-component analyses of whole-genome level bulk transcriptomes, displaying PC1 and PC2, stratified on the left by compartment (blood or

bronchoalveolar [BAL]) and on the right by the presence or absence of HIV infection (n = 20, HIV-negative [10] and HIV-positive [10]).

(B) Relative proportions of major immune cell types in blood (left) and BAL (right) compartments per participant (columns), stratified by HIV status.
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comparable to those from blood, with better discrimination of CD8 T cells from MAIT cells (Figure S3).14 These BAL-derived modules

(Table S4) confirmed enrichment of CD8 T cells, but not MAIT cells, in both anatomical compartments of PLWH (Figure 4A, right). Flow

cytometry confirmed elevated CD8 T cell frequency in blood and BAL of PLWH (Figure S4), providing confirmation that the use of transcrip-

tional modules could quantify cell enrichment from bulk BAL and blood transcriptomes.

Several of the 13 genes with higher expression in BAL of PLWHwere associatedwith CD8 T cell effector functions (GZMK,GZMH, B3GAT1,

NKG7), and we sought to test the hypothesis that this increased expression reflected an increased frequency of effector memory (EM) CD8

T cells. We generated and validated new transcriptional modules from different CD8 T cell functional states (Figure S5), and application of

these to the study samples showed enrichment of CD8 T cells with an EM phenotype in BAL of PLWH, with no differences in central memory

(CM) CD8 T cells (Figure 4B). To determine whether EM CD8 T cells were the primary source of significantly upregulated genes in BAL of

PLWH, we sought to adjust for differences in cell frequency by performing a linear regression at the whole transcriptome level, controlling

for cellular module expression in each sample. This revealed that differential expression of the 13 genes elevated in BAL of PLWH was abro-

gated by regression against either blood- or BAL-derived CD8 T cell modules or the CD8 EM module, but differential expression was not

abrogated by regression against the CD8 CM, CD4, NK, or MAIT cell modules (Figure 4C). We interpreted these data to suggest transcrip-

tomic perturbations in the BAL compartment of people with untreated HIV were attributable to increased numbers of EM CD8 T cells.

Finally, we sought to determine whether the differential frequency of CD8 T cells we had observed in the BAL compartment in HIV was

also associated with different functional activity of these cells in HIV. We quantified the production of IFN-g and IL-17A by both blood and

BAL CD8 T cells before and after stimulation with phorbol mysristate acetate (PMA)/ionomycin (Figure S6A; flow cytometry gating strat-

egy). Baseline cytokine expression was low and did not differ by HIV status (Figure S6B), but following stimulation, we observed a lower

frequency of CD8 T cells expressing IL-17A in both blood and BAL compartments of PLWH, whereas no such difference was observed for

IFN-g (Figure 4D). Quantification of KLRG1, EOMES, and TIGIT and other genes known to be upregulated in exhausted and functionally

inhibited CD8 T cells (TNFRSF9, SLAMF6, and PDCD1)15 demonstrated higher expression of these transcripts in either or both compart-

ments of PLWH (Figure 4E). Flow cytometry confirmed higher expression of PD-1 (encoded by the gene PDCD1) on blood CD8 T cells in

PLWH (Figures S6C and S6D). Overall, these results suggest increased immunoregulatory activity in uncontrolled HIV infection may atten-

uate IL-17A responses of CD8 T cells in both blood and BAL.

DISCUSSION

HIV infection increases the risk of respiratory infections including TB.1 Using systems-level analysis of the immunobiology of samples from

respiratory mucosa in a TB-endemic Southern African context, we demonstrate that uncontrolled HIV infection results in transcriptional

changes in the lung’s mucosal compartments that differ from those observed in the blood. The BAL of PLWH is enriched for CD8 T cells tran-

scriptionally consistent with an effectormemory phenotypebut with elevated expression of immunoregulatorymolecules and deficient IL-17A

responses upon stimulation. Our data support amodel whereby impaired CD8 T cell production of IL-17Amay contribute to the susceptibility

to secondary bacterial infections in HIV infection.16

We extend our earlier report11 derived from bulk transcriptomic assessments of BAL cells from a small number of clinical samples, by

including a larger number of participants in whom active lung disease was rigorously ruled out and all of whomhad evidence of past exposure

toMtb but no history of TB disease. Unbiased transcriptional biological assessments revealed in the peripheral blood of PLWH evidence for

elevated activity for both type 1 and II IFNpathways, greater T cell proliferation, possibly reflecting a homeostatic response to the depletion of

CD4 T cells in HIV infection,17 and elevated signaling by IL-2, a key T cell growth factor, IL-15, and IL-27 that can promote the survival and

expansion of CD8 T cells.18,19 Although we observed perturbed T cell responses in BAL in PLWH, there was little overlap in differential

gene expression associated with HIV infection between blood and BAL. This may reflect discordant immune perturbation in each compart-

ment but also could be driven by differences in the proportions of cells present in these locations.

