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Abstract

Electron paramagnetic resonance (EPR) imaging is an advanced oxygen imaging modality for 

oxygen-image guided radiation. The iterative reconstruction algorithm is the research hot-point in 

image reconstruction for EPR imaging (EPRI) for this type of algorithm may incorporate image-

prior information to construct advanced optimization model to achieve accurate reconstruction 

from sparse-view projections and/or noisy projections. However, the system matrix in the iterative 

algorithm needs complicated calculation and needs huge memory-space if it is stored in memory. 

In this work, we propose an iterative reconstruction algorithm without system matrix for EPRI 

to simplify the whole iterative reconstruction process. The function of the system matrix is 

to calculate the projections, whereas the function of the transpose of the system matrix is to 

perform backprojection. The existing projection and backprojection methods are all based on the 

configuration that the imaged-object remains stationary and the scanning device rotates. Here, we 

implement the projection and backprojection operations by fixing the scanning device and rotating 

the object. Thus, the core algorithm is only the commonly-used image-rotation algorithm, while 

the calculation and store of the system matrix are avoided. Based on the idea of image rotation, 

we design a specific iterative reconstruction algorithm for EPRI, total variation constrained data 

divergence minimization (TVcDM) algorithm without system matrix, and named it as image-

rotation based TVcDM (R-TVcDM). Through a series of comparisons with the original TVcDM 

via real projection data, we find that the proposed algorithm may achieve similar reconstruction 

accuracy with the original one. But it avoids the complicated calculation and store of the system 

matrix. The insights gained in this work may be also applied to other imaging modalities, for 

example computed tomography and positron emission tomography.
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1. Introduction

Studies have shown that the oxygen concentration in the tumor has important impact 

on radiation efficiency [1]. Hypoxic (low oxygen concentration) regions in the tumor 

are resistant to radiation, requiring high-dose radiation, whereas hyperoxia (high oxygen 

concentration) regions are sensitive to radiation, requiring only low-dose radiation [2,3]. 

Obviously, tumor oxygen imaging is necessary for precise radiation based on oxygen 

concentration distribution. Electron paramagnetic resonance imaging (EPRI) is recognized 

as a high-resolution and accurate oxygen imaging modality [4]. Its spatial resolution can 

reach ~ 1 mm and oxygen concentration resolution can reach ~ 1 torr [5]. EPRI mainly has 

two forms: continuous wave EPRI [6,7] and pulsed EPRI. Pulsed EPRI has faster scanning 

speed [8], so it is the current mainstream.

Image reconstruction algorithms of 3D pulsed EPRI mainly include two types: analytical 

reconstruction method [9] and iterative reconstruction method. The analytical reconstruction 

method mainly refers to the 3D filtered backprojection (FBP) algorithm, which has fast 

reconstruction speed and therefore is the mainstream algorithm of the current commercial 

EPRI imager. Its disadvantage is that it requires complete projection data.

Similar to magnetic resonance imaging (MRI) [10], the bottleneck of EPRI is the too 

long scan process for collecting complete projections [11]. One way to achieve fast 

EPRI is to just collect sparse-view projections. However, images reconstructed from sparse-

view projections by the analytical reconstruction method often suffer from severe streak 

artifacts, hindering their medical applications. Therefore, people began to explore iterative 

reconstruction methods in order to achieve accurate sparse reconstruction.

In 2014, Johnson et al. proposed a total variation (TV) minimization algorithm based on 

compressed sensing to achieve fast EPRI [12]. In 2015, Qiao et al. proposed a constrained, 

TV minimization reconstruction model, designed an adaptive steepest descent- projection 

onto convex set (ASD-POCS) algorithm to solve this model, and achieved accurate sparse 

reconstruction for pulsed EPRI [13]. In 2016, Christodoulou et al. proposed a dynamic 

EPRI reconstruction method based on low-rank tensors [14], which enabled fast scanning of 

dynamic imaging. In 2017, Durand et al. proposed a reconstruction algorithm based on TV 

and curvelets regularization to achieve accurate sparse reconstruction for continuous wave 

