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ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) are important pathogens in
humans and certain animals. Molecular epidemiological analyses of ExPEC are based on
structured observations of E. coli strains as they occur in the wild. By assessing real-world
phenomena as they occur in authentic contexts and hosts, they provide an important
complement to experimental assessment. Fundamental to the success of molecular
epidemiological studies are the careful selection of subjects and the use of appropriate
typing methods and statistical analysis. To date, molecular epidemiological studies
have yielded numerous important insights into putative virulence factors, host-pathogen
relationships, phylogenetic background, reservoirs, antimicrobial-resistant strains, clinical
diagnostics, and transmission pathways of ExPEC, and have delineated areas in which
further study is needed. The rapid pace of discovery of new putative virulence factors and
the increasing awareness of the importance of virulence factor regulation, expression, and
molecular variation should stimulate many future molecular epidemiological investigations.
The growing sophistication and availability of molecular typing methodologies, and of the
new computational and statistical approaches that are being developed to address the
huge amounts of data that whole genome sequencing generates, provide improved
tools for such studies and allow new questions to be addressed.

INTRODUCTION
Extraintestinal pathogenic Escherichia coli (ExPEC), the distinctive group
of E. coli strains that possess an enhanced ability to overcome or subvert
host defenses and cause extraintestinal disease in otherwise healthy hosts,
are important pathogens in humans and certain animals (1, 2). Molecular
epidemiological analyses contributed to the initial recognition of ExPEC
strains as being distinct from other E. coli (including intestinal pathogenic
and commensal variants), and have yielded insights into the ecology, evo-
lution, reservoirs, transmission pathways, host-pathogen interactions, and
pathogenic mechanisms of ExPEC, thereby providing an essential comple-
ment to experimental assessment of virulence mechanisms. This article
first reviews the basic conceptual and methodological underpinnings of the
molecular epidemiological approach, then summarizes the main aspects of
ExPEC that have been investigated by using this approach.
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The concept of ExPEC as representing a discrete mi-
crobiological subset of E. coli with special relevance to
human and animal health has stimulated efforts to iden-
tify the bacterial correlates of extraintestinal virulence
that determine, whether mechanistically or for classifi-
cation purposes, a given strain’s likelihood of represent-
ing ExPEC. As discussed below in “Results of Molecular
Epidemiological Studies,” such efforts are ongoing, and
are increasingly informative thanks to the progressive
advances in epidemiological methods and study design,
typing technologies, and biostatistical approaches.

METHODOLOGICAL CONSIDERATIONS

Basic Principles of Molecular Epidemiology
Traditional versus molecular epidemiology
Epidemiology is the study of disease as it occurs in pop-
ulations. In epidemiological studies, structured obser-
vations are used to identify host characteristics (that is,
risk factors) that predict the occurrence, severity, or clin-
ical manifestations of a particular illness (3–8). By anal-
ogy, molecular epidemiology is the study of a disease
in relation to selected genetic characteristics of the host
and/or the causative agent, such as an infectious disease
and the causative microorganisms (9–14). In molecular
epidemiological studies that focus on infectious diseases,
structured observations are used to identify microbial traits
(for example, specific genes, phylogenetic background, or
clonal identity) that predict the occurrence, severity, or
clinical manifestations of a particular infectious disease,
or relevant characteristics of the affected hosts, including
age, sex, and underlying predisposing conditions. Molec-
ular epidemiological studies seek insights into the molec-
ular basis for the virulence behavior and host predilections
of the pathogen and to identify relevant reservoirs and
transmission pathways. Such insights can be useful in de-
veloping strategies for managing and preventing infections
caused by the particular pathogen.

Strengths and limitations of
molecular epidemiology
By virtue of being observational rather than experimental,
molecular epidemiological studies exhibit the strengths
and limitations inherent to observational studies in gen-
eral. Their main strength is that they examine “real world”
phenomena, that is, wild-type microbes interacting with
the natural host in a natural setting, rather than the
artificially engineered host-pathogen interactions of ex-
perimental studies (15, 16), which can be of uncertain

physiological relevance. In addition, molecular epidemi-
ological studies can examine multiple predictor and out-
come variables simultaneously, which can be challenging
with experimental studies.

The main weakness of molecular epidemiological studies
is that they allow the investigator no direct control over
the variables analyzed. Consequently, a variable can be
isolated only through careful selection of comparison
groups so that the groups differ, to the extent possible,
only according to the particular variable. Moreover,
even with the most carefully selected comparison groups,
associations that may emerge still are only that, associ-
ations. Although these may reflect causal relationships
between the analyzed variables, they also may be due to
confounding from other, unmeasured variables (in either
the host or the pathogen). Consequently, the better char-
acterized the source subjects and bacteria are, the greater
the confidence with which associations between host
variables and bacterial traits can be attributed to the par-
ticular variables themselves. In addition, because of the
considerable variation within human and bacterial pop-
ulations, large numbers of subjects are needed per group
(relative to the number of replicate determinations needed
to address variance in experimental studies), appropri-
ate statistical tests are required to assess the significance
of any observed differences between groups, and statisti-
cally significant findings require confirmation in different
populations.

Finally, at least prior to the advent of whole-genome
sequencing (WGS: discussed below) and transcriptome
analysis, molecular epidemiological studies could assess
only known microbial characteristics for which appro-
priate assays were available. That is, they required prior
knowledge of the characteristics to be studied. Therefore,
in contrast to exploratory methods such as signature-
tagged mutagenesis (17), in vivo expression technology
(18), and transcriptome analysis (19), they could not be
used to discover new virulence factors. However, they
provided an important complement to such discovery-
based experimental approaches by assessing the epide-
miological (that is, population-level) relevance of newly
identified traits (20–23). This complementarity between
epidemiology and experimentation is implicit in the
molecular restatement of Koch’s postulates, the first of
which is that the trait of interest must be epidemiologi-
cally associated with disease (24). Today, WGS makes
it possible, in principle, to compare an extensive array of
bacterial sequences, many of which may be of unknown
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significance or function, with epidemiological variables,
thereby facilitating the unbiased discovery of novel bac-
terial correlates of virulence, which subsequently can be
assessed experimentally.