The relative enrichment for CD8 T cells in BAL of PLWH was evident despite macrophages being the predominant cell type in BAL. The

effect of HIV on alveolar macrophage function has been described at the protein20 and at transcriptional and epigenetic levels,21 but sensi-

tivity to detect these in our dataset may have been precluded by the multicellular, bulk transcriptomic approach taken, as well as the assess-

ment of baseline BAL cells prior to in vitro stimulation. Although we were still able to detect HIV-associated depletion of CD4 T cells,

confirmed bioinformatically and by flow cytometry, cells that are known to be functionally impaired by HIV,2,17,22 future work exploring

compartment- and immune-cell-specific HIV-induced biological perturbation will require single-cell transcriptomic approaches that were

not available in our study. Nevertheless, these technical limitations underline further the significance of HIV-associated changes in CD8

T cells that were detected, making up almost all of the few genes with elevated expression in PLWH. This surprisingly parsimonious number

of differentially expressed genes may have been affected by the bioinformatic approaches used but is most likely due to the greater clinical

homogeneity of the research bronchoscopy cohort in whom all participants had a positive QuantiFERON (QTF) test and were in a state of

systemic and respiratory health, even those with recently diagnosed and yet untreated HIV.

Figure 1. Continued

(C) Whole-genome differential gene expression transcriptional analysis from blood and BAL samples; volcano plots indicate genes with significantly elevated

expression (p adjusted <0.05) in HIV infection in blood (red) and BAL (blue) compartments.

(D) Dot plot of genes with elevated expression in blood and BAL compartments of people with HIV. Colors represent genes showing elevated expression only in

blood (red), only in BAL (blue), or in both compartments (magenta).
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Usingmodular analyses as an approach to bioinformatically de-convolute whole-genome transcriptomic data, we confirmed the pathway-

level analyses and the well-known consequences of HIV infection in depleting CD4 T cells and enriching CD8 T cells in both blood and BAL.17

The increased frequency of CD8 T cells in BAL is consistent with reports of lymphatic alveolitis8 andwas associatedwith elevated expression of

several genes linked to cytotoxicity, such as granzymes H and K, and a transcriptional module reflective of EM CD8 T cells, but not CM CD8

T cells, NK, or MAIT cells. Nevertheless, both blood and BAL CD8 T cells showed diminished IL-17A production after ex vivo stimulation, but

no impairment in IFN-g production. This IL-17A defect has been reported in the blood of virally suppressed people with HIV,23 but our current

study shows that this is also evident in the airways of people with untreated HIV. Taken together, the finding of enriched and functionally

altered effector memory CD8 T cells in the BAL of HIV seropositive individuals confirms our previous observations.11 This is alongside other

reports in the literature8,24 and has also been recently reported in people on long-term antiretroviral therapy (ART),25 suggesting this is a

reproducible process induced by HIV infection. Moreover, this confirms that the combination of unsupervised and supervised analyses

used in our bioinformatic pipeline were sufficiently sensitive to deconvolute compartment-specific transcriptional profiling perturbed by

HIV and could also be repurposed for use in large human cohorts in resource-limited setting for assessments of other diseases of the lung

mucosa without resorting to more costly single-cell sequencing approaches.

Although IFN-g is considered an important cytokine in the protection against TB disease,26,27 the frequency and intensity of IFN-g re-

sponses do not correlate with protection from TB disease both following vaccination or after natural TB exposure.28–31 Recent work has

indicated that differential IL-17 responses characterize stages of TB infection,10 and thus their attenuation by HIV may affect the nature of

TB presentation in HIV co-infections. IL-17A is also reported to confer protection against hypervirulent Mtb strains such as HN878,32 and

Figure 2. Systems-level dysregulation of immune responses associated with HIV infection in blood and the bronchoalveolar compartment

(A) Heatmap showing REACTOME pathway enrichment (white: lowest to black: highest) in the transcriptome in blood (left column) and BAL (right column)

samples in PLWH compared to people without HIV.

(B) Box (interquartile range) and Whisker (min and max) plot showing expression of T cell proliferation transcriptional response module in blood and BAL

compartments in people with (red) and without (gray) HIV with the boxplots showing.