EPRI [15]. In 2018, Qiao et al. proposed a TV constrained, data divergence minimization 

(TVcDM) image reconstruction model and its Chambolle-Pock (CP) solving algorithm 

[16], achieving accurate sparse reconstruction for EPRI. In 2021, Qiao et al. proposed 

a balanced data divergence constrained, TV minimization-Chambolle-Pock (DDcTV-CP) 

image reconstruction algorithm [17], effectively solving the problem of slow convergence of 

the traditional DDcTV-CP algorithm for EPRI. All of these iterative reconstruction methods 

can achieve accurate EPRI reconstruction from sparse-view projections.

However, no matter which optimization model or solving algorithm is used, these 

reconstruction methods all involve the use of system matrix in the reconstruction process. 

The method of obtaining the system matrix is, in fact, the projection method, for the 
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multiplication of the system matrix and the vectorized image is the vectorized projection. 

The existing projection methods in 3D EPRI mainly include the voxel-driven method [18] 

and the plane-driven method [13], both of which are approximations of the 3D Radon 

transform and require complex computing skills. Furthermore, if the system matrix is stored 

in memory, it will occupy a huge memory space and even cannot be stored. For example, 

if the size of the 3D image is 643 and the size of the projection data is also 643, then the 

size of the system matrix is 646 = 64G. If each element of the system matrix is represented 

by a double precision number, the matrix will require 512 GB memory space, which is not 

available in ordinary personal computer. Obviously, the calculation of the system matrix is 

complicated, and it is extremely huge and is difficult to store. If an iterative algorithm can 

be designed to avoid the use of the system matrix, it will undoubtedly greatly simplify the 

whole iterative reconstruction process.

We have noticed that the existing projection methods all adopt the mode in which the image 

remains stationary and the scanning mechanism rotates. In fact, we can adopt an opposite 

mode in which the image rotates and the scanning mechanism remains stationary. By use 

of this new mode, the projection operation will become very simple, that is, one only needs 

to rotate the image by the corresponding angle and project it at 0 angle. Similar operations 

may be used for backprojection. We have designed an iterative reconstruction method based 

on image rotation and applied it to 2D CT reconstruction to verify the performance of the 

method [19]. On this basis, this work will study the iterative reconstruction algorithm for 3D 

EPRI based on image rotation to avoid the use of system matrix.

In Section 2, we introduce the proposed algorithm. In Section 3, we compare the proposed 

algorithm with the traditional algorithm via real data. The discussion and conclusions are 

given in Section 4.

2. Methods

In this section, the continuous-continuous (CC)-data model, the discrete-discrete (DD)-data 

model, the plane-driven projection method, the rotation-driven projection and backprojection 

method, and the image rotation-based TVcDM-CP algorithm will be introduced.

2.1. Continuous-to-continuous (CC)-data model

The CC-data model of 3D EPRI is the 3D Radon transform. As shown in Fig. 1, the 3D 

Radon transform p(t, φ, θ) of 3D object f (x, y, z) can be formulated as.

p t, φ, θ = ∫ ∫ ∫ f x, y, z ⋅ δ xCOSφ sinθ+y sinφ sinθ + Z × COSθ − t dxdydz .

(1)

Here, p(t, φ, θ) represents the area integral of the 3D object f (x, y, z) on the plane t = x 
cos φ sin θ + y sin φ sin θ + z cos θ, and δ(·) denotes the standard Dirac delta function. 

The projections should be distributed in the complete angle range, i. e. φ ∈ [0, 2π] and θ ∈ 
[0, π/2]. Here, θ is the angle between the z-axis and the t-axis, and φ is the angle between 
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the x-axis and the projection axis of the t-axis on the xoy-plane. Obviously, this plane is 

perpendicular to the t-axis and the distance from the origin to the plane is t.

By fixing (φ, θ) and changing t, a 1D projection signal at this view-angle can be obtained. 

