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Securing optimal work functions for two-dimensional (2D) nanomaterials in Organic Light-Emitting Diodes

(OLEDs) is crucial for enhancing the internal quantum efficiency of a device. However, the conventional

approach to material discovery, which relies on empirical methods and iterative experimentation, is often

time-consuming and inefficient. Here, we propose a target-driven material design framework that

combines high-throughput virtual screening and interpretable machine learning (ML) to accelerate the

discovery of transparent OLED anode materials. We developed an ML regression model (CatBoost),

which accurately predicts work functions for 2D nanomaterials with a mean absolute error (MAE) of

0.20 eV. Remarkably, global and local model interpretation based on the SHapley Additive exPlanations

(SHAP) method revealed that the space group is the decisive factor in work function prediction for most

materials, while atomic-scale features of the material composition are the dominant factors for other

materials, refreshing the traditional understanding of the nature of material work functions. Certain space

groups (Pmn2_1 and P�6m2) tend to exhibit relatively higher work functions (>7 eV), while some other

space groups (P4/mmm and P�1) often present relatively lower work functions (<4 eV). Our methodology,

combining robust ML models, multi-condition screening, and DFT calculations, has identified

a promising 2D nanomaterial—PS. The material demonstrates exceptional conductivity (s > 106 S m−1),

high transparency (transmittance > 90%), and favorable work function (>5 eV), significantly outperforming

the commonly used indium tin oxide (ITO), emerging as a potential candidate for transparent OLED

anodes. This study provides new insights into the intrinsic mechanisms affecting the work function of 2D

nanomaterials, and provides a cost-effective design framework for identifying other high-performance

materials.
1 Introduction

The 2023 Nobel Prize in Chemistry was awarded to three
scientists who have made remarkable contributions to the eld
of quantum dots, which serve as the basic materials of quantum
light-emitting diodes (QLEDs). This honor further underscores
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the outstanding position of LED technology in the chemistry
and materials science elds. Organic light-emitting diodes
(OLEDs), another further development of LED technology, are
also signicant in the eld of display technology owing to their
unique self-luminous properties.1–3 When displaying dark or
black content, OLED screen pixels can operate independently
without the need for a backlight panel, whereas QLEDs require
constant backlighting, which leads to lower power consump-
tion, as compared with QLEDs.4–6 Furthermore, the efficiency of
OLEDs is not solely dependent on energy consumption; the
efficient transport of carriers within the device is another
important aspect. Accordingly, the OLED anode material plays
a crucial role. However, the design and use of OLED anode
materials face signicant challenges. Conventional transparent
indium tin oxide (ITO) conductive anodes exhibit excellent
electrical conductivities and high light transmittances;
however, the work function of deposited ITO thin lms is
typically low, ranging from 4.3 to 4.7 eV.7 This low work function
cannot match the highest occupied molecular orbital (HOMO)
energy level of most organic materials, leading to low hole
Chem. Sci., 2024, 15, 19375–19389 | 19375
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injection efficiency. Therefore, the improvement in energy
conversion efficiency is limited. Moreover, ITO is prone to
bending and breaking and its high manufacturing costs restrict
its widespread application in exible OLEDs.8

Researchers have replaced fragile ITO with silver nanowires,9

graphene,10–12 carbon nanotubes,7,13 conductive polymers,14 and
MXenes (transition metal carbides, carbonitrides, and
nitrides)15 to fabricate high performance transparent conduc-
tive lms. However, their work functions are relatively low, and
surface treatment is required to engineer their work functions
or improve their contact with organic materials. Two-
dimensional (2D) nanomaterials have emerged as the most
promising alternatives to ITO owing to their unique character-
istics.10,16 These materials possess a tunable band gap, high
carrier mobility, resistance to short-channel effects, high
transparency, and mechanical exibility, making them highly
attractive for next-generation electronics and optoelec-
tronics,17,18 particularly in the design and optimization of OLED
anode materials. Accordingly, the quest for 2D nanomaterials
with appropriate work functions has become imperative.19

Density functional theory (DFT) is crucial for the investiga-
tion of 2D nanomaterials, enabling the prediction of their
geometries, electronic structures, and various properties.20 DFT
possesses the capability to accurately predict the work function
of 2D nanomaterials, rendering it a valuable and indispensable
tool for guiding experimental investigations. For example, the
effects of atomic adsorption, applied electric elds, and layer
engineering on the work function of borophene can be effec-
tively investigated using DFT. Accordingly, researchers can ne-
tune the electronic structure and properties of these materials.
The optimization of electronic structure and properties is highly
benecial for enhancing the performance of electronic, opto-
electronic, and energy-related devices.21,22 However, there are
still some challenges in the study of 2D nanomaterials for tar-
geted applications. In particular, the search for structures with
optimal properties in large-scale target-driven material
screening faces challenges including vast search spaces and
intensive DFT calculations for numerous candidate structures.
This involves structural optimization and electronic properties
calculations. Furthermore, calculations are oen parallelized
and executed on high-performance computing systems;
however, the process is time consuming, resulting in reduced
efficiency. A recent study performed using DFT identied over
6000 2D nanomaterials that are anticipated to be exfoliated
from their layered bulk (2DMatpedia database).23 Traditional
experimental and computational methods cannot meet the
rapidly growing demand for target-driven 2D nanomaterial
research. Therefore, more efficient approaches to accelerate the
discovery of 2D nanomaterials beyond traditional DFT tech-
nology must be developed to unlock their full potential for
various technological applications.