(C) Network diagram depicting predicted upstream regulators of genes with increased expression in BAL or blood of PLWH. Yellow nodes represent genes with

significantly greater expression inHIV+ compared toHIV� individuals in either BAL (blue node) or blood (red node). Green and orange nodes represent cytokines

and transmembrane receptors, respectively, predicted to regulate the expression of genes in the yellow nodes. Edges depict relationship between upstream

regulators and the compartments and the differentially expressed genes. IL, interleukin; IFN, interferon; TNF, tumor necrosis factor; OSM, oncostatin M;

PD-1, programmed cell death 1; RAGE, receptor for advanced glycation end products; B2M, beta-2 microglobulin.

Figure 3. Differential cytokine activity in peripheral blood and BAL compartments associated with HIV infection

Box (interquartile range) andwhisker (min andmax) plots showing expression in the bulk transcriptome ofmodules reflective of cytokine activity in blood and BAL,

stratified by the presence (red) or absence (gray) of HIV infection. Statistical assessments were performed by Mann-Whitney U tests.
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Figure 4. Bronchoalveolar compartment in HIV infection characterized by enrichment of effector memory CD8 T cells deficient in IL-17A production

Box (interquartile range) and whisker (min and max) plot illustrating module expression in whole transcriptomics data from (A). Blood-derived (left) and BAL-

derived (right) modules and (B) effector and central memory CD8 T cell modules. Statistical assessments were performed by Mann-Whitney U tests.

(C) Heatmap representing differential expression of specified genes between PLWH and those without HIV in BAL before (left column) or after linear regression

for the expression of specified immune cell transcriptional modules (right columns). p values quantified byMann-Whitney U tests (red =most significant). * <0.05,

** <0.005, and *** <0.0001.
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this may contribute to susceptibility to TB disease in ARV-naı̈ve PLWH.33 Active TB is characterized by exaggerated IL-17A responses that may

contribute to tissue pathology,10 and so our observation of abrogated IL-17A production by CD8 T cells of PLWHmay also provide an expla-

nation for why severe chest X-ray abnormalities, such as cavities, are less common in TB patients with advanced HIV.33 Notably, we observed

the defect in IL-17A production in PLWH to be associated with increased expression of molecules associated with T cell immunomodulation,

suggesting an exhausted CD8 T cell phenotype. Indeed, it has been proposed that elevated expression of inhibitory receptors is responsible

for diminished IL-17A responses in HIV.23 Our findings suggest that modulation of negative regulators of T cell function using targeted bio-

logic agents could be one strategy to restore HIV-induced dysregulated immunity in the lung mucosa.

Limitations of the study

Our work has several limitations. First, this was a single-center study with a limited sample size that assessed individuals at a single time point.

Participants withHIVwere all ART-naı̈ve, andwe cannot predict if the immuneperturbations observedwould persist during suppression of HIV

replication by ART.We had planned to offer repeat bronchoalveolar lavage to participants after initiation of ART, but this was curtailed by the

onset of the COVID-19 pandemic. Our study design purposefully restricted participation to individuals with evidence of latent TB (positive

QTF test). This choice was made because in a TB endemic setting such as the one used in our study, a PLWH and QTF-negative population

cannot be assumed to be naive to Mtb, especially as our recent data suggest those with negative QTF tests still have anti-Mtb antibodies

(i.e., reflecting false-negative tests for Mtb immune memory).34 Nevertheless, this design prevented assessment of the effects of HIV alone

in the absence of evidence of latent TB infection. Assessment of unstimulated transcriptomes at bulk cell level precluded assessment of the

dynamic nature of responses in response to bacterial stimulation, and in vitro stimulations were only performed using non-specific mitogens,

meaning that we could not derive the frequency of cytokine-producingMtb-specific CD8 T cells. In addition, bulk transcriptomics prevented

definitive conclusions about the cellular origin of differential gene expression observed between PLWH and HIV-negative controls. We were

able to attribute cellular origins by regression of gene expression for the relative proportion of different immune cell subsets, but EM and CM

CD8 T cell modules could only be derived from blood cell transcriptomes and may have masked specific differences in BAL immune cell

biology. We also acknowledge that although we performed analyses from blood and BAL separately, these compartments are unlikely to

be fully separate, linked by cell migration and endocrine activity of cytokines, but our study was not able to address this relationship. Addi-

tionally, our flow cytometric panel was limited and lacked markers needed to identify tissue-resident cells, especially those within the lung

mucosa, and EM and CM CD8 T cells or Gamma-Delta T cells, which are reported major producers of IL-17 in TB infection.35 This limited

the ability to assess the effects of HIV on these important cells and should be considered for future studies. Finally, we only investigated a

limited number of cytokine responses or cytotoxic molecules at the protein level in blood and BAL cells, leaving unanswered whether the

observed defects in IL-17A responses are associated with alterations to a larger set of responses in HIV.