The set of 1D signals at all angles is the 3D Radon transform of the object. A series of 

parallel planes at a particular view-angle can be thought of a scan configuration at that 

angle. As view-angle (φ, θ) changes, the t-axis is rotating, as is the series of parallel planes. 

This data model is based on the mode in which the object remains stationary and the scan 

configuration (a series of parallel planes) rotates. In EPRI, the projection signal p(t, φ, θ) 

is obtained by performing the inverse Fourier transform (IFT) for each demodulated EPR 

signal, so it can be considered that the projection signal corresponds to a virtual detector. 

Each cell of the virtual detector corresponds to a specific plane, and the value of each cell is 

the area integral of the object on this plane. As shown in Fig. 1, p(t0, φ, θ) is the area integral 

corresponding to the light brown plane.

2.2. Discrete-to-Discrete (DD)-data model

By discretizing both the 3D object f (x, y, z) and the projection data p(t, φ, θ), we can obtain 

the DD-data model, which can be formulated as.

g = Au .

(2)

Here, g is a column vector of size M = np × na, representing discrete projection data, where 

na is the number of projection angles, and np is the number of sampling points of each 1D 

projection signal; u is a column vector of size N = nx × ny × nz, representing a discrete 

3D image, where nx, ny, nz respectively denotes the number of voxels along the three 

dimensions of the 3D object; A is the system matrix of size M × N, representing 3D Radon 

transform. Therefore, Am,n represents the intersecting area between the plane corresponding 

to the m-th measurement of the object and the n-th voxel.

2.3. Plane-driven projection method

The method of obtaining the system matrix is the so-called projection method, because 

the multiplication of the system matrix and the image is the projection. According to 

the definition of Radon transform, the projection measurement is the area integral of the 

object. Therefore, when a 3D object is composed of discrete cubic voxels, a projection 

measurement is the sum of the product of the intersecting area between each voxel and 

the corresponding plane and the value of each voxel. Using this method to obtain the 

system matrix, the element Am,n of the system matrix is the intersecting area of the 

plane corresponding to the m-th measurement and the n-th voxel. This method to obtain 

projections is the so-called plane-driven projection method.

As shown in Fig. 2, the key to obtain the projection measurement corresponding to the 

yellow plane is to obtain the intersecting area of those cubes that intersect with the plane. 

A plane intersecting a cube may have triangular, quadrilateral, pentagon or hexagonal 
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cross-section. We used this method when we carried out EPRI reconstruction in the early 

stage. However, the algorithm to obtain the intersecting area between a plane and a cube is 

very complex and requires careful handling of many special cases. Moreover, when we want 

to store the system matrix in memory, it will take up huge storage space. Especially, when 

the number of the image data and the projection data are both large, the system matrix even 

cannot be stored in memory. All of these are disadvantages of the plane-driven projection 

method. In other words, as long as the system matrix is used explicitly, there are always 

these disadvantages.

2.4. Rotation-driven projection method and back projection method

In order to avoid the complex calculation of system matrix, it is necessary to explore a new 

projection method, so that the projection can be obtained without explicit system matrix.

We note that the scanning mode on which the plane-driven method is based is that the object 

remains stationary and the scanning mechanism rotates. As shown in Fig. 3, the object 

remaining stationary and the scanning mechanism rotating is equivalent to the scanning 

mechanism remaining stationary and the object rotating. Thus, we can design a rotation-

driven projection method.

We assume that the yellow plane in Fig. 3 (a) is the plane at the view-angle of (φ, θ) and at 

the distance of t0 from the origin, and its corresponding projection is the area integral on this 

plane. The plane may be regarded to be obtained by rotating the plane z = t0 clockwise by θ 
degrees around the rotation axis t⊥, which passes through the origin o and is perpendicular 

to the zot-plane. In Fig. 3 (b), the yellow plane is the plane z = t0. In this case, if the object 

is rotated counterclockwise by θ degrees around the rotation axis t⊥, the area integral on 

the plane is equivalent to that on the plane in Fig. 3 (a). Obviously, the object remaining 

stationary and the scanning mechanism rotating is equivalent to the scanning mechanism 

remaining stationary and the object rotating. The latter method of obtaining projections is 

the rotation-driven projection method.