Machine learning (ML), which enables the provision of
surrogate algorithms for material development, has gained
enormous attention in recent years for effectively predicting
physical and chemical properties, establishing the structure–
property relationships, and navigating the chemical space for
guiding chemical synthesis.24–26 Substantial progress has been
19376 | Chem. Sci., 2024, 15, 19375–19389
made in studying the work functions of materials using ML
techniques. Schindler et al. employed a physics-based surface
feature approach to develop an ML model (random forest
model) to rapidly predict the extremely low or high work func-
tions of surfaces.27 Hashimoto et al. used Gaussian process
regression and Bayesian optimization to quickly screen the top
ten materials with the highest and lowest work functions from
a database of 27271 materials using rst-principles simula-
tions.28 However, research focusing on the data-driven
modeling of the work function of 2D materials is still in its
infancy.29,30 Furthermore, material screening is closely related to
DFT calculations and ML algorithms, that is, it still relies on
DFT calculations. Unfortunately, the computational cost of DFT
calculations is signicant, though high-performance
computing resources are becoming increasingly available.
Intriguingly, recent studies have explored the combination of
ML algorithms with high-throughput computations to accel-
erate the discovery of materials with a target performance.26,31,32

However, the acquisition of datasets and training of ML models
still require a substantial amount of basic data. Additionally,
owing to the lack of effective descriptors, the accuracy of the
trained models relies heavily on the quality of the training set.

A novel target-driven material screening framework is
proposed for the rst time in this study to accelerate the
discovery of 2D nanomaterials with excellent performance and
specic work function values by incorporating high-throughput
virtual screening (HTVS) and ML techniques. The training set
consisted of 1681 AB-type 2D nanomaterials. An efficient ML
regression model was trained using structure- and composition-
based features to rapidly predict the work functions of 2D
nanomaterials. Global and local model interpretation results
based on the SHapley Additive exPlanations (SHAP) method
reveal that the space group is the decisive factor in predicting the
work functions for most 2D nanomaterials, while atomic-scale
features of the material composition (elemental radius, electron
affinity energy, ionization energy, etc.) are the dominant factors
for the other materials, which refreshes the traditional under-
standing of the nature of material work functions. Furthermore,
certain space groups (Pmn2_1 and P�6m2) tend to exhibit relatively
higher work functions (>7 eV), while some other space groups
(P4/mmm and P�1) oen present relatively lower work functions
(<4 eV). Finally, by combining the ML model with HTVS, which
consumes minimal time (z103 faster than DFT) and computa-
tional resources, 100 2D OLED anode candidate materials with
suitable work functions (>5 eV), excellent photoelectric proper-
ties, and high thermodynamic stabilities were identied from
more than 6000 2D nanomaterials in the 2DMatpedia database.
Further DFT calculations conrmed an excellent transparent
OLED anode candidate (PS) with transmittance > 90% in the
visible region and electrical conductivity > 106 S m−1, superior to
traditional ITO.

2 Computational details
2.1 Computational details

All geometric structure and electronic property calculations for
the investigated 2D nanomaterials were performed using the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Vienna ab initio simulation package (VASP). The Perdew–Burke–
Ernzerhof (PBE)33 exchange–correlation functional within the
framework of the generalized gradient approximation (GGA)34

was employed to describe the electronic interactions. Further-
more, a convergence criterion of 10−2 eV Å−1 was set for the
forces on each atom, and a total energy convergence criterion of
5 × 10−5 eV was used. The plane-wave cutoff energy for the
calculations was set to 500 eV. The k points were automatically
generated using the VASPKIT tool.35 The density was set to 2p ×

0.02 Å−1, according to the Gamma scheme, ensuring an
appropriate sampling of the Brillouin zone for accurate optical
property calculations. The optical transmittance was rst
investigated by calculating the frequency-dependent function.
The imaginary part of the dielectric function can be determined
using eqn (1).

3ab
ð2ÞðuÞ ¼ 4p2e2

U
lim
q/0

1

q2
�
X
c;v;k

2wkdðEc � Ev � uÞjhCje$qjvij2 (1)

where u represents the photon frequency, jhCje$qjvij is the
integrated optical transition from the valence state (v) to the
conduction state (c), e is the polarization direction of the
photon, and q is the electron momentum operator. The inte-
gration over k was performed by summing over special k-points
with a corresponding weighting factor wk.35 Considering the
Kramers–Kronig transformation,36 the real part of the dielectric
function can be obtained using eqn (2).
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where P is the principal value and h is the complex shi
parameter. The normalized transmittance (T(u)) can thus be
determined using the widely used formula shown in eqn (3).
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where L is the slab thickness in the simulation cell, 30 is the
permittivity of vacuum, and c is the speed of light.35

The calculation of the electrical transport properties employs
the semi-classical Boltzmann transport theory using the Boltz-
Trap2 soware.37 s was obtained by solving the Boltzmann
transport equation.

s ¼ e2

U

ð
sðkÞvðkÞvðkÞ



� vf 0ð3kÞ

v3k

�
d3 (4)

where e, U, 3k, s(k), v(k), and f 0 are the electron charge, volume
of the orthonormal cell, Fermi level, relaxation time, group
velocity, and Fermi–Dirac distribution, respectively. The relax-
ation time of electrons is calculated based on the deformation
potential theory.38 It can be expressed by the formula shown in
eqn (5).

s ¼ mm*

e
¼ 2ħ3C

3kBTm*E1
2

(5)

where h, kB, and m are respectively the reduced Planck constant,
the Boltzmann constant, and the mobility. The effective mass
© 2024 The Author(s). Published by the Royal Society of Chemistry
m*, the elastic constant C, and the deformation potential
constant E1 are respectively expressed by:38

m* = ħ2/(v2E/vk2) (6)

C = [v2E/v(Da/a0)
2]/S0 (7)

E1 = vEedge/v(Da/a0) (8)

where E1,Da, S0, and Eedge are respectively the total energy of the
cell under uniaxial strain, the change in the lattice constant
relative to the relaxed lattice constant, the area of the orthog-
onal cell on the surface, and the shi of the conduction band
minimum (CBM) and valence band maximum (VBM).