Conclusions

Our study leveraged unique access to both blood and BAL samples of a well-defined cohort of individuals to unmask immune dysregulation

associated with uncontrolled HIV infection at the site of pulmonary host-pathogen interactions.We conclude that HIV is associated with diver-

gent transcriptional effects in the blood and bronchoalveolar compartments. Blood was characterized by elevated T cell proliferation and

type I/II interferon signaling activity, whereas BAL was enriched for CD8 T cells with an effector memory phenotype but a defect in inducible

IL-17A production, associated with increased expression of T cell inhibitory molecules. Future work will need to assess the ability of ART to

reverse this immunedysregulation and explore the role of adjunctive immune checkpoint inhibitors to restoremucosal CD8 T cell function and

improve immune protection against respiratory infections in HIV.

RESOURCE AVAILABILITY

Lead contact

If further information and requests for resources are required, they should be directed to and will be fulfilled by the lead contact, Emily Wong
(emily.wong@ahri.org).

Materials availability

There are no more biological materials to share. The current study sourced transcriptional modules derived from multiple open-access publications. BAL tran-
scriptional modules were generated using transcriptional data generated in this study, and the gene content list for each module is available in Table S4.

Data and code availability

� The original de-identified human RNA-Seq datasets for whole sample transcriptomics and BAL-sorted immune cell populations (used to generate BAL
modules) generated from this study can be found in the Gene Expression Omnibus (GEO) repository as indicated in the key resources table.

Figure 4. Continued

(D) Scatterplot with bars (median) and whiskers (interquartile range) displaying expression of intracellular IFN-g (top row) and IL-17A (bottom row) by CD8 T cells

following PMA-ionomycin stimulation of mononuclear cells from both blood and BAL (n = 30, 17 HIV-negative and 13-HIV positive).

(E) Violin plots (lines = interquartile range and shape = density) showing multiple immune checkpoint markers transcriptional expression in blood and BAL (left

and right, respectively) (n = 20, 10 HIV-negative and 10 HIV-positive). Statistical assessments were performed by Mann-Whitney U tests.
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� The R code used to calculate the geometric mean expression of modules and perform regression analyses is freely available (https://github.com/
innate2adaptive). The gene content of the transcriptional modules generated, derived, and applied to the analyses in this manuscript are available in
Table S5.

� Supplementary materials are made available in Supplementary Figures and Supplementary Tables files consisting of data provided by the authors to
benefit the reader. The supplementary materials are not copyedited and are the authors’ sole responsibility, so questions or comments should be ad-
dressed to the corresponding authors. Any additional information required to reanalyze the data reported in this paper is available from the lead contact
upon request.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Brilliant Violet 650� anti-human CD3, clone: OKT3 BioLegend Cat# 317324; RRID: AB_2563352

Brilliant Violet 711� anti-human CD4, clone: OKT4 BioLegend Cat# 317440; RRID: AB_2562912

APC-Cyanine7� anti-human CD14, clone: HCD14 BioLegend Cat# 325620; RRID: AB_830693

Brilliant Violet 421� anti-human PD-1, clone: EH12.1 BD Biosciences Cat# 562516; RRID: AB_11153482

Brilliant Violet 785� anti-human TIM-3, clone: F38-2E2 BioLegend Cat# 345031; RRID: AB_2565833

C8 Monoclonal antibody (3B5) PE Texas Red, clone: 3B5 Invitrogen Cat# MHCD0817; RRID: AB_10372359

Alexa Flour 700 anti-human CD3, clone: UCHT1 BioLegend Cat# 300424; RRID: AB_493741

APC/Cyanine7 anti-human CD8, clone: SK1 BioLegend Cat# 344714; RRID: AB_2044006

Alexa Flour 647 anti-human granzyme B, clone: GB11 BioLegend Cat# 515406; RRID: AB_2566333

Brilliant Violet 421� anti-human IL-17A, clone: BL168 BioLegend Cat# 512322; RRID: AB_11218604

PE/Dazzle 549 anti-human IFN-g, clone: 4S.B3 BioLegend Cat# 502546; RRID: AB_2563627