The rotation-driven projection method is simple and does not require a system matrix. As 

shown in Fig. 4 (b), the projection corresponding to each plane is the sum of the voxel 

values in the layer. However, as shown in Fig. 4 (a), the plane-driven projection method 

needs to calculate the intersecting area between the plane and the voxels. The core operation 

of the rotation-driven method is just the common rotation of 3D objects, which greatly 

simplifies the calculation of projection. The pseudo-code of the rotation-driven projection 

method is shown in Table 1, where Na denotes the projection number.

The backprojection operation is the opposite operation of the projection operation. The 

difference is only that the backprojection is to let the voxel values of a certain layer of 

the object be the measurement value of the projection signal, whereas projection is to sum 

up all the voxel values of a certain layer. Therefore, the pseudo-code of the rotation-driven 

backprojection will not be repeated here.
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2.5. TVcDM-CP algorithm and its image rotation-based version

In 2018, we have proposed the TVcDM-CP algorithm [16], which can achieve accurate 

sparse-view reconstruction in EPRI. In the iterative process of this algorithm, each iteration 

needs to calculate a projection and a back projection. At that time, we used a voxel-driven 

method [18] for projection and backprojection, which still required computing the system 

matrix. In order to verify the correctness of the rotation-driven projection and backprojection 

algorithms, we replace the operation Au in the pseudo-code of the algorithm with the 

rotation-driven projection operation, and replace the operation ATg with the rotation-driven 

backprojection operation, which forms an image rotation-based version of TVcDM-CP 

algorithm. We name it the R-TVcDM-CP algorithm. For the sake of brevity in the following 

discussion, we refer to the TVcDM-CP algorithm as the CP algorithm and the R-TVcDM-

CP algorithm as the R-CP algorithm.

3. Results

In this section, we will compare the R-CP algorithm with the CP algorithm via real data. 

If the accuracy is similar, it is verified that the rotation-driven projection method without 

system matrix and its backprojection method, which are proposed in this work, are correct.

3.1. Imager specifications

As shown in Fig. 5 (a), we use a pulsed EPRI imager to scan objects. It is a JIVA-25 EPRI 

oxygen imager for small animals, produced by O2M Technologies in the United States, 

whose specifications are shown in Table 2.

3.2. The reconstruction of a standard physical phantom

3.2.1. The imaging configurations—As shown in Fig. 5 (b), a standard physical 

phantom is a small bottle containing trityl solution. Trityl is an EPRI spin probe, per 

molecule of which has an unpaired electron, enabling electron paramagnetic resonance. The 

size of the reconstructed 3D object is 64 × 64 × 64 and the lengths of the three dimensions 

are all 3 2cm. Therefore, the side length of each voxel is 0.0663 cm. The origin of the 

imaging coordinate system is at [32, 32, 32]. The length of the virtual detector is also 3 2cm, 

and the number of virtual detector cells is also 64. Therefore, the length of each virtual 

detector cell is also 0:0663cm. We collects a total of 208 projections from different views 

to form complete projections. These projections are sampled using an equal-solid-angle 

pattern [20], so the distribution of the sampling views is approximately uniform. In order 

to evaluate the sparse-view reconstruction ability of the algorithm, we sample sparse-view 

projections with an approximately uniform distribution from 208 complete projections to 

form sparse-view projection sets using the maximally spaced projection sequencing (MSPS) 

method [21]. The numbers of projections in these sparse-view projection sets are 50, 80, 

110, 140, and 170, respectively.

For the imager we used, the spatial resolution is about 1 mm. Now, the voxel is of side-

length 0.663 mm, so this setup is enough for achieving the physical spatial resolution. To 

achieve this resolution, the spatial resolution of the virtual detector should be also smaller 

than 1 mm. Here, the virtual detector cell is of size 0.663 mm and is small enough. In 
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fact, we may let the size of the virtual detector cell be smaller than the voxel-side-length. 

