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led iron and halogen-containing
carboxylate-based photocatalysis for chloro/
fluoro-polyhaloalkylation of alkenes†

Wanru Han,‡a Zhenyan Zhao,‡a Kui Jiang,a Yu Lan, *abc Xuehan Yu,a Xiaoyu Jiang,a

Wei Yang,a Donghui Wei, *a Shi-Jun Li *ab and Linbin Niu*ab

Herein, we demonstrate a practical dual ligand-enabled iron photocatalysis paradigm—converting all kinds

of halogen-containing carboxylates (CnXmCOO−, X: F, Cl, Br) into CnXm radicals for the valuable chloro/

fluoro-polyhaloalkylation of non-activated alkenes with easily available trichloroacetonitrile/Selectfluor as

the electrophilic halogenation reagent. The modular in situ assembly of the effective iron and

CnXmCOO−-based light-harvesting species using the two ligands—OMe/CF3-substituted bipyridine and

acetonitrile/trichloroacetonitrile is evidenced by detailed mechanistic studies. The late-stage

modification, low loading amount of iron (TON: 257) and feasible gram-scale synthesis show the utility

of this protocol. We thus anticipate that the dual ligand-enabled iron photocatalysis paradigm may

facilitate activation and transformation of inert bulk chemicals.
Introduction

Using abundant bulk chemicals to synthesize ne chemicals
through a sustainable catalytic strategy is signicant in the eld of
synthetic chemistry.1 Regarding the efficient activation of inert
bulk chemicals, general considerations or solutions are to increase
the energy input such as resorting to high temperatures,2 noble
metal catalysts,3 strong or special oxidants/reductants/acids/
bases,4 UV light,5 etc.6 Due to the urgent demand for green and
sustainable chemistry,7 balancing the requirement of reducing the
energy input/consumption and the growing interest of chemists in
the activation of inert chemicals is what chemists should immi-
nently address (Fig. 1a).

The nontoxicity and abundance of iron endow iron-catalyzed
synthetic chemistry with strong sustainability and potential
application prospects in bio-medicine and industrial
manufacturing elds.8 The low cost and easily available iron(III)
salts have been playing versatile roles in the synthetic chemistry
community owing to their remarkable Lewis acidity9 and redox
reactivity. With respect to the redox character of iron(III), it has
exhibited the ability to oxidise some active radical species10 or
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electron rich compounds such as anilines11 and phosphines.12

To achieve iron-mediated oxidative activation of inert
compounds (alkane as an example), strong stoichiometric
oxidants are usually required to yield high valent iron(IV or V)oxo
species that can dominate the activation and transformation of
inert alkanes for the generation of value-added alcohols/
ketones, which is a representative mode for iron-catalyzed
functionalization of inert compounds (Fig. 1b).13 By contrast,
the oxidative ability of iron(III) is relatively moderate, hence
direct iron(III)-dominated oxidative activation of inert
compounds is still rare.

The input of light energy into iron(III) enhances the redox
activity to a certain degree.14 Photo-induced iron ligand-to-metal
charge transfer (LMCT) possesses excellent ability to produce
radical species from abundant chemical feedstocks like alkyl
carboxylates (tBuCOO− as a representative, Eox1/2 = +1.26 V versus
SCE),15–18 in which the necessary prerequisite is the suitable
coordination of the substrate to the iron center. It means that
activating those inert compounds with exceedingly weak coordi-
nation capacity in this fashion is helpless and doubtful. Very
recently, through cooperating iron photocatalysis and redox-
active thiol catalysis, West and Xia elegantly reported direct
decarboxylation of F-containing carboxylic acids for hydro-
uoroalkylation of alkenes.19 The extremely high oxidative
potential of TFA (CF3COO

−, Eox1/2 > +2.4 V versus SCE) and the
strong acid system make the corresponding activation mecha-
nism of this special method complicated and confusing (Fig. 1c).