MR1-6-FP (negative control) NIH Tetramer Core Facility –

MR1-5-OP-RU (mait-specific tetramer) NIH Tetramer Core Facility –

Biological samples

Whole Blood Samples This Study N/A

Whole BAL samples This Study N/A

BAL mononuclear cells (BLCs) This Study N/A

Peripheral blood mononuclear cells (PBMCs) This Study N/A

Chemicals, peptides, and recombinant proteins

Phorbol 12-myristate 13-acetate (PMA) Sigma Aldrich Cat no: 16561-29-8

Ionomycin Sigma Aldrich Cat no: 56092-82-1

Critical commercial assays

QuantiFERON-TB Gold Plus 2 Plates ELISA Kit QIAGEN Cat no: 622130

QuantiFERON-TB Gold Plus Blood Collection Tubes QIAGEN Cat no: 622536

Live/Dead Fixable Aqua Dead Cell Stain Kit ThermoFisher Scientific Cat no: L34957

Nextera XT DNA Sample Preparation Kit, 96 samples Illumina Cat no: FC-131-1096

Nextera XT Index Kit, 96 indices, 384 samples Illumina Cat no: FC-131-1002

PAXgene Blood RNA kit QIAGEN Cat no: 762174

PAXgene Blood RNA Tubes BD Biosciences Cat no: 762165

RNeasy Micro kit QIAGEN Cat no: E7490

NEBNext Poly(A) Mrna Magnetic Isolation Module New England BioLabs Cat no: E76005

NEBNext Multiplex Oligos for illumina New England BioLabs Cat no: E7490

NEBNext Ultra RNA Library Prep kit New England BioLabs Cat no: E7530

Deposited data

Dysfunctional effector memory CD8 T cells in the

bronchoalveolar compartment of people living with HIV

GEO (Whole transcriptomics) GSE230738

Dysfunctional effector memory CD8 T cells in the

bronchoalveolar compartment of people living with HIV

GEO (BAL-mini-population

transcriptomics)

GSE231628

Oligonucleotides

Template switching oligonucleotides IDT DNA Customized

Reverse transcription DNA oligonucleotides IDT DNA Customized

(Continued on next page)
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study subjects

We recruited otherwise healthy adults (ages 18–60 years) grouped by HIV serostatus, from a research bronchoscopy cohort previously

described by Muema et al., 202011 and Khuzwayo et al., 202136 in Durban, South Africa. Inclusion criteria included a positive

QuantiFERON-TB Gold Plus for all participants and, for HIV seropositive individuals, no previous exposure to ART. People with newly diag-

nosed HIV were referred for immediate antiretroviral therapy according to South African Department of Health guidelines. Exclusion criteria

included a prior diagnosis of TB disease, abnormal chest X-ray, any other co-morbid disease, any current or prior tobacco use, and current

pregnancy.

Ethical approval

Bronchoalveolar lavage (BAL) fluid and paired peripheral blood samples were sourced from a research bronchoscopy study called the

Phefumula study, based at Africa Health Research Institute (AHRI) in Durban, South Africa. This study was approved by the University of

KwaZulu-Natal Biomedical Research Ethics Committee (BREC; reference numbers BF503/15 and BE037/12) and the Partners Institutional

Review Board.

METHOD DETAILS

Sample acquisition

Paired blood and BAL samples were obtained from all study participants. Evaluation for latent TB status was performed by QuantiFERON-TB

Gold Plus (QTF-Plus, Qiagen), HIV status was determined using 4th generation HIV antibody/antigen Enzyme Linked-Immunosorbent Assay

(ELISA) testing, HIV RNA quantitative viral load and CD4 T cell count were also quantified. A chest X-ray and sputum GeneXpert were also

performed to exclude active TB cases. People who were either HIV-negative or HIV-positive and ART-naı̈ve, had a positive QTF result, and

whose blood test met safety criteria for research bronchoscopy (hemoglobin >10 g/dL, platelet count >150 and international normalized ratio

(INR) > 1) were consented to participate in this research bronchoscopy study.On the day of the bronchoscopy, a paired peripheral blood draw

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Prism 10.2.3 GraphPad NA

FlowJo 10.9.0 BD Biosciences NA

Ingenuity Pathway Analysis version: 111725566 QIAGEN https://digitalinsights.qiagen.com/

products-overview/discovery-insights-

portfolio/analysis-and-visualization/

qiagen-ipa/

Transcriptional module R scripts GitHub Biorepository https://github.com/MJMurray1/MDIScoring)

RNASeqPipelineR (alignment, quantification and

annotation of the RNA sequencing data)