Internal controls
Much stronger conclusions can be drawn from observed
between-group differences in molecular characteristics if
a study includes an internal control group that is tested
in parallel with the clinical group of interest, in particular,
if the controls are temporally, geographically, and demo-
graphically matched to the clinical isolates, thereby avoiding
some of the problems associated with use of external (that
is, historical) control groups (25, 26). Concurrent testing of
cases and controls using the same methods and reagents,
ideally by an operator who is unaware of sample identity,
reduces the likelihood that cohort effects, technical factors,
or subjective bias could influence the results.

Statistical considerations
Molecular epidemiological studies adhere to the same
statistical principles and rely on the same statistical
methods as conventional epidemiological studies (27,
28). Between-group comparisons are tested using stan-
dard statistical approaches such as a χ2 test, Fisher’s
exact test, or univariate logistic regression analysis for
dichotomous variables, and an unpaired t test or the
Mann-Whitney U test for continuous variables. Multiple
independent variables can be assessed simultaneously as
predictors of an outcome (-dependent) variable by using
appropriate multivariate methods. For comparisons in-
volving multiple testing of a particular (bacterial or hu-
man) subject, whether for different traits as assessed at
the same time or for a given trait as assessed at different
times, appropriate tests for paired comparisons must be
used, such as McNemar’s test for dichotomous varia-
bles and a paired t test or the Wilcoxon rank-sum test
for continuous variables. Additionally, the ever-growing
number of bacterial variables that can be determined and
analyzed has led to increased use of multidimensional
scaling methods, such as principle coordinates analysis
and principle components analysis, which summarize the
variance within complex data sets using a small number
of derived variables, termed coordinates or components.
Such methods determine and display graphically the
overall extent of similarity or difference between source
populations with respect to multiple variables when con-
sidered jointly, and the extent of correlation among dif-
ferent variables and between each variable and respective

source populations. Other advanced statistical methods
that can be used with complex data sets to identify bac-
terial correlates of epidemiological variables include dis-
criminant analysis (29), classification and regression tree
analysis, and machine learning (30).

Type I errors, which are the false conclusion of a differ-
ence when none actually exists, are a hazard of the use of
multiple comparisons (since the probability of obtain-
ing a “significant” P value is proportional to the number
of comparisons) and the selective testing of associations
suggested by post hoc data review (31). However, multiple
comparisons are inevitable in molecular epidemiological
studies that assess multiple bacterial traits, as increasingly
is the practice, and are especially prominent with WGS
analysis, which may generate thousands of candidate
predictor variables. Statistical adjustment for multiple
comparisons, and/or cautious interpretation of putatively
significant associations, can be used to address this
problem (32). Likewise, post hoc data review to discover
new associations is an important means for generating
new hypotheses. Recognition that such hypotheses re-
quire independent confirmation provides a helpful safe-
guard against false conclusions.

Type II errors, which are the false conclusion of absence
of a difference when one actually exists, result from in-
sufficient sample size, which limits statistical power for
finding differences (33). However, the seemingly obvious
remedy of studying large comparison groups may or may
not be an option, depending on the context. This is be-
cause, unlike in experimental studies where the number
of replicate determinations is largely a matter of inves-
tigator choice, in epidemiological studies clinical fac-
tors sometimes limit the number of subjects or isolates
available for a particular group, thereby imposing insur-
mountable restrictions on sample size (34). As a conse-
quence, conclusions may need to be tempered to reflect
the inherent uncertainty resulting from limited power.

Typing Methods
The various bacterial traits analyzed in molecular epide-
miological studies that attempt to define or characterize
ExPEC represent a spectrum of levels of organization and
complexity, ranging from subgenic DNA sequence (the
most basic), through genes, operons, and pathogenicity
islands (intermediate), through whole genomes and plas-
mids (complex), to clones, clonal groups, and phylo-
genetic groups (highly complex) (35, 36). Each level is
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important and informative, and each requires distinctive
typing methods.

Sequence analysis
Historically, analysis of sequence diversity within virulence-
associated genes or their flanking regions was done by
using restriction fragment length polymorphism (RFLP)
analysis (now little used) or direct Sanger sequencing of
cloned DNA fragments or PCR products (37–44). The in-
creasing accessibility and affordability of next-generation
DNA-sequencing methods, e.g., Illumina (short reads) and
PacBio (long reads, including for plasmid closure), now
allows sequence analysis of whole chromosomes and
plasmids (45, 46), providing an alternative or complement
to conventional Sanger sequencing. Sequencing technolo-
gies, and the associated bioinformatics approaches needed
to manipulate and interpret the resulting large-sequence
files, are evolving rapidly, and may soon supplant conven-
tional methods even for gene detection, let alone detailed
sequence analysis.

Sequence analysis has multiple applications in molecular
epidemiological studies (as discussed below). These in-
clude determination of the presence/absence of specific
putative virulence genes or resistance genes and molec-
ular variants thereof, identification of single-nucleotide
polymorphisms in housekeeping genes that correspond
with specific ExPEC-associated lineages, and clarification
of the genetic architecture of mobile units (e.g., trans-
posons and plasmids) that can transfer virulence and
resistance genes between strains and lineages.

Gene detection
Detection of putative virulence markers, historically a
mainstay of molecular epidemiology in E. coli, can be
done using a variety of methods, with the method se-
lected determining the nature of the results, which in turn
shapes the conclusions that can be drawn. Conventional
membrane or solid-support probe hybridization, which
has largely been superseded by newer technologies, relies
on complementarity between the probe, often several
kilobases in length, and the target region (9, 37, 47). It can
readily screen for broad genetic regions if large probes are
used (40). Probes can be used either in solution for hy-
bridization with target DNA that has been fixed to a solid
substrate, or fixed to a solid substrate (using a macro- or
microarray format) for hybridization with target DNA in
solution (48).