2.2 ML model evaluation

Four indices, namely, R2, RMSE, MSE, and MAE, were chosen to
estimate the prediction errors to evaluate the performance of
each ML model, as shown in eqn (9)–(12):

R2 ¼ 1�
Pm
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�
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i

�2
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i � yÞ2

(9)
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MAE ¼ 1

m
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where m is the total amount of data, yML
i is the ML-predicted

value for sample i, yDFTi is the DFT-calculated value for sample
i, and �y is the average DFT-calculated value. An R2 value closer to
1 indicates the higher prediction accuracy of the ML model.
RMSE, MSE, and MAE were used to measure the loss between
the ML-predicted and DFT-calculated values. A small loss
indicates high accuracy.

2.3 ML model interpretation

To evaluate the contribution of each feature to the target vari-
able (work function) and improve the interpretability of the
model, the SHAP method, developed by Shapley in the eld of
game theory, was used to calculate the SHAP value of each
feature for the best ML model,39 which is the weighted average
of all possible differences. The SHAP value for feature x (out of n
total features), given the prediction p, can be calculated using
eqn (13).

4xðpÞ ¼
X

S4N=X

jSj!ðn� jSj � 1Þ!
n!

ðpðSWxÞ � pðSÞÞ (13)

where n represents the total number of features, S is the subset
of all features with feature x, p(SWx) denotes the value predicted
by the selected ML model considering feature x, and p(S)
Chem. Sci., 2024, 15, 19375–19389 | 19377
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denotes the prediction without considering feature x. The
differences among all possible subsets of S4n were calculated
because of the dependency of the effect of withholding a feature
on other features in the chosen ML model. The SHAP value of
each feature quanties its positive or negative contributions;
a feature with a higher absolute SHAP value has a greater
contribution to the prediction result.
3 Results and discussion

The proposed target-driven material-screening framework is
shown in Fig. 1, and consists of four consecutive parts. (i) Data
set preparation. An initial dataset consisting of 1681 different
2D nanomaterials from the C2DB database, which were ob-
tained using the lattice decoration of known crystal structure
prototypes, was used to address the lack of datasets in the eld
of 2D nanomaterials. Subsequently, the selected ML models
were employed to t or train the dataset with the work function
of the materials serving as the target property. (ii) Feature
engineering. The appropriate features, that is, vectors of
uniform length, for 2D nanomaterials with specic work func-
tion values must be found for input into the ML model. In this
study, the complete initial dataset was characterized using
feature generation, resulting in a series of composition- and
structure-based features representing each compound. Aer
generating these features, the size of the input feature vector
was further reduced using a series of feature selection tech-
niques to avoid the curse of dimensionality. The optimal
features obtained using feature engineering were used for the
subsequent ML model training. (iii) Model inference. The
performance of several ML models was compared during model
development using the above-mentioned structure- and
composition-based features as the only known inputs to the
regression models. Once the best ML model was selected,
a random grid search method was used to adjust the hyper-
parameters of the model to achieve optimal performance. The
SHAP method was then used to enhance the model
Fig. 1 Target-driven material screening framework.

19378 | Chem. Sci., 2024, 15, 19375–19389
interpretability. Additionally, the importance of the features
was ranked based on the optimal model to determine the
features that signicantly affect the work function values of 2D
nanomaterials, and the effects of these features on the work
function values of individual materials were analyzed. (iv)
Model application. Aer building an ML model to predict the
work function of 2D nanomaterials, an effective screening
strategy was proposed to identify materials with specic work
function values in a 2D nanomaterial database as an application
of a high-throughput material discovery process.
3.1 Dataset preparation

This study employed two open-source databases of 2D mate-
rials, namely C2DB and 2DMatPedia. C2DB serves as the source
of our training set for our predictive model, thanks to its
extensive collection of work function values. Meanwhile, the
2DMatPedia was employed as a resource for high-throughput
screening, expanding the scope of our analysis and discov-
ering materials with the desired work function.

The C2DB database integrates the comprehensive properties
of more than 4000 2D nanomaterials, including structural,
elastic, thermodynamic, electronic, magnetic, and optical
properties. Calculations of thematerial properties in C2DB were
performed using state-of-the-art DFT and many-body methods,
following a high-throughput, semi-automated workow. The
Python-based atomic simulation environment (ASE) was used to
manage the workow, and all DFT and many-body calculations
were performed using the projected augmented wave (PAW)
code GPAW (Table S1†).40,41

The 2DMatPedia database is a large-scale 2D material data-
base that includes more than 6000 monolayer structures, which
were obtained using top-down and bottom-up discovery
processes.23 In the top-down approach, the inorganic bulk
crystals in the Materials Project dataset are screened by
a topology-based algorithm for layered structures, which are
then theoretically exfoliated to 2D monolayers. Via systematic
© 2024 The Author(s). Published by the Royal Society of Chemistry
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elemental substitution of these 2D monolayers, that is, the
bottom-up approach, new unary and binary 2D materials are
generated. Additionally, the structural, energetic, and electronic
properties of all the 2D nanomaterials in the 2DMatPedia
database were calculated using the same automation process
and parameter settings, providing a reliable database for
material screening, data mining, data analysis, and articial
intelligence applications. Detailed computational parameters
are provided in Section S1.1 in the ESI.†

High-quality and diverse input datasets are crucial for the
development of efficient ML models. In this study, 1681 2D
nanomaterials were selected from the C2DB database as the
Fig. 2 (a) Work function violin plots of different types of 2D compounds
median and extreme values, respectively. The red dots in the middle an
respectively. (b) Box plots for outlier processing. Statistical histograms of
Elastic net regression (EN), (f) Bayesian regression (BSR), (g) random fore
and (j) category boosting (CatBoost) scatter plots of the fitting effects
TestSetRMSE are the RMSE values of the models on the training and tes

© 2024 The Author(s). Published by the Royal Society of Chemistry
initial dataset. Fig. 2a illustrates the distributions of the work
functions for different types of compounds. Each violin plot
exhibits a unimodal and symmetric shape, indicating a rela-
tively concentrated and symmetric distribution of the work
functions for each type of compound. Except for the oxides, the
average work functions of the other series of compounds were
approximately 5 eV. Moreover, the oxide violin plot exhibited
the highest median, suggesting that this compound type likely
possesses a relatively higher work function than the other types
of compounds. In contrast, the halide violin plot exhibited
longer extremal lines and error bars, indicating the presence of
signicant deviations or outliers in their work function values.
. The black horizontal lines in the middle and at the ends represent the
d the length of the vertical red line represent the mean and variance,
the work function values (c) before and (d) after outlier processing. (e)
st regression (RFR), (h) XGBoost, (i) gradient boosting regression (GBR),
for the 29 descriptors and work function values; TrainSetRMSE and
t sets, respectively.