GitHub Biorepository https://github.com/RGLab/RNASeqPipelineR

STAR (v2.4.2a) GitHub Biorepository https://github.com/alexdobin/STAR

SARTools GitHub Biorepository https://github.com/PF2-pasteur-fr/SARTools

InnateDB (Gene Ontology Analysis) InnateBD https://www.innatedb.com/

redirect.do?go=batchGo

Others

A HaemAtlas: characterizing gene expression in

differentiated human blood cells

ArrayExpress E-TABM-633, https://doi.org/10.1182/

blood-2008-06-162958

Landscape of stimulation-responsive chromatin across

diverse human immune cells

NCBI GEO GSE117164, https://doi.org/10.1038/

s41588-019-0505-9

IL-12 selectively programs effector pathways that are stably

expressed in human CD8+ effector memory T cells in vivo

NCBI GEO GSE27337, https://doi.org/10.1182/

blood-2011-05-357111

A common transcriptomic program acquired in the thymus

defines tissue residency of MAIT and NKT subsets

ArrayExpress E-MTAB-7143, https://doi.org/10.1084/

jem.20181483

Rapid synchronous type 1 IFN and virus-specific T cell

responses characterize first wave non-severe

SARS-CoV-2 infections.

ArrayExpress E-MTAB-10022, https://doi.org/10.1016/

j.xcrm.2022.100557
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was collected. The research bronchoscopy procedure has been described previously37; briefly after administration of topical lidocaine to the

vocal cords and midazolam, the pulmonologist wedged the bronchoscope in the right middle lobe, instilled 200 mL of normal saline and

collected lavage fluid for processing.

Sample processing

A portion of whole blood and BAL samples were assessed for differential cell count using histochemistry and compoundmicroscopy to count

for alveolar macrophages/monocytes, eosinophils, lymphocytes and neutrophils per sample type (Figure S1). The collected paired blood and

BAL samples were then transported to the research laboratory in less than 2 h for processing. PAXGene blood collection tubes were imme-

diately frozen. Peripheral blood mononuclear cells (PBMCs) were isolated from the bloods using the standard Histopaque (Sigma-Aldrich)

gradient centrifugation method. A 1.5 mL portion of the whole BAL samples was centrifuged (1500 g 3 10 min), and the pellet was resus-

pended in 100 mL RNALater stabilizing reagent (Sigma-Adrich) and frozen at �80�C. The remaining BAL sample was then filtered through

a 40 mm filter, centrifuged (1500 g 3 10 min) and the cell pellet resuspended in 10% of the sample in saline buffer volume with completed

RPMI media (RPMI media supplemented with 5% fetal bovine serum, 1% penicillin/streptomycin, 1% HEPES buffer and 1% amphotericin).

When sufficient live mononuclear cells were available from blood and BAL samples, they were subjected to (Phorbol 12-myristate

13-acetate (PMA) (25 ng/mL)/Ionomycin (500 ng/mL)) stimulation for 6 h at 37�C in 96-well microplates and monoclonal antibody staining.

Preparation of RNA-seq libraries and sequencing

Whole compartment

Tenpairs of blood andBAL samples fromHIV-negative people and 10pairs of blood andBAL samples fromHIV-positive people (Table 1) were

randomly selected from the enrolled participants with >90% cell viability from flow cytometry data and used to prepare RNA-Seq libraries.

Preserved blood and BAL samples were thawed from�80�C storage to room temperature (RT). RNA was extracted from the Blood PAXgene

tubes usingPaXgeneBloodRNAkit (Qiagen) according to themanufacturer’s recommendations. Briefly, PAXgeneblood samples restedat RT

for 2 h to facilitate cell lysis and then were centrifuged and the pellet was washed. Proteinase K was used to remove proteins from the samples

and the sample passed through a Shredder spin column andDNAse I treated to homogenize and remove any genomicDNA. Filtrate was sub-

sequently transferred into the RNASpin column to isolate the total RNA in each sample. RNAextraction from the BAL samples was done using

RNAEasyMicroKit (Qiagen) following themanufacturers protocol. Briefly, theBALcells in RNALater reagentwerepelletedand resuspended in

1%b-mercaptoethanolRLT lysis buffer (Qiagen) andRNAextractionandcontinuedwithextractionas above. Theconcentrationand integrity of

the extracted RNAwere assessed using NanoDrop Lite Spectrophotometer (Fisher Scientific) and 4200 TapeStation System (Agilent Technol-

ogies), respectively.We excluded samples with RNA Integrity (RIN) values < 7. RNA-Seq libraries were prepared as describedbyMuemaet al.,

2020.11 Briefly, RNA fromboth blood andBAL sampleswas enriched formessenger RNAusing theNEBNext Poly(A)mRNAMagnetic Isolation

Module (New England Biolabs). Libraries were prepared using NEBNext Ultra RNA Library Prep Kit for Illumina (New England Biolabs) and

barcoded using NEBNext Multiplex Oligos for Illumina kit (New England Biolabs). Library quality was assessed using the DNA TapeStation

(Agilent). RNA library concentrations were determined using aQubit dsDNAassay kit (Thermo Fisher). A pool of barcoded libraries with equal

molarities was then sequenced on an IlluminaNextSeq 500 platform targeting 10million reads per sample. After an initial sequencing run that

included all samples, selected samples were re-sequenced to achieve goal sequencing depth.