PCR detection relies on precise matching between the
primers and the target region, and usually is limited to
relatively short targets, typically <2 kb (49). Thus, if the
relevant sequence polymorphisms are known, PCR can
differentiate between minor molecular variants of a par-
ticular gene (which may have different disease and/or
host associations) and, if multiple primer pairs are used
to map an operon, can identify suboperonic deletions
(which also may have clinical correlates) (Fig. 1) (50).
PCR can be done using either conventional or real-time
methods, and with multiplexing of primers for simul-
taneous detection of multiple targets. Detection of con-
ventional PCR products is usually done using agarose gel
electrophoresis, fluorescence or luminescence-based real-
time technology, or membrane-bound arrays (51).

WGS analysis is a rapidly emerging technology for de-
tection of known virulence (and other) genes in E. coli, and
may become the preferred genotyping method as se-
quencing prices drop and bioinformatics pipelines become
increasingly robust, accessible, and user friendly (36, 45,
52–55). For this approach, enormous numbers of sequence
reads of various lengths (depending on the particular
sequencing method) are generated using one of several
available massively parallel sequencing technologies.

Reads are analyzed by using (i) user-selected applications
and a private sequence library; (ii) a web-based suite of
applications, such as that hosted by the Center for Genomic
Epidemiology (Danish Technical University, Copenhagen,
DK: http://www.genomicepidemiology.org/); or (iii) a hy-
brid of these two approaches. Use of web-based platforms
offers simplicity and speed, but limits the analysis to
whatever markers the particular system happens to in-
clude. In contrast, manual analysis allows the user to search
for any target sequence of interest, but is more techni-
cally demanding. Additionally, as mentioned in an earlier
section, by using more sophisticated bioinformatics ap-
proaches, it is possible to identify and catalogue sequences
of unknown identity that are present in an isolate, for
comparison with other isolates from the same or different
contexts. The huge amounts of data that WGS generates
pose analytical challenges that oblige the development of
new computational and statistical approaches (56, 57).

Clones, clonal groups, and phylogenetic groups
Clones and clonal groups (which are groups of closely
related clones) can be identified at the molecular level
by using typing methods that scan the entire genome.
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Of the historical “whole-genome” methods in general use,
the most discriminating is pulsed-field gel electrophoresis
(PFGE) analysis. This method involves electrophoretic
separation of total bacterial DNA that has been digested
using a restriction enzyme such as XbaI, which in E. coli
recognizes a limited number of DNA sites (Fig. 2) (13,
58–60). Use of a second restriction enzyme can further
enhance discrimination (61). Identity of two isolates by
PFGE analysis implies that they represent the same strain
or clone (62). However, PFGE is so discriminating that,
beyond a limited level of divergence, it fails to perceive
similarity between isolates, making it unreliable for iden-
tifying larger clonal groups. It also sometimes paradoxi-
cally calls as similar isolates that more precise genetic
methods show are only distantly related. Additionally, it
requires specialized equipment, is slow, has very limited
capacity for data sharing, and is subject to multiple sources
of error that limit its ability to reliably and consistently
perceive genomic relationships, as compared with WGS-
based phylogenetic analysis (see later section) (53, 63).

PCR-based whole-genome profiling methods are less
discriminating than PFGE, but are simpler and faster,
and can perceive broader clonal group relationships

more effectively. Commonly used PCR-based genomic
profiling methods include random amplified polymor-
phic DNA (RAPD) analysis, which uses random or ar-
bitrary primers (Fig. 3) (12), and repetitive element PCR,
which uses primers targeting various known chromo-
somal repeat elements (64). Both methods generate dis-
tinctive banding patterns that reflect the spacing of
suitable primer sites in the isolate’s genome. In addition
to allowing simple “same-versus-different” comparisons
between isolates, PCR-generated genomic profiles can
be subjected to cluster analysis to define quantitative
profile similarity relationships, which provides a crude
assessment of the underlying phylogenetic relationships
(Fig. 4) (65, 66). Such profiling can be used to compare
multiple colonies from a particular sample (e.g., feces)
with one another to identify putative unique clones, or
to compare epidemiologically unrelated clinical, fecal, or
environmental isolates with selected reference isolates to
allow classification of the unknown isolates as to putative
clonal group, e.g., resistance-associated clonal group A
(CGA; also known as ST69) by comparison (Fig. 4).

Phylogenetic relationships and membership in specific
clonal groups, which is relevant for studies involving

Figure 1 PCR analysis of pap operon.Open boxes represent genes within the pap operon (including papA, structural subunit; papC, usher; papEF,
minor tip pilins; and papG, adhesin). Forward and reverse primers (right- and left-pointing black triangles, respectively, above and below the pap
operon) are used in combinations as shown to yield the indicated PCR products (thin rectangles, below pap operon). Heavily striped rectangles,
papA and papG allele PCR products. Solid black rectangles, pap gene PCR products. Finely striped rectangles, long PCR operon fragments
(as generated using either flanking or internal allele-specific papG reverse primers, as illustrated for allele I-I′). Different papA and papG variants
are associated with specific lineages, hosts, and clinical syndromes. Intraoperonic deletions that yield a null phenotype (which may be associated
with compromised or asymptomatic hosts) can be detected as a truncated long-PCR product. Reprinted from reference 42, with permission.
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potential ExPEC isolates because of the known phylo-
genetic distribution of extraintestinal virulence in E. coli
(67, 68), can be resolved with greater accuracy by more
focused methods, including PCR-based phylotyping,
multilocus sequence typing (MLST), lineage-specific
PCR assays, and WGS analysis. PCR-based phylotyping
provides a rapid and simple, albeit approximate, method
for classifying isolates into one of seven E. coli phylo-
genetic groups (A, B1, B2, C, D, E, F) or a cryptic clade
(69). MLST involves DNA sequence analysis of multiple
housekeeping genes (typically seven or more, depending
on the particular MLST system) that are widely distrib-
uted around the chromosome, which enables assignment
of an allele designation for the particular sequence vari-
ant found at each locus and assignment of a sequence
type (ST) based on the isolate’s particular combination of
alleles (https://enterobase.warwick.ac.uk/species/index/

ecoli) (70–72). MLST is now used widely to define both
the ST membership of individual isolates and the over-
all distribution of STs within a collection (i.e., bacterial
population). Limitations include the need for a current,
well-curated, universally accessible library of STs with
reliable associated metadata, plus a system for translating
STs into phylogenetic groups.