Chem. Sci., 2024, 15, 19375–19389 | 19379
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Outliers were treated by combining boxplots and subjective
judgments to ensure the robustness of the model. As depicted
in Fig. 2b, data points exceeding the specied threshold were
removed, reducing the dataset size to 1637 samples. Fig. 2c and
d show the statistical histograms of the work function before
and aer the removal of outliers, respectively. The work func-
tion values aer treating the outliers exhibited a Gaussian
distribution with an average value of approximately 5 eV. The
highest work function value frequency was observed at 4.5–5 eV,
encompassing approximately 50% of the data. Information
regarding the properties of the elements was obtained from
WebElements (https://www.webelements.com/). Furthermore,
all initial indicator data was standardized.

3.2 Descriptors

The design of a set of descriptors to predict the work function of
AB-type 2D nanomaterials is equivalent to creating a set of
quantitative expressions. These expressions should not only
uniquely dene each material in the dataset but should also be
correlated with the fundamental physical and chemical prop-
erties that inuence the target variable (work function).
Composition-based features were sought to obtain features that
contain prior knowledge of the materials without being overly
complex.42 This is because the physical and chemical properties
of the constituent atoms largely determine the properties of the
corresponding materials. These features directly affect the
macroscopic properties of the molecular and crystal structures.
The effectiveness of this strategy, that is, using such atomic-
scale features in constructing ML models, has already been
validated in the rapid and accurate prediction of adsorption
energy, band gap, and optical properties.43,44 These atomic-scale
features include atomic radius, electronegativity, ionic radius,
electron affinity energy, and ionization energy.43,44 Therefore,
atomic-scale features were notably considered in the feature
generation process. As shown in Table 1, 29 descriptors,
including various features reecting the atomic size, geometric
Table 1 29 Feature descriptors and symbols of the initial dataset for
the investigated AB-type 2D nanomaterials. A and B represent the first
and second elements in the chemical formula, respectively

Symbol Feature

S Space group
SN Space group number
AN/BN Element amount of A or B
AIP/BIP Ionization energy of A or B
ARa/BRa Atomic radius of A or B
ARi/BRi Ionic radius of A or B
AP/BP Density of A or B
AEA/BEA Electron affinity energy of A or B
ARC/BRC Covalent radius of A or B
AE Elastic modulus of A
Aq/Bq Conductivity of A or B
Ac/Bc Specic heat capacity of A or B
AH/BH Heat of evaporation of A or B
ATB/BTB Boiling point of A or B
ATM/BTM Melting point of A or B
AV/BV Atomic volume of A or B

19380 | Chem. Sci., 2024, 15, 19375–19389
features, physical properties, and thermal properties, were
selected to construct the initial feature set in this study.

The feature generation process primarily leverages the
Python Materials Genomics (pymatgen),45 a robust Python
library that is intimately integrated with the Materials Project.
This library facilitates accessing and processing of a vast
amount of data stored in the Materials Project database. The
periodic properties of elements (atomic radius, ionic radius,
electron affinity energy, etc.) were obtained via the Element or
Species class in pymatgen. Furthermore, script customization
was utilized to acquire specic attributes like space group,
element amount, density, and elastic modulus, thanks to the
customization capability of the above-mentioned process,
enhancing the exibility in feature generation.
3.3 Model inference

To address the challenges posed by the dispersed characteris-
tics of our dataset, we strategically selected six leading models
that span the domains of ensemble learning, probabilistic
modeling, and regularized linear modeling. Furthermore, in
order to place a higher weight on larger errors and achieve
a linear perspective on the overall predictive accuracy, Root
Mean Square Error (RMSE), Mean Square Error (MSE), and
Mean Absolute Error (MAE) were utilized as three error metrics
of model evaluation.46 In addition, the coefficient of determi-
nation (R2) was employed to effectively quantify the t effect of
models on the input features and target variable.47

The dened 29 descriptors were used as the features for six
ML models, namely, XGBoost, elastic net regression (EN),
gradient boosting regression (GBR), Bayesian regression (BSR),
category boosting (CatBoost), and random forest regression
(RFR). The entire dataset was randomly divided into training
and test sets at a 4 : 1 ratio. The training set was used to t the
relationship between the features and work function values,
whereas the test set was used to evaluate the performance of the
models. Four indices, namely, R2, RMSE, MSE, and MAE, were
used to describe the prediction accuracy of the models. Fig. 2e–j
show the tting effects of the true and predicted values of the six
ML models under the initial parameters, as well as the RMSE
values of each model on the training and test sets. The linear
models (EN (Fig. 2e) and BSR (Fig. 2f)) exhibited a poor tting
performance, indicating that the relationship between the 29
descriptors and work function values was nonlinear and rela-
tively complex. The RFR model (Fig. 2g) exhibited an improved
tting performance, as compared with the EN and BSR models,
but the prediction accuracy was still unfavorable (TestSet RMSE
value of 0.861). The tting effects of XGBoost (Fig. 2h), GBR
(Fig. 2i), and CatBoost (Fig. 2j) on the 29 features and work
function values were relatively ideal and superior to the tting
effects of the rst three models (TestSet RMSE values of 0.805,
0.851, and 0.845, respectively). Interestingly, all three models
were based on gradient boosting algorithms, which excel in
handling complex data and nonlinear relationships, thereby
enabling accurate data tting and target prediction. They can
automatically manage nonlinear relationships between features
and enhance model performance through ensemble learning.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Moreover, these models include mechanisms, such as regula-
rization and pruning, to prevent overtting. The complexity of
the model can be controlled by adjusting the parameters.