To develop a general strategy for the activation and trans-
formation of inert and weakly coordinating compounds viametal-
based photocatalysis, we hope to choose abundant and alkalescent
halogen-containing carboxylates (CnXmCOO

−, X: F, Cl, Br) as the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Paradigms for activation of inert compounds. (a) Pursuing the
activation of inert chemicals under milder conditions. (b) The redox
character of iron(III). (c) Decarboxylation of CnFmCOOH promoted by
purple light. (d) This work: dual ligand-enabled iron and halogen-
containing carboxylate-based photocatalysis for chloro/fluoro-poly-
haloalkylation of alkenes.
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investigational object to circumvent the strong acid conditions,20

which is conducive to bringing the effect of the external ligand into
full play.21 Given the fact that the role of the external ligand in 3d
metal-based LMCT chemistry is usually intricate but signicant,
herein, we adopted the dual ligand-enabled strategy to efficiently
assemble iron and CnXmCOO

−-based light-harvesting species for
CnXm radical production under visible light conditions,22 thus
successfully achieving chloro/uoro-polyhaloalkylation of non-
activated alkenes with easily available trichloroacetonitrile/Select-
uor as the electrophilic halogenation reagent (Fig. 1d). OMe/CF3-
substituted bipyridine (bpy) and acetonitrile/trichloroacetonitrile
indeed serve as the crucial dual ligands to achieve the desired
LMCT between CnXmCOO

− and the iron(III) center and furnish the
decarboxylation of CnXmCOO

− under visible light rather than UV
light.
Results and discussion

To quickly obtain photochemical insights into iron(III) and Cn-
XmCOO

−-based light-harvesting species, stoichiometric
© 2024 The Author(s). Published by the Royal Society of Chemistry
photolysis experiments of Fe(CF3COO)3 were rst carried out. As
we expected, the high energy light (lmax = 365 nm) irradiation
could induce the decomposition of Fe(CF3COO)3 to the CF3
radical, which was captured by a non-activated alkene 1, and the
generated radical adduct was further quenched through the
halogen atom transfer (XAT) with Cl3CCN, delivering the chloro-
triuoromethylation product of alkene (Fig. 2a, entry 1).23 This
process failed under visible light (lmax = 450 nm) or darkness
conditions (entries 2 and 3). To reduce the energy consumption
in the activation of CF3COO

−, the external ligands were inves-
tigated to achieve the release of the CF3 radical under visible
light conditions. Bpy L1 was incapable of controlling the
effective decarboxylation of CF3COO

− to access the chloro-tri-
uoromethylation of alkene, whereas its derivatives function-
alized with electron-donating/withdrawing functional groups
(L2 and L3) both showed the potential of being a competent
ligand (entries 4–6).

Based on the preliminary results of the above stoichiometric
experiments, a hypothetical catalytic cycle is illustrated in
Fig. 2b. We proposed that a suitable electrophilic halogenation
reagent (VIII or IX) should not only participate in the halogen-
atom transfer (XAT) with the radical adduct (VII) that was
generated from the CnXm radical (V) and alkene (VI) for the
designed chloro/uoro-polyhaloalkylation (XIV or XV), but also
its concomitant electrophilic carbon/nitrogen radical species (X
or XI) generated from the XAT would be responsible for the
oxidation of [FeII/L] species (III) to regenerate the [FeIII/L]
complex (I). Notably, the additional effect of the ligand also
possibly affected the process of [FeII/L] to [FeIII/L], indicating
that the choosing of the competent ligand is rst and foremost
for investigating conditions. Aer our detailed investigations
(Fig. S14 and S15†), it was found that the chloro-tri-
uoromethylation and uoro-chlorodiuoromethylation of
alkenes via visible light-induced iron catalysis could be
accomplished in good yields and regioselectivity under the
regulation of L2 and L4, respectively (Fig. 2c). Regarding the
choosing of the halogenation reagent, it was necessary to
mention the result that commonly used chlorine sources such
as trichloromethane, ethyl chloroacetate analogue, NCS (N-
chlorosuccinimide), etc. could not yield the desired chloro-tri-
uoromethylation product (Fig. S17†), and bromo-tri-
uoromethylation of alkene by this method was infeasible
(Fig. S18†).

With the optimized conditions in hand, the scope of this
protocol was explored in terms of various non-activated alkenes'
chloro/uoro-polyhaloalkylation (Fig. 3). We rst examined the
reactivity of benzoate-containing terminal olens. The different
alkyl carbon chain structures of olens did not disturb the
reactivity and both provided good yields (4 and 5). Electron-
donating or electron-withdrawing substituents in benzoate
groups were compatible (6–8), and the substituents installed at
ortho andmeta positions also provided satisfactory yields (9–11).
The alkene assembled with valuable benzotriazole successfully
introduced the Cl and CF3 groups in 74% yield under our
standard conditions (12). Moreover, sulfonate/phenoxy-modi-
ed alkenes, simple hexadecane and a-methyl olen were all
well tolerated (13–17). Besides the above-mentioned terminal
Chem. Sci., 2024, 15, 19936–19943 | 19937