Lineage-specific PCR assays can detect either lineage-
defining single-nucleotide polymorphisms within broadly
conserved housekeeping genes (typically, those used for
MLST) or lineage-specific accessory genes (i.e., genes var-
iably present within the species). Currently, such assays
are available for 12 broad subgroups within (ExPEC-
associated) phylogenetic group B2 that correspond largely
to ST complexes (73), and for specific STs and sub-ST
clonal lineages within (ExPEC-associated) groups B2, D,

Figure 2 Dendrogram based on pulsed-field gel electrophoresis (PFGE) profiles of 33 clinical and fecal isolates of Escherichia coli sequence
type 131 (ST131) from the members of 6 households. Profiles are diverse, despite all isolates deriving from the same ST, which reflects the superior
resolving power of PFGE over MLST. Isolates from a given household cluster together, consistent with intrahousehold strain sharing. Scale is
% profile similarity. All isolates were fluoroquinolone-resistant. H30, clonal subset within the ST131-H30 clade (R1 = H30R1, Rx = H30Rx).
Abbreviations: ESBL, extended-spectrum β-lactamase production; HH, household; ID, identifier; PFGE, pulsotype. Reprinted from reference 63,
with permission.
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and F (72, 74–81). Occasional misclassification results
from genetic alteration of the targeted primer-binding
sites.

WGS data, when limited to core genome sequences (i.e.,
those that are present in all members of the population),
can be analyzed using appropriate phylogenetic algo-
rithms to define the phylogenetic structure of a collection
(45, 52). Inclusion of reference genomes that represent
known phylogenetic or clonal groups allows such phy-
logenies to be referenced to the established E. coli pop-
ulation structure. Unlike the results of other genotyping
methods, WGS-based phylogenies are informative ac-
ross the entire spectrum of resolution within the phylo-
genetic tree, from the broadest (major phylogenetic
groups) to the most resolved (minor sequence variants
within individual sub-ST lineages, i.e., clones), as shown
in Fig. 5 for the fine structure of the pandemic resistance-
associated lineage ST131 (Fig. 5) (36, 63, 80, 82). They
allow evolutionary time scale inferences, to clarify the
chronology of emergence of epidemic ExPEC clones

(36), and permit epidemiologically linked ExPEC isolates
to be compared with one another and with unlinked
isolates, to assess for clonal reservoirs and transmission
(63). Notably, core genome phylogenies by definition
ignore variation within the accessary genome (including
plasmids, virulence genes, bacteriophages, and resistance
genes), which may be important clinically or ecologically
and require separate focused analysis.

RESULTS OF MOLECULAR EPIDEMIOLOGICAL STUDIES

Virulence Factors: Associations with Clinical
Variables and Phylogenetic Background
Comparisons between clinical isolates and controls
E. coli isolates from the urine, blood, cerebrospinal fluid,
etc., of patients with diverse extraintestinal infection
syndromes typically exhibit a greater prevalence of
specific molecular markers than do fecal isolates from
uninfected hosts (9, 83–88). From an epidemiological
perspective such virulence markers can be regarded as
“virulence factors” (VFs), although this term must be
understood as implying “factors associated with” rather
than “contributing to” virulence, since epidemiological
associations do not necessarily reflect causality (as dis-
cussed above).

These VFs can be grouped by functional category, for
example, adhesins (fimbrial and nonfimbrial) (89–92),
siderophore systems (23, 65, 93–97), toxins (20, 98–101),
surface polysaccharides (102–105), invasins (50, 106,
107), serum resistance-associated traits (108, 109), and
traits of miscellaneous or unknown function (22, 67)
(Table 1, Fig. 6). Clinical isolates often contain multiple
VFs from a particular functional category (110, 111);
this conceivably may allow for redundancy, synergistic
interactions among VFs, and/or adaptability to different
environmental niches. Conversely, many seemingly vir-
ulent strains lack known representatives of one or more
of these functional categories (110, 111). Whether such
apparent deficits are compensated for by VFs from other
functional categories, or these strains actually do contain
unrecognized representatives of the “missing” VF cate-
gories, is unknown.

Associations among VFs
Certain VFs commonly occur together among clinical
isolates in patterns suggesting either co-selection or di-
rect genetic linkage (112, 113). Extensive genetic link-
age of VFs has been demonstrated both within genomic

Figure 3 Random amplified polymorphic DNA (RAPD) analysis of
E. coli strains 536, NU14, and RS218. RAPD profiles generated by
using primer 1247 (12) show E. coliO18:K1:H7 strains NU14 (cystitis:
lane 3) and RS218 (neonatal meningitis: lane 4) to be indistinguishable
from one another, but distinct from strain 536 (O6:K15:H31, pyelo-
nephritis: lane 2), illustrating both the broad syndrome capability
of certain ExPEC lineages and the clonal diversity of urinary tract
infection-causing ExPEC strains. M (lanes 1 and 5), 100-bp marker.
Reprinted from reference 160, with permission.
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islands, which have been called pathogenicity-associated
islands (PAIs) and fitness islands, and can occur on either
the chromosome or plasmids, and on plasmids, unasso-
ciated with PAIs (114–121). Certain VFs typically occur
on the chromosome (for example, pap, sfa/foc, hly, cnf,
and fyuA) (114, 122), others on plasmids (for example,
iss, traT) (123), and some in either context (for example,
afa/dra and iuc/iut) (118, 121). ExPEC strains often
contain multiple PAIs, each with a distinctive combina-
tion of VFs, which sometimes results in a strain having
multiple copies of a particular VF, for example, pap
(Fig. 7) (114, 124, 125).