Sorted cell populations

In participants with sufficient live cells from BAL compartments, adherent and non-adherent cells were separated by plastic adherence on 6

well plates (CLS3335) at 37�C for 1h. Non-adherent cells were stained using Live/Dead Fixable Aqua (Life Technologies, L34957), CD3-BV650

(BioLegend, 317324), CD4-BV711 (BioLegend, 317440), CD14-APC-Cy7 (BioLegend, 325620), PD-1-BV421 (BD Biosciences, 562516), TIM-3-

BV785 (BioLegend, 345031) and CD8-PE Texas Red (Invitrogen, MHCD0817). Adherent cells were scrapped from the plastic. Both samples

were acquired on a BD FACSAria III (BD Biosciences) cell sorter to isolate CD4 T cells (defined as single, live, lymphocytes, CD3+, CD4+),

CD8 T cells (defined as single, live, lymphocytes, CD3+, CD8+), MAIT cells (defined as single, live, lymphocytes, CD3+, CD4�, MR1-5OP-

RU tetramer+), monocytes (defined as single, live, lymphocytes, CD3�, CD14+) and B-cells (defined as single, live, lymphocytes, CD3�,
CD14�, CD19+) and alveolar macrophages (sourced from unstained adherent cells, defined by size and complexity using flow cytometry).

The gating and sorting (done for some BAL samples from PLWH) strategy is shown in Figure S2. The purity of sorted cells was confirmed

to be >95% for a test sample. Using single-cell sorting mode, ‘mini-populations’ of 100 cells were collected into 50 mL of RLT buffer (Qiagen)

with 1% b-mercaptoethanol and subsequently stored at �80�C. Subsequent RNA isolation and library preparation from these samples was

conducted using Smart-Seq and Smart-SeqII approaches as described in Trombetta et al., 2014.38 Briefly, RNA from lysed mini-populations

were isolated using SPRI paramagnetic bead technology (RNAClean XP, Beckman Coulter), and cDNA was prepared by targeting RNA with

poly-A tail ensuring reverse transcription of mRNA using Maxima First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, K1641). Whole

transcriptome amplification was performed and cleaned using AMPure XP beads (Beckman Coulter). RNA libraries were then prepared using

Nextera XT library preparation kit (Illumina).

Library quality was assessed using the DNA TapeStation (Agilent). RNA library concentrations were determined using a Qubit dsDNA

assay kit (Thermo Fisher). A pool of barcoded libraries with equal molarities was sequenced on an Illumina NextSeq 500 platform. After an

initial sequencing run that included all samples, selected samples were re-sequenced to achieve goal sequencing depth.
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Transcriptomic data extraction and analyses

The RNASeqPipelineR package (https://github.com/RGLab/RNASeqPipelineR) was used to perform alignment, quantification and annota-

tion of the RNA sequencing data (RNA-seq) from the whole samples and sorted immune cells from BAL. The RNA-seq data were aligned

against the human genome (hg38) using STAR (v2.4.2a),39 and gene expression quantification was performed using RSEM (v1.2.22).40 Genes

with less than 15 nonzero read counts were discarded, leaving 19,720 expressed genes for the analysis. Libraries (samples) with less than

500,000 reads; 10,000 detected genes; an alignment rate <75% and an exon rate <50%; and clear sample annotation were confirmed using

NGSCheckMate.

For whole compartment samples from blood and BAL, we performed principal component analyses10 and whole compartment gene

expression profiles were deconvoluted using CIBERSORT to provide an estimation of immune cell abundance.41 Differential gene expres-

sion of RNA-Seq data using the package SARTools, a DESeq2 R pipeline, using a false discovery rate (FDR) of 0.05.42 Pathway analysis of

the differentially upregulated genes from the whole compartment samples was performed using the Reactome database via InnateDB43

(significantly enriched genes were defined by fold change >1 or < �1 and FDR q value <0.05 or pathways by p values adjusted using

Benjamini-Hochberg correction), and visualized as network diagrams in Gephi v0.10.1. Ingenuity Pathway Analysis (Qiagen) was used to

predict upstream cytokine and transmembrane receptors that regulate the expression of genes, with significant regulators determined

by p values <0.01.