Fig. 2 Investigations of chloro/fluoro-polyhaloalkylation of alkenes. (a) Photo-induced iron mediated chloro-trifluoromethylation of an alkene.
(b) Proposed mechanism of photo-induced iron catalyzed chloro/fluoro-polyhaloalkylation of alkenes. (c) Optimal conditions of the chloro/
fluoro-polyhaloalkylation of alkenes.
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olens, the successful chloro-triuoromethylation of the
internal olen enriched the diversity of the product (18).
Signicantly, the synthetic utility of this method in achieving
uoro-polyhaloalkylation24 of non-activated alkenes was elabo-
rated for the divergent synthesis of complex uorine-containing
molecules (19–25). Unfortunately, conjugated alkenes were not
suitable for this reaction (Fig. S12†).

Furthermore, a wide variety of alkenes derived from phar-
maceutical molecules were examined for the late-stage func-
tionalization to extend this practical synthetic platform. The
medicine oxaprozin used for rheumatoid arthritis and post-
operative analgesia could be modied with halogen-containing
alkyl in moderate yield (26). It is noteworthy that the perfor-
mance of the derivative of piperonylic acid was amazing with
83% yield, whose sensitive ternary ring structure was well
preserved (27). Likewise, ciprobrate as an oral medicine for
treating endogenous hypercholesterolemia and hyper-
triglyceridemia in adults, its derivative could also be achieved
chloro-triuoromethylation smoothly (28). The modication
based on amino acid N-Boc-D-proline (29) increased the
opportunities to discover late-model biomolecules. Of special
note, eugenol possesses antioxidant, anticancer, anti-inam-
matory, and antimicrobial activities, and its analogue gave
moderate yield (30), despite the existence of the sensitive
phenolic hydroxyl group. Besides, the late-stage chloro-tri-
uoromethylation, chloro-chlorodiuoromethylation, chloro-
bromodiuoromethylation and chloro-pentauoroethylation of
loxoprofen/febuxostat/urbiprofen derivatives demonstrated
19938 | Chem. Sci., 2024, 15, 19936–19943
intriguing synthesis potential for new drug research and
development (31–40). Importantly, the utility and sustainability
of this method were further highlighted by the gram-scale
synthesis and low loading amount of the iron catalyst (TON =

257).
Based on the encouraging results of this ligand-enabled

iron photocatalysis under visible light conditions, we turned
our attention to the mechanistic studies. When stoichiometric
radical scavenger (TEMPO/BHT) was subjected to the standard
conditions (Fig. S30†), the desired chloro-triuoromethylation
process was severely inhibited, in which the radical adduct of
the CF3 radical and BHT was detected by electrospray ioniza-
tion high-resolutionmass spectrometry (ESI-HRMS, Fig. S31†).
The existence of CF3 radical species was also evidenced by the
designed radical probe experiment (Fig. S32†). Theoretically,
the production of the CnXm radical required the excitation of
iron and CnXmCOO

−-based light-harvesting species, meaning
that continuous blue light irradiation should be necessary.
The light on/off experiments veried this viewpoint (Fig. 4a).
According to the fact that the combination of Fe(OTf)3 and L2
showed rst-order dependence during the kinetic studies
(Fig. 4b), we realized that how to assemble iron salt/L2, Cn-
XmCOO

− and other potential ligands in this system into iron-
based light-harvesting species for CnXm radical release is the
most crucial factor for the whole catalytic cycle. Because of the
weaker coordination ability of OTf− and NO3

− than that of
CnXmCOO

−, easily dissociated iron salts like Fe(OTf)3 and
Fe(NO3)3$9H2O whose coordination anions prefer to be
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Chloro/fluoro-polyhaloalkylation of alkenes via iron photocatalysis. a 24 h reaction time. b 0.5 mmol Selectfluor was used. Isolated yields.
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exchanged by excess CnXmCOO
−, showed good catalytic

performance. In contrast, the efficiency of Fe(acac)3 and
Fe(OAc)3$nH2O was unsatisfactory, probably resulting from
the stagnant ligand exchange between CnXmCOO

− and acac−/
OAc− (Fig. 4c). Moreover, the fact that only when Fe(OTf)3, L2
and CnXmCOO