However, it cannot improve the reconstruction accuracy no matter in analytic algorithm 

[9]or in iterative algorithm [16]. Thus, we set the size of the virtual detector cell be also 

0.663 mm. In addition, the equivalence of the voxel-side-length and the size of the virtual 

detector cell may simplify the design of voxel-driven and rotation-driven projection and 

backprojection operations.

3.2.2. The reconstructed results—Using the method in [16] to determine the model 

parameter t1, we set t1 = 0.2t0 for the R-CP algorithm and t1 = 0.15t0 for the CP algorithm 

to obtain the reconstruction with the best accuracy respectively, where t0 is the TV value of 

image reconstructed by the FBP method.

When the number of projection views Na is set to 50, 80, 110, 140, 170 and 208, 

respectively, the results reconstructed by the FBP, CP and R-CP algorithms are shown in 

Fig. 6. It can be seen that all the images reconstructed by the FBP algorithm suffer from 

streak artifacts, and as the number of projections decreases, the artifacts become more and 

more obvious. However, in the images reconstructed by the CP algorithm and the R-CP 

algorithm, the artifacts are effectively suppressed. In particular, the image reconstructed 

by the FBP algorithm from 50 views projections has serious deformation, while the CP 

algorithm and the R-CP algorithm can reconstruct the images well. It is worth noting that the 

images reconstructed by the R-CP and CP algorithms are very similar and indistinguishable 

to the naked eye, which indicates that the reconstruction accuracy of the two algorithms is 

similar.

For quantitative assessment, we use the reference-image-based normalized object error 

(rNOE) [11] as the metric to assess the quality of reconstructed images, which is defined 

by Eq. (14) in [11]. The smaller the rNOE value of the reconstructed image, the better 

the quality of the image, and the higher the reconstruction accuracy of the corresponding 

algorithm.

Fig. 7 plots the rNOE of the corresponding reconstructed images in Fig. 6. It can be seen 

that in the case of any number of projections, the rNOE values of the images reconstructed 

by the R-CP and the ones by the CP are both lower than those by the FBP, which indicates 

that the two optimization-based algorithms can achieve higher accuracy than the FBP 

algorithm. The rNOE of the images reconstructed by the CP is slightly lower than that by the 

R-CP, but their accuracy is similar, indicating that both the projection and the backprojection 

in the R-CP algorithm for the reconstruction of the standard physical phantom are correct.

3.3. The reconstruction of a complex physical phantom

3.3.1. The imaging configurations—The complex physical phantom is composed of 

three small bottles containing trityl solution, as shown in Fig. 5 (c). It should be noted that 

the three bottles are stacked when it is placed in the resonator. The imaging configurations 

used for this phantom are the same as those for the standard physical phantom.
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3.3.2. The reconstructed results—We set t1 = 0.4t0 for the R-CP algorithm and set t1 

= 0.5t0 for the CP algorithm to achieve accurate reconstructions. The reconstructed results of 

the complex physical phantom are shown in Fig. 8.

It can be seen from Fig. 8 that all the images reconstructed by the FBP algorithm suffer from 

streak artifacts, and as the number of projections decreases, the artifacts become more and 

more obvious. However, the CP algorithm and the R-CP algorithm can effectively suppress 

the artifacts. Moreover, for the complex physical phantom imaging, the two algorithms 

based on optimization are both better than the FBP in suppressing image deformation. 

Therefore, the accuracy of the two reconstruction algorithms, the R-CP and the CP, based 

on optimization is much higher than that of the FBP algorithm. At the same time, the 

reconstruction accuracy of the R-CP algorithm and that of the CP algorithm are similar, and 

it is difficult for the naked eye to distinguish each other.