3.4 Feature engineering and parameter optimization

The Pearson correlation coefficients (detailed in Section S1.2 in
the ESI†) between every pair of features were computed in this
study (Fig. 3a). Combined with the importance ranking of
features based on SHAP values (Fig. 3b), which also enhances
the global interpretability of the model (detailed in the Model
interpretability Section), features with correlation coefficients >
0.8 and low importance were then eliminated. Removing highly
correlated features not only reduces the model training time,
allowing for the testing of more hyperparameters at a given
computational cost, but also creates a more stable and gener-
alized model. Finally, a simplied subspace containing 24
features was generated (Table S3†). Furthermore, to minimize
any potential order-related correlations or biases, the shuffle
function (detailed in Section S1.3 in the ESI†) in Python was
used to shuffle the dataset. This process effectively randomizes
the order of elements within the dataset, eliminating any
inherent ordering or patterns that may inuence subsequent
operations. The dimensionality of the features was successfully
Fig. 3 (a) Heat map of the Pearson correlation coefficient matrix betwee
Three-dimensional (3D) spatial visualization of (c) the original data and
Feature2, and Feature3 represent the values of the corresponding thre
material sample point colors represent the Feature1 values.

© 2024 The Author(s). Published by the Royal Society of Chemistry
reduced to 3D (Fig. 3c and d) and 2D (Fig. S1†) by employing the
t-distributed stochastic neighbor embedding (t-SNE) algorithm
(detailed in Section S1.4 in the ESI†). The spatial distributions
of the input variables were visualized aer the dimensions were
reduced. The dataset showed signicant clustering aer data
processing and feature engineering (Fig. 3d), as compared to
the original data (Fig. 3c). Furthermore, a larger number of
sample points was observed, as shown in Fig. 3d. This can be
attributed to the effective removal of noise and redundant
information, leading to an increase in data concentration and
regularity. Consequently, the sample points exhibited a tighter
distribution, indicating a more organized and structured data-
set, which helps themodels to learn the essential characteristics
of the data better, improving both the prediction accuracy and
generalization ability of the model. A random grid search
method was employed to optimize the XGBoost, CatBoost, and
GBR models. The selection of the hyperparameters focused on
four key parameters, as detailed in Table S4.† The number of
iterations was set to 5000 to ensure efficient exploration of the
hyperparameter space, allowing for the identication of optimal
hyperparameters within a reasonable timeframe.

Aer the optimal hyperparameters were obtained, the
models were retrained and evaluated on the test set. The results
n the selected features. (b) Importance ranking of the top 20 features.
(d) the data after feature engineering and data processing. Feature1,
e features of the dataset after dimensionality reduction. The different
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Table 2 RMSE, MAE, MSE, and R2 values from CatBoost, GBR, and
XGBoost models for the work function prediction of AB-type 2D
nanomaterials on the training and the test sets after parameter
optimization

Model

RMSE (eV) MAE (eV) MSE (eV) R2

Train Test Train Test Train Test Train Test

CatBoost 0.03 0.28 0.02 0.20 0.00 0.08 0.99 0.92
GBR 0.02 0.31 0.05 0.22 0.00 0.09 0.99 0.90
XGBoost 0.09 0.30 0.04 0.21 0.00 0.09 0.98 0.90
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showed that the CatBoost model exhibited the best perfor-
mance on the test set and reached the expected performance
level with an MAE, RMSE, and R2 of 0.20 eV, 0.28 eV, and 0.92,
respectively (Fig. 4a–c and Table 2). Furthermore, 20 AB-type 2D
nanomaterials were randomly selected from the dataset, and
the ML-predicted work functions (CatBoost) were compared
with the corresponding DFT-calculated results in the C2DB
dataset. The results demonstrated that the ML-predicted work
function values agreed well with the DFT-calculated values, with
an average relative error of only 0.29% (Fig. S3†). Moreover, the
ML model showcases an accelerated capability for predicting
the work function of 2D nanomaterials, achieving speeds
approximately three orders of magnitude swier than those
achieved by DFT calculations. To further validate the stability
and generalization ability of the CatBoost model, 5-fold cross
validation was conducted using RMSE as the performance
evaluation indicator. The results demonstrated that the model
was stable for different data subsets (Fig. S2†), conrming its
strong stability and generalization ability. Therefore, CatBoost
Fig. 4 Fitting effects of the (a) CatBoost, (b) XGBoost, and (c) GBRmodel-
of the CatBoost model predictions for (d) Br6Sb2, (e) Mo2Te4, and (f) Au2B
for the three materials. The bar size represents the SHAP value. The base
output value f(x) represents the predicted work function of the three ma

19382 | Chem. Sci., 2024, 15, 19375–19389
can establish nonlinear mapping between the input features
and work function values, predict unexplored new datasets, and
assist in the high-throughput screening of materials with
specic work function values.
3.5 Model interpretability