− are all present under the irradiation of blue
light, can the iron(II) intermediate be observed, was revealed
by UV-Vis experiments (Fig. 4d and S29†).
© 2024 The Author(s). Published by the Royal Society of Chemistry
To quickly determine the possible structure of iron(III) and
CnXmCOO

−-based light-harvesting species, DFT calculations
were carried out (Tables S1 and S2†). As shown in Fig. 5a, the
suitable coordination of L2 and CH3CN to Fe(CF3COO)3 (IntA)
to form IntB is thermodynamically favorable (DG = −20.8 kcal
mol−1), which also shows an obvious absorption band at 454
nm and an effective LMCT between CF3COO

− and the iron(III)
center in its excited state (Fig. S21–S24†). This result revealed
Chem. Sci., 2024, 15, 19936–19943 | 19939



Fig. 4 Mechanistic studies. (a) Necessity of continuous blue light irradiation. (b) The first-order rate dependency on Fe(OTf)3/L2 of the reaction.
(c) The comparision of various iron(III) salts. (d) UV-Vis studies on the iron photocatalysis.
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that CH3CN served as the second ligand to construct IntB. The
ESI-HRMS experiment also identied the real existence of IntB
under the standard conditions (Fig. S34†). Given that some
alkenes were equipped with the ester scaffold whose coordi-
nation capability in comparison to CnXmCOO

− and nitriles
should not be ignored, IntC as a possible LMCT-light-har-
vesting species could not be excluded. In contrast, the electron
withdrawing inductive effect of the Cl group weakens the
structural stability of IntD, potentially causing the low effi-
ciency of producing CnXm radicals. Furthermore, we compared
the performance of alkene 1 and 43 in different solvents such
as CH3CN, dichloromethane (DCM), acetone and CCl3CN to
prove the necessity of the second ligand for the activation of
inert CnXmCOO

− (Fig. 5b). Due to the fact that there is no
19940 | Chem. Sci., 2024, 15, 19936–19943
coordination effect between the iron(III) catalyst and DCM/43,
the chloro-triuoromethylation of 43 under the condition of
DCM as solvent was inefficient (entry 1). By contrast, replacing
DCM with acetone obviously enhanced the yield of 16 (entry 2).
The similar reactivities of 43 in CH3CN and CCl3CN solvent
explained the possibility that IntD truly served as alternative
iron and CnXmCOO

−-based light-harvesting species in the
absence of acetonitrile (entries 3 and 4). We also studied the
relationship between the nal yields of 16 and the amounts of
adscititious CH3CN (Fig. 5c). With the increase of the equiva-
lent of CH3CN, the desired reactivity for chloro-tri-
uoromethylation gradually improved, conrming that
CH3CN is the more efficient second ligand than CCl3CN
(Fig. S33†).
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 Identification of iron and CnXmCOO−-based light-harvesting species. (a) DFT calculations on iron and CnXmCOO−-based light-harvesting
species. (b) Experimental evidence for CH3CN/CCl3CN as the second ligand. (c) CH3CN as the second ligand to promote the reaction.
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Conclusion

In conclusion, we have developed a general and practical method
in which dual ligand-enabled iron photocatalysis was leveraged for
the activation of halogen-containing carboxylates under blue light
conditions, thus achieving the chloro/uoro-polyhaloalkylation of
non-activated alkenes with broad functional group compatibility.
Mechanistic studies revealed that the most likely real iron and
CnXmCOO

−-based light-harvesting species is assembled by the
external dual ligand—OMe/CF3-substituted bipyridine and aceto-
nitrile/trichloroacetonitrile. Extending this strategy to the activa-
tion of more inert bulk chemicals is underway in our laboratory.

Data availability

The data supporting this article have been included as part of
the ESI.†
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N. Rodŕıguez and L. J. Goossen, Chem. Soc. Rev., 2011, 40,
5030–5048; (c) J. D. Weaver, A. Recio, A. J. Grenning and
J. A. Tunge, Chem. Rev., 2011, 111, 1846–1913; (d) Y. Wei,
P. Hu, M. Zhang and W. Su, Chem. Rev., 2017, 117, 8864–
8907; (e) X. Li, T. Yang, J. Li, X. Li, P. Chen, Z. Lin and
G. Liu, Nat. Chem., 2023, 15, 862–871.

4 (a) Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder,
D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé,
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