This co-occurrence of VFs results in overlapping statis-
tical associations of different VFs with clinical variables,
leading to uncertainty as to which VF is primarily re-
sponsible for the association. Multivariable analysis can
help in this situation, but is not definitive. Moreover,
sequence analysis of PAIs, plasmids, and genomes inva-
riably reveals genes of unknown function, some with
homology to known VFs in other species (Fig. 8) (114,
119, 125). This suggests that the statistical associations
of known VFs with virulence may be mediated through

some of these as-yet-uncharacterized VFs; that is, the
known VFs, although useful markers, may not them-
selves be the actual determinants of virulence. The genes
of unknown function, once discovered, can become the
focus of additional molecular epidemiological studies
to clarify the genes’ associations with ecological source,
clinical syndrome, host groups, lineages, etc.

Phylogenetic group and clonal groups
According to molecular analyses, certain ExPEC clonal
groups, as identified traditionally based on their O:K:H
serotypes (for example, O18:K1:H7, O6:K2:H1, and
O7:K1:H–) (126), which correspond closely with specific
STs according to MLST, are disproportionately repre-
sented among clinical isolates in comparison with con-
trols (110, 127, 128). These virulent clonal groups derive
primarily from phylogenetic group B2 (e.g., STs 12, 14, 73,
95, 127, and 131), and to a lesser extent group D (e.g., STs
69, 394, and 405), which explains the observed predomi-
nance of groups B2 and D among clinical isolates (83, 110,
112, 129). Most of the traditionally recognized extrain-
testinal virulence markers (for example, pap, sfa/foc, hly,

Figure 4 RAPD-based phylogenetic and clonal analysis of Escherichia coli isolates. Genomic profiles (shown in computer reconstruction),
as generated for each isolate by using RAPD primers 1247, 1254, 1281, and 1283, were concatenated for cluster analysis. Pyelonephritis isolates
(n = 10; “Py” strain designations) are labeled in bold if from E. coli clonal group A (CGA) (n = 5) and in lightface italic if non-CGA (n = 5). CGA
isolates (bold) are bracketed and labeled as to syndrome (CY, cystitis; PY, pyelonephritis) and serogroup (O11/O17/O77) (right), with the
corresponding cluster shown in bold (left). The two E. coli O15:K52:H1 control strains are bracketed and labeled by serotype. Reference strains
from the E. coli Reference (ECOR) collection (bold) are identified as to phylogenetic group (right). The depth of the molecular weight ladder
cluster (brackets; MW) reflects the intrinsic variability inherent in gel electrophoresis and image analysis, independent of amplification. The CGA
isolates cluster together irrespective of clinical syndrome (pyelonephritis, cystitis) and geography (UCB: Berkeley, California; UMN: Minneapolis,
MN; Py: multiple centers around the U.S.). Reprinted from reference 248, with permission.
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Figure 5 Time-scaled whole genome sequence (WGS)-based phylogeny of ST131 Escherichia coli (n = 215). Meta-data include allelic variants
of blaCTX-M (extended-spectrum beta-lactamase gene) and fimH (type-1 fimbriae adhesin gene), plus mutations in the quinolone resistance-
determining region (QRDR) of gyrA (WT, wild-type). Brackets identify defined ST131 clonal subsets. Branch tips are colored by geographic
region, per the key. T, bla plasmid transformant generated for strain; *, cases with putative deletions in the assembled bla gene. Geographic
clustering is evident, some of it linked with specific accessory gene variants; e.g., within the C1/H30R clonal subset, the Southeast Asian isolates
(green) are largely confined to a specific clade that consists of two subclades, one characterized by blaCTX-M-14 and the other by blaCTX-M-27.
Reprinted from reference 36, with permission.
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Table 1 Virulence-associated traits of extraintestinal pathogenic Escherichia coli (ExPEC) by functional categorya

Category
Gene(s) or
operon Comment

Evidence for trait as a virulence
factor (reference[s])

Epidemiologicalb Experimental (in vivo)c

Adhesinsd afa/dra Dr antigen-binding adhesins (AFA I-III, Dr, F1845) Yes (176, 266, 267) Yes (268)

afaE-8 Afimbrial adhesin VIII Yes (175) No

auf Surface structure of unclear function Yes (269) No (269)

bmaE Blood group M-specific adhesin Yes (270) No

clpG CS31A adhesin (K88–related) Yes (271) No

csgA Curli Yes (272) Yes (272)

ecp Pilus Yes (273) No

fim D-mannose-specific adhesin, type-1 fimbriae Yes (267, 274, 275) Yes (89, 276)

foc F1C fimbriae Yes (277) No

gafD GlcNac-specific (G, F17c) fimbriae adhesin Yes (270, 271) No

iha Iron-regulated-gene-homologue adhesin Yes (21, 111, 267) Yes (96)

nfa NFA-1, -2, -3, -4 (nonfimbrial adhesins) No (278–280) No

pap Pilus associated with pyelonephritis (P fimbriae) Yes (9, 151, 267) Yes (281); no (282)

pil Type IV pilus Yes (283) Yes (284)

sfa S fimbriae (sialic acid-specific) Yes (111) Yes (285)

sfa/foc S and F1C fimbriae Yes (286) Yes (285)

yad Fimbria Yes (283) Yes (283)

ygi Fimbria Yes (283) Yes (283)

yvc Fimbria Yes (283) No

Toxinsd astA EAST1, heat-stable enteroaggregative E. coli cytotoxin Yes (79, 287) No (189, 288)

cdtB Cytolethal distending toxin, CDT Yes (111) No

cnf1 Cytotoxic necrotizing factor 1, CNF-1 Yes (289) Yes (98, 290, 291)

hly α-Hemolysin (Hly) Yes (292) Yes (100, 293)

pic Protein associated with intestinal colonization, PIC Yes (294) Yes (18, 284, 294, 295)

sat Secreted autotransporter toxin (serine protease) Yes (20, 267) Yes (296)

tsh Temperature-sensitive hemagglutinin, TSH Yes (68, 294) Yes (18, 294)

upxA (tosA) RTX toxin Yes (297) Yes (298)

vat Vacuolating autotransporter toxin Yes (299, 300) Yes (284)