Explaining the explicit relationship between the features and
output of a black-box ML model is challenging. The SHAP
predicted and true work functions on the test set. Individual SHAP plots
r4. The SHAP positive (red) and negative (blue) feature weights are given
value is the mean value of the work function in the training data. The
terials.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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method, which has emerged as an effective solution for unrav-
eling this complex relationship, can provide insightful expla-
nations. SHAP not only ranks feature importance, but also
reects the positive and negative contributions of each feature,
providing both global (feature importance) and local (individual
instance) interpretability for the best ML model. SHAP
comprehensively measures the feature importance and uses
game theory to explain the contribution of each feature to the
output of the ML model.39 Each feature is assigned a unique
weight in the global model interpretation. Fig. 3b summarizes
the SHAP explanations for the CatBoost model and shows the
top 20 features. Each point corresponds to a compound in the
dataset; red and blue indicate higher and lower feature values,
respectively. The negative and positive contributions of each
feature were identied using the SHAP value. S is clearly the
most important feature, in whichmost of the higher values have
a signicant positive impact on the model output, whereas
several lower values have a negative inuence. To further
explain the inuence of the selected features on the work
function output of the compound, the CatBoost model provides
individual SHAP plots for predicting several different types of
2D nanomaterials, as shown in Fig. 4d–f. The base value is the
average output value of the ML model in the whole training set.
The positive and negative contributions are represented by red
and blue arrows, respectively, corresponding to the inuence of
different features on driving the work function value away from
and closer to the base value. The contribution of the features
increases with the length of the corresponding arrow. The local
interpretation results show that each feature plays a different
role in different materials. For example, ATB has a negative
impact on Mo2Te4 with a SHAP value of 4636.0, whereas it has
a positive impact on Br6Sb2 and Au2Br4 with SHAP values of 58.8
and 2856.0, respectively. Therefore, once the total positive
contributions of all the features are higher than the negative
contributions, the nal predicted value of the work function
value is greater than the base value. This indicates that the work
function values are the result of the synergistic interplay of
multiple factors rather than being solely determined by a single
factor. Furthermore, the impact of a single factor on the nal
work function value is not xed and can exert either a positive or
negative inuence.

The space group is the most important feature (Fig. 3b)
because it describes the positions and symmetry of atoms in the
crystal, including geometric structural information such as the
lattice parameters, cell shape, and locations of atoms in the
lattice. Symmetry within a crystal can affect the band structure,
density of states, and electron wave function of the crystal,
thereby exerting a signicant inuence on the work function
prediction.48

Previous explorations of the intrinsic mechanisms of work
function variations for a nanomaterial primarily focused on the
properties of systems, including changes in the surface dipole
and intrinsic bulk electronic structure of the material, as well as
their effects on the vacuum and Fermi levels.22,49,50 However,
investigations focusing on the inuence of the properties of the
constituent atoms on the work function of 2D nanomaterials
are rare, particularly for AB-type 2D nanomaterials. Herein,
© 2024 The Author(s). Published by the Royal Society of Chemistry
apart from the above-mentioned material-based feature, that is,
the space group, a series of composition-based features at the
atomic scale, such as atomic radius, electron affinity energy
(EA), and ionization energy (IE), were conrmed to play vital
roles in work function prediction by employing local and global
feature analyses based on the SHAP method.

The elemental radius (atomic, ionic, and covalent radius)
and atomic volume are also crucial features. They reect the size
of an atom or ion and directly affect the corresponding lattice
morphology, arrangement of atoms, distribution of electron
clouds, bond length, and bond strength, thus inuencing the
work function prediction of 2D nanomaterials. In particular, the
atomic radius refers to the average distance between the atomic
nucleus and the outermost electrons in the electron cloud. This
is related to factors such as the charge number of the atomic
nucleus, number of electron layers, arrangement of atoms, and
distance and interaction between atoms. A larger atomic radius
leads to a looser lattice structure and more relaxed atomic
arrangement, thereby inuencing the defect density, surface
activity, and mechanical and chemical properties of the mate-
rial, ultimately impacting the work function of the material.51

The covalent radius, which is half of the distance between two
identical atomic nuclei bound by a covalent single bond,
reects the strength and length of the covalent bond.52 The
length and strength of the chemical bond directly impact the
work function prediction of a material. Shorter chemical bonds
result in an increased overlap of electron clouds, stronger
interactions, and a higher energy level for valence electrons.
This, in turn, affects the electronic interactions within the
material, electron state density, and band structure, ultimately
affecting the work function of the material. The ionic radius
affects the distance between ions in amaterial with ionic bonds.
The electrostatic Coulomb force, which is inversely proportional
to the square of the ionic distance, plays a crucial role in
internal interactions. The interaction energy increases with
a decreasing ionic distance. This change in the ionic radius
directly affects the interionic distance, inuencing the interac-
tion energy within the ionic bonds. The interionic distance
decreases with a decreasing ionic radius, leading to an increase
in the interaction energy. Consequently, the material exhibits
a stronger attraction to electrons on its surface.53

Additionally, atomic volume is also an important feature in
the work function of 2D nanomaterials. Both the atomic volume
and elemental radius are physical quantities used to describe
the size of an atom or ion. However, the underlying inuence
mechanisms of the two features on the work functions of
materials are quite different. The elemental radius reects the
size of atoms in a crystal structure and the length and strength
of covalent or ionic chemical bonds, thereby affecting the
surface chemical properties of the materials. In contrast, the
atomic volume mainly reects the space occupied by an atom,
which affects the density of the material, shielding effect of
surface electrons, and strength of the chemical bonds. A larger
atomic volume generally lowers the density of the material,
decreasing the shielding effect experienced by the surface
electrons. Consequently, less energy is required for surface
Chem. Sci., 2024, 15, 19375–19389 | 19383
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electrons to escape from the material surface, leading to a lower
work function.

The IE and EA of an element are closely related to its “elec-
tron-donating” and “electron-attracting” abilities.22 Therefore,
they signicantly affect the electron conguration of the system,
resulting in variations in the Fermi level, thus affecting the work
function (detailed in Section S1.5 in the ESI†). This conclusion
was conrmed by a recent study, in which the work function of
adatom-borophene (M/BBP) systems (M = Li–Cs; Be–Ba) is
nearly linearly dependent on the IE, with R2 values of 0.80 and
0.91, respectively. However, the IEs and EAs of the constituent
atoms are not the only factors contributing to the work function
of the system. Apart from the IE or EA, both the structure-based
and a series of composition-based features are key factors that
affect the work function. This, in turn, indicates the relatively
poor linear relationship between the work functions of M/BBP
and IE (R2 = 0.80–0.91), that is, multiple factors, including
material-based and a series of composition-based features,
affect the work functions of nanomaterials.