Fig. 9 plots the rNOE of the reconstructed images in Fig. 8. It can be seen that in the case 

of any number of projections, the rNOE values of the images reconstructed by R-CP and 

the ones by CP are both lower than those by the FBP, which indicates that both of the 

two optimization-based algorithms can achieve higher accuracy than the FBP. The rNOE 

of the images reconstructed by the CP is slightly lower than that by the R-CP, but their 

accuracy is similar, indicating that both the projection and the backprojection operations in 

the R-CP algorithm are correct. We think the reason why the accuracy of R-CP algorithm is 

slightly lower than that of CP is that the projection and backprojection operations of R-CP 

are not exactly matched [22]. However, the experiments show that the accuracy of the R-CP 

algorithm is high enough to support real data reconstructions.

4. Discussion and conclusions

In this work, we propose an image-rotation-based iterative reconstruction algorithm for 

EPRI, which may avoid the complicated calculation of system matrix. The function of 

system matrix is to perform projection operation and the function of its transpose matrix is 

to perform backprojection operation. Based on the image-rotation technique, the projection 

and backprojection operations become very easy for their core operation is just the 

commonly-used image-rotation operation.

In fact, the success of the proposed method is based on the observation that fixing the 

image and rotating the scanning device is equivalent with fixing the scanning device and 

rotating the image. The existing projection and backprojection algorithms for EPRI include 

the voxel-driven method and the plane-driven method. They both need to calculate the 

contribution of a voxel to a measurement. That is to say they both need to calculate 

the system matrix. On the one hand, these methods are complicated and need advanced 

computational technique. On the other hand, the system matrix will need huge memory 

space if it is stored in memory. Both the voxel-driven method and the plane-driven method 

are based on fixing image and rotating the scanning device. Equivalently but skillfully, we 

propose this image-rotation-based projection and backprojection method that do not need the 

calculation of system matrix. The real data experiments have demonstrated the correctness 

and effectiveness of this method. We may regard the proposed projection and backprojection 
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method as rotation-driven method, which is simpler than the voxel-driven and plane-driven 

methods but may achieve comparable reconstruction accuracy with the other two methods in 

the iterative reconstruction algorithms. The projection and backprojection technique without 

system matrix can be exploited for simplifying the whole iterative reconstruction process 

and enabling fast EPR imaging. Thus, we get a new, simple, but effective projection and 

backprojection method in EPRI.

In addition, this image-rotation-based projection and backprojection method may also be 

transplanted to other imaging modalities. For example, in fan-beam and cone-beam CT, one 

may just calculate a small system matrix corresponding to the projection and backprojection 

operations at the starting view then apply the rotation technique to calculate all the other 

projections and backprojections. For 4D EPRI, the hyper-plane-driven projection method 

will be very complicated for it needs to calculate the intersecting volume of a hyper-plane 

and a hyper-voxel. But, if one uses the proposed image-rotation technique, whose core 

operation is just the 4D image-rotation that is not difficult. The insights gained in this work 

may be also used in the iterative reconstruction algorithms without system matrix for other 

imaging modalities, such as, CT and positron emission tomography (PET).

Funding

This work was supported in part by National Natural Science Foundation of China under grant 62071281, 
by Local Science and Technology Development Fund Project Guided by the Central Government under grant 
YDZJSX2021A003, by Research Project Supported by Shanxi Scholarship Council of China under grant 2020-008, 
and by the NIH under grants P41 EB002034 and R01 CA098575.

Data availability

Data will be made available on request.

References

[1]. Epel B, Maggio MC, Barth ED, Miller RC, Pelizzari CA, Krzykawska-Serda M, Sundramoorthy 
SV, Aydogan B, Weichselbaum RR, Tormyshev VM, Halpern HJ, Oxygen-guided radiation 
therapy, Int. J. Radiat. Oncol 103 (2019) 977–984.

[2]. Epel B, Kotecha M, Halpern HJ, In vivo preclinical cancer and tissue engineering applications 
of absolute oxygen imaging using pulse EPR, J. Magn. Reson 280 (2017) 149–157. [PubMed: 
28552587] 

[3]. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW, Tumor hypoxia adversely affects 
the prognosis of carcinoma of the head and neck, Int. J. Radiat. Oncol 38 (1997) 285–289.