Nutrition argC Arginine synthesis N/Ae Yes (301)

aro Shikimate synthesis N/Ae Yes (284)

chuA Heme receptor Yes (268) Yes (97)

dppA-oppA-
sapA

Uptake of short peptides and amino acids Yes (284, 302)

dsd Serine utilization Yes (303) No (304)

entF Enterobactin synthesis No Yes (65)

fyuA, irp Yersiniabactin (siderophore) receptor, synthesis Yes (122, 267, 268) Yes (305)

guaA Guanine synthesis N/Ae Yes (301)

ireA Iron-regulated element (catecholate siderophore) Yes (23) Yes (23)

iroN Salmochelin (siderophore) receptor Yes (21, 306) Yes (65, 95)

iuc, iutA Aerobactin (siderophore) synthesis, receptor Yes (268, 307) Yes (97)

(continued)

10 ASMScience.org/EcoSalPlus

Johnson and Russo

XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
XPath error Undefined namespace prefix
xmlXPathCompOpEval: parameter error
xmlXPathEval: evaluation failed
www.asmscience.org/EcoSalPlus


Table 1 Virulence-associated traits of extraintestinal pathogenic Escherichia coli (ExPEC) by functional categorya (continued)

Category
Gene(s) or
operon Comment

Evidence for trait as a virulence
factor (reference[s])

Epidemiologicalb Experimental (in vivo)c

pckA Gluconeogenesis Yes (302)

sdhB TCA cycle Yes (302)

tonB Siderophore uptake N/Ae Yes (65)

Protectins iss Increased serum survival (outer membrane protein) Yes (307, 308) Yes (309)

kpsMT II Group II capsule synthesis (e.g., K1, K5, K12) Yes (112, 126, 267, 310) Yes (311)

kpsMT III Group III capsule synthesis (e.g., K3, K10, K54) Yes (112, 126, 310) Yes (312)

proP Osmoprotection; proline permease N/Ae Yes (313)

rfc O4 lipopolysaccharide (LPS) synthesis Yes (314, 315) Yes (316)

traT Surface exclusion; serum resistance-associated Yes (307) No (317)

TCSSf barA-uvrY Regulation of VFs, e.g., hemolysin, LPS Yes (318)

cpxAR Regulation of VFs, e.g., hemolysin Yes (319)

envZ-ompR Regulation of VFs, e.g., osmoprotection Yes (320)

kguRS Regulation of VFs, e.g., nutrient acquisition Yes (321) Yes (321)

qseBC Regulation of VFs, e.g., adhesins, flagella Yes (322)

Invasins aslA Cellular invasion (arylsulfatase-like gene) N/Ae Yes (323)

ibeA-C Invasion of brain endothelium IbeA (Ibe10), B, and C Yes (IbeA) (111) Yes (323)

nlpI Invasion of brain endothelium, complement resistance No Yes (324, 325)

ompA Outer membrane protein A (cellular invasion) N/Ae Yes (323)

traJ Cellular invasion (F-like plasmid transfer region homologue) No Yes (323)

Misc.g cvaC Microcin (colicin) V; on plasmids with traT, iss, iuc/iut Yes (307) Yes (326)

fliC Flagella: motility, ascent to the kidneys Yes (327)

malX Pathogenicity island marker (from strain CFT073) Yes (130, 132, 267) No (139)

ompT Outer membrane protein T (protease) Yes (328) Yes (unpublished, JRJ)

pga Extracellular polysaccharide (poly-GlcNac), biofilm Yes (284)

rfaH Transcriptional antitermination: O antigen, capsule, Hly, ChuA Yes (329)

usp Uropathogenic-specific protein (bacteriocin) Yes (22, 120, 267) Yes (330)

ydd-pqq ABC transporter, inner-outer membrane proteins Yes (284)
aNote: list is not comprehensive even for recognized markers, and additional markers remain to be identified and characterized. Conversely, not all the listed traits

necessarily contribute to virulence; some are only epidemiologically linked with virulence or confer in vitro phenotypes that are suspected of promoting virulence.
Additionally, some of the listed traits are prominent also among intestinal pathogenic E. coli, e.g., cytolethal distending toxin, certain Dr-binding adhesins, and
EAST1 (astA).

bStatistically associated with clinical isolates or specific host characteristics, or highly prevalent in a particular extraintestinal infection syndrome.
cBased on animal model infection studies, not necessarily using isogenic strains or complemented mutants.
dCertain adhesins and toxins function as invasins, e.g., type-1 fimbriae, some Dr-binding adhesins, and CNF-1 (115, 145, 197).
eN/A, not applicable (ubiquitous within E. coli, which precludes epidemiological comparisons).
fTCSS, two-component secretion system.
gMisc., miscellaneous.
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and kps) are typically concentrated within these virulent
clonal groups and, hence, within phylogenetic groups B2
and/or D, whereas others (for example, afa/dra, iuc/iut,
and traT) are more broadly and/or sporadically distrib-
uted across the species (Fig. 6) (35, 130). These divergent
patterns of phylogenetic distribution correspond with ver-
tical (within-lineage) versus horizontal (between-lineage)
transmission, respectively, and reflect the typically chro-
mosomal versus plasmid location of the respective se-
quences, as discussed above.