The boiling and melting points of the constituent atoms of
compounds have an intrinsic relationship with the electronic
band structure of the material and surface chemical environ-
ment. These factors play signicant roles in predicting the work
function. Materials with larger band gaps generally exhibit
higher boiling and melting points. This is because the electrons
within materials require higher energy to move; thus, higher
temperatures are needed to overcome the energy barrier and
transition to higher energy states, resulting in the transition of
materials from a solid to a gas or liquid phase. Therefore, the
boiling and melting points provide important information
regarding the electronic activity and electron transport proper-
ties of a material for work function prediction. Moreover, the
boiling and melting points reect the characteristics of the
material surface. The energy of the surface of a material, as
compared with the bulk phase, is higher, and the interactions
between surface atoms or molecules and the external environ-
ment are more complex (such as adsorption and catalytic
reactions), which also have an important impact on the work
function prediction. In summary, the boiling and melting
points, both of which are crucial factors in work function
prediction, provide valuable insights into the electronic prop-
erties and surface characteristics of materials.
3.6 OLED anode candidate materials

The contact between the electrodes and organic materials in
OLED devices is a key factor inuencing device performance.
Therefore, the selection of suitable electrodematerials is crucial
to achieve high-performance OLED devices. Fig. S4a† illustrates
the luminescence mechanism of OLEDs, where holes are
injected from the Fermi level of the anode into the HOMO level
of the hole transport layer (HTL).54,55 The injection efficiency
depends on the degree of matching between the work function
of the anode and the HOMO level of the HTL; a higher matching
degree results in a lower potential barrier at the interface,
leading to an increased hole transmission efficiency. Most
organic materials currently used in OLED devices have HOMO
19384 | Chem. Sci., 2024, 15, 19375–19389
levels greater than 5 eV (Fig. S4b†).56,57 Therefore, anode mate-
rials with considerable work function values are required. An
ML model (CatBoost) was employed for the high-throughput
screening of 2D nanomaterials in the 2DMatPedia database to
identify the best OLED anode candidate materials.

The screening process was semi-automated based on
python. Furthermore, the screening conditions were primarily
based on the theoretical work function, band gap, thermody-
namic stability, and strippability of the materials (Fig. 5a). All
the AB-type compounds were selected from the database in the
rst round of screening. These compounds have a large chem-
ical space, relatively simple chemical composition, and are easy
to synthesize and characterize, making them convenient for
subsequent research. The rst round of screening yielded 4066
AB-type 2D nanomaterials. The thermodynamic stability was
regarded in the second round of screening as a key consider-
ation, and the screening criterion was set to a decomposition
energy of <0.1 eV per atom. This criterion was set based on the
fact that the decomposition energies of the 59 2D nano-
materials synthesized in the experiment were all <150 meV per
atom (Fig. S5†).58–60 The second round of screening yielded 1296
stable AB-type 2D nanomaterials. The band gap was the main
consideration in the third round of screening, and the
screening criterion was set to a band gap of <3 eV. Materials
with a band gap in this range usually have relatively good
conductivity and can effectively inject holes into organic mate-
rials (a more detailed discussion on conductivity follows). The
third round of screening yielded 1136 stable AB-type 2D nano-
materials. Furthermore, the third round of screening revealed
that the P�3m1 space group was prevalent among the stable
compounds (Fig. 5b). This indicates that this type of structure is
relatively stable in AB-type 2D compounds, which may be
related to the symmetry of the crystal, atomic arrangement, and
bonding method and is irrelevant to the band gap. The
screening criterion was set to work function values > 5 eV owing
to the above-mentioned work function requirement for HTL
materials (Fig. S4b†). The fourth screening round yielded 477
2D candidate materials. Finally, aer sorting by exfoliation
energy, 100 candidate OLED anode materials were obtained.
These materials mainly include chalcogenides, halides, and
oxides, with work functions of approximately 6 eV.

In addition to the appropriate work function, the trans-
parency and conductivity of the OLED anodes stand as pivotal
performance metrics. An anode with exceptional transparency
and conductivity is anticipated to propel the device to its
optimal performance. However, there is oen a nuanced equi-
librium between the transparency and conductivity within
prospective materials. Enhancing a material's conductivity
typically leads to reduced transparency, given that materials
with high conductivity tend to possess signicant light
absorption capabilities. Conversely, diminishing the material's
thickness bolsters its transparency, but an overly thin material
can hinder conductivity by interrupting the electron transport
pathway.61 Therefore, striking a harmonious balance in the
design and optimization of OLED materials is crucial, one that
fosters robust conductivity while maintaining sufficient
transparency.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 (a) High-throughput screening flow in the 2DMatPedia database. Statistical plots of (b) the space group distribution of various stable 2D
materials with different band gap ranges and (c) work functions (f) of 100 candidate materials.
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Following the exclusion of systems containing d-block, f-
block, and precious metal elements, which detrimentally
impact OLED performance and escalate costs, we assessed the
optical properties of ten alternative materials (Table S5†).
Fig. 6a and b reveal that the transmittances of nine candidates
exceed 85%, underscoring their considerable promise as anode
materials for OLED devices, particularly in terms of trans-
parency. When appraising materials for conductivity, the band
gap offers only a glimpse into their conductive properties, as
narrower band gaps are conducive to electron migration to the
conduction band. Therefore, our attention centered on two
exemplary 2D materials, PS (Fig. 6a) and BiCl3 (Fig. 6b), for
meticulous electrical conductivity analyses. This entailed
calculating the conductivity-to-relaxation time ratio (s/s) via
Boltzmann transport theory and deducing s by evaluating the
elastic constants, deformation potential constants, and effective
mass through deformation potential theory (Table S6†). While
BiCl3 presents a conductivity slightly lower than that of the
commonly utilized ITO (s > 105 S m−1), PS exhibits a remarkable
10-fold increase (ranging from 106 to 107 S m−1, Fig. 6d) in
conductivity compared to the frequently used ITO, showcasing
outstanding conductivity capability. Collectively, considering
transparency, conductivity, and work function, PS demonstrates
signicant potential for application as an OLED transparent
anode.