[4]. Kuppusamy P, Wang P, Zweier JL, Krishna MC, Mitchell JB, Ma L, Trimble CE, Hsia CJC, 
Electron paramagnetic resonance imaging of rat heart with nitroxide and polynitroxyl-albumint, 
Biochemistry 35 (1996) 7051–7057. [PubMed: 8679530] 

[5]. Matsumoto K-I, Subramanian S, Devasahayam N, Aravalluvan T, Murugesan R, Cook JA, 
Mitchell JB, Krishna MC, Electron paramagnetic resonance imaging of tumor hypoxia: 
Enhanced spatial and temporal resolution for in vivo pO2 determination, Magn. Reson. Med 
55 (2006) 1157–1163. [PubMed: 16596636] 

[6]. Matsumoto K-I, Chandrika B, Lohman JAB, Mitchell JB, Krishna MC, Subramanian S, 
Application of continuous-wave EPR spectral-spatial image reconstruction techniques for in vivo 
oxymetry: Comparison of projection reconstruction and constant-time modalities, Magn. Reson. 
Med 50 (2003) 865–874. [PubMed: 14523974] 

Qiao et al. Page 9

J Magn Reson. Author manuscript; available in PMC 2024 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[7]. Epel B, Haney CR, Hleihel D, Wardrip C, Barth ED, Halpern HJ, Electron paramagnetic 
resonance oxygen imaging of a rabbit tumor using localized spin probe delivery, Med. Phys 
37 (2010) 2553–2559. [PubMed: 20632567] 

[8]. Epel B, Sundramoorthy SV, Barth ED, Mailer C, Halpern HJ, Comparison of 250 MHz electron 
spin echo and continuous wave oxygen EPR imaging methods for in vivo applications, Med. 
Phys 38 (2011) 2045–2052. [PubMed: 21626937] 

[9]. Qiao Z, Redler G, Epel B, Halpern HJ, Comparison of parabolic filtration methods for 3D filtered 
back projection in pulsed EPR imaging, J. Magn. Reson 248 (2014) 42–53. [PubMed: 25314081] 

[10]. Block KT, Uecker M, Frahm J, Undersampled radial MRI with multiple coils. Iterative image 
reconstruction using a total variation constraint, Magn. Reson. Med 57 (2007) 1086–1098. 
[PubMed: 17534903] 

[11]. Qiao Z, Liang D, Tang S, Halpern HJ, Optimization-based image reconstruction from fast-
scanned, noisy projections in EPR imaging, IEEE Access 7 (2019) 19590–19601.

[12]. Johnson DH, Ahmad R, He G, Samouilov A, Zweier JL, Compressed sensing of spatial electron 
paramagnetic resonance imaging, Magn. Reson. Med 72 (2014) 893–901. [PubMed: 24123102] 

[13]. Qiao Z, Redler G, Epel B, Qian Y, Halpern HJ, 3D pulse EPR imaging from sparse-view 
projections via constrained, total variation minimization, J. Magn. Reson 258 (2015) 49–57. 
[PubMed: 26225440] 

[14]. Christodoulou AG, Redler G, Clifford B, Liang Z, Halpern HJ, Epel B, Fast dynamic electron 
paramagnetic resonance (EPR) oxygen imaging using low-rank tensors, J. Magn. Reson 270 
(2016) 176–182. [PubMed: 27498337] 

[15]. Durand S, Frapart Y-M, Kerebel M, Electron paramagnetic resonance image reconstruction with 
total variation and curvelets regularization, Inverse Probl. 33 (2017).

[16]. Qiao Z, Zhang Z, Pan X, Epel B, Redler G, Xia D, Halpern HJ, Optimization-based image 
reconstruction from sparsely sampled data in electron paramagnetic resonance imaging, J. Magn. 
Reson 294 (2018) 24–34. [PubMed: 30005191] 

[17]. Qiao Z, Redler G, Epel B, Halpern HJ, A balanced total-variation-Chambolle-Pock algorithm for 
EPR imaging, J. Magn. Reson 328 (2021).