Considerable variation in VF profiles is evident at every
level within the phylogenetic tree, including among the
major phylogenetic groups, among the various clonal
groups within these phylogenetic groups, and even among
subclones within individual clonal groups. This is con-
sistent with extensive ongoing remodeling of PAIs and/or

virulence plasmids, in addition to acquisition and loss
of entire PAIs or plasmids. Such evolutionary processes
presumably result in the continuous emergence of new
pathotypes upon which selective forces can act (110, 131).

Several studies have compared clinical isolates with fecal
isolates from the same hosts, as opposed to fecal isolates
from a separate control population (132–134). This
strategy ensures a degree of matching for associated host
characteristics greater than that provided by a traditional
unpaired study design. The results of such studies, like
those of most traditional comparison studies, suggest
that special pathogenicity (as indicated by the presence
of multiple VFs) rather than simple prevalence (that is,
quantitative predominance in the fecal flora) is neces-
sary for a fecal strain to cause urinary tract infection
(UTI).

Figure 6 Phylogenetic distribution of extraintestinal pathogenic Escherichia coli (ExPEC)-associated virulence traits. Dendrogram at left
depicts phylogenetic relationships for the 72 members of the E. coli Reference (ECOR) collection, as inferred based on multilocus enzyme
electrophoresis (67). The four traditional major E. coli phylogenetic groups, i.e., A, B1, B2, and D (now split into groups D and F). The nonaligned
(“non”) strains (now called group E) are bracketed and labeled. Bullets at right indicate presence of putative virulence genes (papA, P fimbriae;
kpsMT, group II capsule synthesis; sfa/foc, S and F1C fimbriae; iutA, aerobactin system; traT, serum resistance; and fimH, type 1 fimbriae).
Horizontal bars at right indicate the 10 ECOR strains isolated from humans with symptomatic UTI. The remaining strains, except for one
asymptomatic bacteriuria isolate, are fecal isolates from healthy human or animal hosts. Note the concentration of (chromosomal) ExPEC-
defining virulence genes papA, kpsMT, and sfa/foc within phylogenetic groups B2 and D, but their occasional joint appearance also in distant
lineages, consistent with coordinate horizontal transfer, giving rise to ExPEC strains in historically non-ExPEC lineages. The more scattered
phylogenetic distribution of iutA (ExPEC-defining) and traT is consistent with these two genes’ typically plasmid location, although iutA also can
be chromosomal. fimH is nearly universally prevalent, consistent with its presence in other species of Enterobacteriaceae, presumably reflecting an
origin in a shared enterobacterial ancestor. Note the concentration of UTI isolates within phylogenetic groups B2 and D and the concentration of
virulence genes among UTI isolates. Note also the appreciable minority of fecal isolates with multiple virulence genes, reflecting a fecal reservoir of
ExPEC. Reprinted from reference 67, with permission.
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Phylogenetic background versus VFs
The overlapping associations of VFs and phylogenetic
background with clinical virulence call into question
which of these bacterial characteristics, VFs or phyloge-
netic background, more directly determines virulence,
i.e., a strain’s ExPEC status. Several studies in which both
phylogenetic group and VF profiles were analyzed have
shown that VFs are statistically more closely associated
with clinical virulence (132, 135, 136). However, phylo-
genetic group exhibits a residual association with viru-
lence even after known VFs are accounted for (135).
This is consistent with the existence of as-yet-undefined
virulence-associated traits that are both phylogenetically
distributed and incompletely linked with known VFs.

Comparisons among syndromes and host groups
Molecular epidemiological comparisons are not limited
to E. coli populations from infected versus uninfected
hosts. Comparisons also can be made between isolates

(i) from patients with different clinical syndromes (to
identify syndrome-specific, versus conserved, VFs or
clonal groups) (113, 137, 138), (ii) from infected hosts
who possess or lack particular predisposing conditions
(to identify bacterial traits that may interact with specific
host defense mechanisms or host receptors) (139–142),
and (iii) from different host species (to identify species-
specific, versus broad host range, VFs or pathogens) (106,
140–148).

The results of such studies support certain general con-
clusions regarding ExPEC strains, including which bac-
terial traits typify them, which host factors interact with
these traits, and to what extent do these relationships
vary with host species, sex, age, anatomical site of in-
fection, and illness severity. First, invasive clinical syn-
dromes, such as pyelonephritis, bacteremia, prostatitis,
and meningitis, as compared with less invasive syn-
dromes, such as cystitis and asymptomatic bacteriuria,
on average usually involve strains with greater molecular
virulence, as reflected in the number of VFs and a group
B2 background. Second, various forms of host compro-
mise significantly decrease the requirement for bacte-
rial virulence within a defined clinical syndrome. This is
exemplified by the reduced prevalence of pap among
pyelonephritis isolates from patients with, versus those
without, vesicoureteral reflux, that is, spontaneous ret-
rograde flow of urine from the bladder back up to the
kidneys (132, 149), and the reduced prevalence of pap
and chromosomal aerobactin determinants among blood
isolates from patients with urosepsis who have, versus
those who lack, underlying anatomical or medical con-
ditions predisposing to UTI (47). Third, although there
is some syndrome and host specificity of VFs and clonal
groups, there also is considerable commonality among
syndromes and host groups, whereas tremendous diver-
sity is apparent within each syndrome and host group.
Examples of relative syndrome and host specificity that
have been identified include the statistical association
of sfaS (S fimbriae) with neonatal meningitis (83, 111);
of pap with pyelonephritis (150, 151); of papG allele III,
hly, and cnf with canine UTI (132, 143); and of the F11
variant of papA (P fimbriae structural subunit) with
avian septicemic E. coli (152). However, each of these
associations is incomplete, since the same VFs or clonal
groups occur to various degrees also in other syndromes
and host groups, as exemplified by the prominence of
the O18:K1:H7 clonal group (ST95) in both neonatal
meningitis (as traditionally recognized) and uncompli-
cated cystitis in women (as more recently appreciated)