Transcriptional module analyses

We derived the expression of transcriptional modules from the geometric mean expression of all constituent genes within a module, as pre-

viously described.9

We utilized previously validated transcriptional modules reflective of T cell proliferation and tissue cytokine activity.12,13 For blood CD4

T cells, CD8 T cells, and NK cell modules, we utilized those derived from the bulk transcriptome of purified immune cells44 or blood samples,

which possess the greatest sensitivity and specificity for cognate purified cell types9,29 and have been validated to reflect relative immune cell

frequency in vivo9,45 (provided in Tables S4 and S5). Transcriptional modules representing immune cells in BAL were derived from differen-

tially expressed genes between sorted immune cell populations using the DESeq2 R pipeline package, SARTools as above. For each cell type

of interest, module constituent genes were derived from genes with significantly elevated expression in the cognate cell relative to specific

other cell types using an FDR of 0.05 (Table S4). CD4 T cells were compared to CD8 T cells and MAIT cells, while the CD8 T cells were

compared to CD4 T and MAIT cells and the rest of the prepared modules were defined by comparing cognate cell type relative to all others

(e.g., CD14+ monocytes compared to CD4, CD8 T-cells, MAITs and alveolar macrophages). The sensitivity and specificity of these modules

were internally validated from the BAL transcriptome from which they were derived (Figure S3A) and externally validated using an indepen-

dent dataset of sorted immune cell types (Figure S3B).

Transcriptional modules reflecting the biology of central and effector memory (CM and EM, respectively) CD8 T cells were derived

from CD8 T cells purified on the basis of CCR7 and CXCR3 expression, with CCR7hiCXCR3lo representing CM and CCR7loCXCR3hi EM

CD8 T cells.46 We focused on genes that were differentially expressed between CM and EM populations (2-sided t-test, p < 0.01 uncor-

rected for multiple testing) and >10-fold expressed between the 2 groups. Genes that fulfilled these criteria were used to compose

CD8 CM and EM transcriptional modules. Their specificity was initially determined by internal validation of expression scores on the

dataset of module origin (GSE27337) and then using an independent external dataset (GSE117164) of purified CD8 T cell subsets

and NK cells.47 These revealed high sensitivity and specificity of the CM and EM transcriptional modules for their cognate cell types

(Figure S5).

Transcriptional module linear regression

To adjust for the contribution of different immune cell type frequencies on differential gene expression in the BAL transcriptome, a linear

regression was performed for each gene’s expressionmatrix using immune cell’s module expression score to generate a vector of cell counts.

The slope and intercept of this vector were used to predict the expression of all genes, and thus calculate residuals for each gene in thematrix

for all samples. The expression matrix of residuals generated was then used for differential gene expression and immune module quantifi-

cation as above.

Flow cytometry

Mononuclear cells from both blood and BAL samples were counted and viability was assessed and confirmed to be >90% using trypan blue

(Sigma-Aldrich). To assess cell lineage distribution, phenotypes, and functionality of immune cells in blood and BAL compartments with HIV

infection we stained mononuclear cells using 2 panels of fluorescently labeled monoclonal antibodies. Panel 1 (phenotypic panel): Same as

the sorting panel above. Panel 2 (intracellular cytokine staining panel): Live/dead-amcyan (Life Technologies), CD3-Alexa700 (BioLegend,

300424), CD4-BV711 (BioLegend, 317440), CD8-APC-Cy7 (BioLegend, 344714), granzyme b-Alexa647 (BioLegend, 515406), IFN-g-PE/Dazzle

594 (BioLegend, 502546), IL-17A-BV421 (BioLegend, 512322). Staining using Panel 2 was done after PMA/Ionomycin (25/500 ng/mL) stimula-

tion. The BDFACSAria III (BD Biosciences) flow cytometer was used to acquire samples. Compensation and rainbow beads were used as stan-

dards tominimize day-to-day variability. FlowJo v10.8.1 (FlowJo, LLC) was used for flow cytometry analysis. Comparisons in the flow cytometry

data between HIV-negative and HIV-positive people were evaluated using Mann-Whitney U test.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R v4.1.2, Prism v10.3.2 (GraphPad), and FlowJo 10.9.0 using tests described in the figure legends,

results, and method detail sections above. Where statistical tests are presented as asterisks, the asterisks are defined in each relevant figure

legend, together with the name of the statistical test used.
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