[18]. Qiao Z, Redler G, Gui Z, Qian Y, Epel B, Halpern HJ, Three novel accurate pixel-driven 
projection methods for 2D CT and 3D EPR imaging, J. X-ray Sci. Tech 26 (2018) 83–102.

[19]. Qiao Z, Lu Y, A TV-minimization image-reconstruction algorithm without system matrix, J. 
X-ray Sci. Tech 29 (2021) 851–865.

[20]. Ahn K-H, Halpern HJ, Spatially uniform sampling in 4-D EPR spectral-spatial imaging, J. Magn. 
Reson 185 (2007) 152–158. [PubMed: 17197215] 

[21]. Redler G, Epel B, Halpern HJ, Maximally spaced projection sequencing in electron paramagnetic 
resonance imaging, Concepts Magn, Reson. Part B: Magn. Reson. Eng 45 (2015) 33–45. 
[PubMed: 26185490] 

[22]. Zeng GL, Gullberg GT, Unmatched projector/backprojector pairs in an iterative reconstruction 
algorithm, IEEE transactions on medical imaging 19 (2000) 548–555. [PubMed: 11021698] 

Qiao et al. Page 10

J Magn Reson. Author manuscript; available in PMC 2024 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The schematic diagram of the 3D Radon transform.
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Fig. 2. 
The schematic diagram of the 3D plane-driven projection method for 3D EPRI.
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Fig. 3. 
The schematic diagram showing that the object remaining stationary and the scanning 

mechanism rotating is equivalent to the scanning mechanism remaining stationary and the 

object rotating. (a) shows that the object remains stationary and the scanning mechanism 

rotates, and (b) shows that the scanning mechanism remains stationary and the object 

rotates.
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Fig. 4. 
The schematic diagram of the plane-driven projection method (a) and the rotation-driven 

projection method (b).
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Fig. 5. 
(a) shows the JIVA-25 EPRI oxygen imager for small animals; (b) and (c) show some 

physical phantoms containing spin probes. The spin probe is OX063-d24. The concentration 

of the phantom solution in (b) is 1 mM, and that in (c) is 1 mM, 0.5 mM and 0.268 mM, 

respectively.

Qiao et al. Page 15

J Magn Reson. Author manuscript; available in PMC 2024 November 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
The reconstructed images of the standard physical phantom. The number above the images 

is the number of projections and the text at the left of the images indicates the reconstruction 

algorithms used. The display window is [0, 0.007].
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Fig. 7. 
Plots of rNOE of the reconstructed images of the standard physical phantom as functions of 

projection number.
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Fig. 8. 
The reconstructed images of the complex physical phantom. The number above the images 

is the number of projections and the text at the left of the images indicates the reconstruction 

algorithms used. The display window is [0, 0.0016].
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Fig. 9. 
Plots of rNOE of the reconstructed images of the complex physical phantom as functions of 

projection number.
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Table 1

Pseudo-codes of the rotation-driven projection method for 3D EPRI.

INPUT : f (x, y, z)

1: For k = 1 : Na

2: get θk and φk .

3: Calculate the direction vector of the rotation axis t⊥.

4: Rotate the object f (x, y, z)forθk degree by anti-clockwise

5: direction and get the rotated object R f (x, y, z).

6: Sum up all the voxels layer by layer by the z axis direction and get the projection at angle (θk, φk), p(t, θk, φk).

6: End

OUTPUT : p(t, φ, θ)
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Table 2

Specification of the EPR oxygen imager.

Main magnetic field strength 250G

Maximal gradient magnetic field strength 30mT/m

Radio-frequency signal frequency 720 MHz

Size of resonator Φ 25 mm × 35 mm

Depth of detection 50 mm

Spatial resolution <1mm

Oxygen concentration resolution 1 torr

Gx direction To the top

Gy direction To the right

Gz direction To the rear
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