Based on the global SHAP model interpretation results
(Fig. 3b), it is evident that for the entire dataset, the space group
is the most important feature and plays a decisive role in work
function prediction. To elucidate the decision mechanisms
related to space groups in work function prediction, we
analyzed the frequency distribution of space groups among
© 2024 The Author(s). Published by the Royal Society of Chemistry
materials generated during high-throughput screening. Fig. 6e
shows the distribution of space groups for 2D nanomaterials
with work functions greater than 7 eV and less than 4 eV. Red
and blue represent the high and low work function regions,
respectively. Remarkably, among the six space groups with the
highest frequency distribution, P�3m1 and C2/m appear in both
the high (red) and low (blue) work function regions with
considerable frequencies. In contrast, Pmn2_1 and P�6m2 show
higher frequencies in the high work function regions, while P4/
mmm and P�1 are more frequent in the low work function
regions. Therefore, we can deduce that for materials exhibiting
space groups P�3m1 and C2/m, the space group does not serve as
a decisive factor for their work function. Conversely, for mate-
rials with space groups Pmn2_1 and P�6m2, as well as P4/mmm
and P�1, the work function is a critical factor. To further explore
this observation and validate the global analysis conclusions,
a local SHAP-based model interpretation was performed on
randomly selected materials BeI2 (P�3m1), Al2Se5 (C2/m), TaTe2
(P�6m2), GeSe (Pmn2_1), Be2Cd (P4/mmm), and TaI5 (P�1) from the
high-throughput screening results. Clearly, the space group
signicantly inuences work function prediction in TaTe2
(P�6m2), GeSe (Pmn2_1), Be2Cd (P4/mmm), and TaI5 (P�1)
(Fig. S6c–f†), consistent with the global analysis results (Fig. 3b).
Conversely, atomic radius, covalent radius, electron affinity,
and boiling point are the most signicant contributors to work
function prediction in BeI2 (P�3m1) and Al2Se5 (C2/m) (Fig. S6a
and b†), conrming that these features, rather than the space
group, are the primary factors for predicting work functions,
which is inconsistent with the global interpretation (Fig. 3b).

Combining the local and global interpretations with the
frequency distribution of space groups for these materials, we
Chem. Sci., 2024, 15, 19375–19389 | 19385



Fig. 6 Top and side views of (a) BiCl3 and (b) PS structures. Trans-
mittances of (c) BSe, AlS, BrO3, BS (P�3m1), PS, BiCl3, BiF4, BS (P�6m2),
Bi2S3, and ClO2 in the visible region. (d) The electrical conductivities (s)
of different carrier concentrations for PS and BiCl3 along the x-axis at
300 K. (e) The frequency distribution of space groups formaterials with
work functions greater than 7 eV and less than 4 eV generated by high-
throughput screening.
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can gain these signicant new insights into the work functions
of 2D nanomaterials: (i) work function is determined not only
by structure-based factors but also by atomic-level features,
refreshing the traditional understanding of the nature of
material work functions, i.e., work function variations for
a nanomaterial primarily originated from the changes in the
surface dipole and intrinsic bulk electronic structure of the
material, as well as their effects on the vacuum and Fermi levels,
from a new dimension. (ii) From a holistic view, the space group
stands out as a signicant factor of work function prediction.
However, for certain materials, such as BeI2 (P�3m1) and Al2Se5
(C2/m), the determining factor for their work function is not the
space group but the atomic-level features. (iii) Materials with
the P�6m2 and Pmn2_1 space groups generally exhibit relatively
higher work functions, while those with the P4/mmm and P�1
space groups tend to present relatively lower work functions.
4 Conclusion

This study proposes a target-driven framework for material
design to accelerate the discovery of potential transparent OLED
anode materials. This framework combines the HTVS and ML
techniques to enhance the efficiency of the discovery process. A
robust ML regression model (CatBoost) was successfully trained
19386 | Chem. Sci., 2024, 15, 19375–19389
using model comparison and hyperparameter optimization.
This model demonstrated a remarkable ability to directly
predict the work functions of AB-type 2D nanomaterials, with R2

and RMSE values of 0.92 and 0.28 on the test set, respectively,
eliminating the requirement for time-consuming DFT calcula-
tions (z103 faster than DFT). Global and local model inter-
pretation results based on the SHAP method reveal that the
space group is the decisive factor in predicting the work func-
tion for most materials, while atomic-scale features of the
material composition (elemental radius, electron affinity
energy, ionization energy, etc.) are the dominant factors for
other materials. Certain space groups (Pmn2_1 and P�6m2) tend
to exhibit relatively higher work functions (>7 eV), while some
other space groups (P4/mmm and P�1) oen present relatively
lower work functions (<4 eV). Finally, CatBoost was applied to
high-throughput screening, resulting in a comprehensive list of
OLED anode materials with thermodynamic stability (dissoci-
ation energy <0.1 eV per atom), narrow band gap (0–3 eV) and
specic work functions (>5 eV) from the 2DMatPedia database.
Signicantly, further DFT computations reveal that the PS
nanomaterial displays superb transparency (transmittance >
90%) and elevated conductivity (s > 106 S m−1). This positions
PS as an exceptionally promising candidate for transparent
OLED anodes, surpassing the conventional ITO.

This study provides new insights into the intrinsic mecha-
nisms affecting the work function of 2D nanomaterials, and the
proposed design framework offers an efficient approach for
exploring optoelectronic materials. The research paradigm that
deeply analyzes the relationship between features and target
properties by employing interpretable ML techniques is poised
to become a signicant driver in the future exploration of
material properties, offering new perspectives and break-
throughs in uncovering the fundamental nature of materials
and their performance.
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