Figure 7 Genome map of ExPEC strain 536. The map is based on the
chromosome of E. coli MG1655 (K-12). Pathogenicity islands (PAIs)
are indicated according to their chromosomal insertion sites next to
tRNA-encoding genes. Contents, by PAI, include: PAI I (α-hemolysin,
F17-like fimbriae, CS12-like fimbriae); PAI II (α-hemolysin, P fim-
briae with papG III); PAI III (S fimbriae, iro siderophore system, Tsh-
like hemoglobin protease); PAI IV (yersiniabactin system). Many
additional smaller DNA insertions compared to K-12 are present (not
shown). Linkage of virulence genes in PAIs contributes to statistical
associations between different virulence genes and between specific
virulence genes and the lineages within which the corresponding PAIs
tend to occur. Reprinted from reference 121, with permission.
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Figure 8 Maps of pathogenicity-associated islands (PAIs) from ExPEC strain 536. Known or putative open reading frames (ORFs) are grouped according to the following
characteristics: blue, functional, known ORFs; green, truncated ORFs with a start codon and a stop codon; gray, as-yet-unidentified ORFs without homologues on the DNA level.
Nonfunctional ORFs (e.g., due to internal stop codons or frameshifts) are indicated by hatched symbols. ORF numbers are indicated below the corresponding ORF symbols.
Functional or truncated tRNA-encoding genes are marked in red. Direct repeat (DR) structures flanking PAIs are indicated. Thick black lines below the PAIs represent regions that
were detected by PCR. Several PAI-specific PCRs were grouped into PAI regions. The molecular epidemiology of novel ORFs that are discovered through sequence analysis of PAIs can
be investigated in subsequent studies. Reprinted from reference 121, with permission.
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(Fig. 3) (1, 91, 119, 128, 153, 154). To what extent high-
resolution phylogenetic analyses such as those based
on WGS data will identify host or syndrome-specific
subclades within certain clonal groups and STs that pre-
viously were regarded as unitary entities remains to be
seen (53, 80).

Regulation of expression
The relative lack of syndrome-specific VFs does not nec-
essarily negate the concept that selected VFs are critical
for infection at selected sites. It may reflect instead the
broad environmental flexibility of E. coli both within and
outside the human host, which could be manifested by
site-specific regulation and expression of genes or sets of
genes. Therefore, in addition to the simple presence or
absence of a particular gene, molecular epidemiological
studies may also need to consider gene expression, since
expression obviously is required if the genotype is to
influence the virulence phenotype. Expression can be
assessed through a variety of phenotypic tests, which
moves beyond the realm of strict molecular epidemiol-
ogy. However, in the instance of the fim operon, ex-
pression is regulated by an invertible switch element in
the promoter region, the position of which (“on” versus
“off”) can be defined for a bacterial population via a
simple PCR assay (57, 124, 155, 156). Differences be-
tween UTI versus control isolates, and between cystitis
versus pyelonephritis isolates, with respect to their fim
switching bias can be demonstrated, supporting the
concept that regulation of fim expression may influence
not only overall pathogenicity but also anatomical site
tropism (155, 156). Such a molecular epidemiological
approach is particularly relevant for fim since, although
expression of type 1 fimbriae appears from experimen-
tal studies to be quite important for UTI pathogene-
sis, the nearly uniform presence of fim in E. coli (and
other enterobacteria) all but precludes demonstration
of a virulence association for fim through conventional
presence-absence comparisons between clinical isolates
and controls (130).

Site-specific expression of VFs and core “housekeeping”
genes directed by environmental cues and mediated
by regulatory elements (e.g., two-component signal sys-
tems; Table 1) is a more global mechanism that enables
growth/survival within a variety of challenging niches
(157). Molecular epidemiological associations of regula-
tory elements may prove to be a fruitful area for addi-
tional study.

Molecular variants
Another potentially important consideration is the par-
ticular variant of a virulence gene present in an isolate.
Molecular variation within a gene may produce patho-
genetically important phenotypic alterations in the en-
coded peptide, such as the shifts in preferred receptor
sugars or glycolipids that are associated with poly-
morphisms in fimH (type 1 fimbrial adhesin) and papG,
respectively. Diverse single-nucleotide polymorphisms
(SNPs) in fimH, which can be detected by sequence
analysis or with SNP-specific PCR primers, cause single-
amino-acid changes in the FimH peptide that produce a
shift from a (commensal-associated) trimannose-binding
phenotype to a (UTI-associated) monomannose-binding
phenotype (158). Interestingly, the monomannose-
binding variants, although at an advantage within the
pathogenic niche (for example, because of their enhanced
binding to bladder epithelium), also are more suscepti-
ble to inhibition by monomannose residues, such as are
found in salivary glycoproteins; this presumably makes
them less effective as gut colonization factors (158). An
additional point mutation in a monomannose-binding
fimH variant, resulting in a single FimH amino acid sub-
stitution (Ser-62-Ala), can further strengthen monoman-
nose binding and also confer type IV collagen binding
(Fig. 9), which may be important in the pathogenesis
of neonatal meningitis (159, 160). Such mutations have
been termed pathoadaptive, since they represent minor
modifications of genes already present in nonpathogenic
members of the species, with the mutations conferring
enhanced fitness in the pathogenic niche (161).

More extensive alterations within papG, which can be
detected by using specific primers or probes, or sequence
analysis, are evident among the several known allelic
variants of papG (42, 90, 162–164). The respective pep-
tide products of the papG alleles bind preferentially to
various forms of Gal(α1-4)Gal-containing glycolipids
(165–168). Because of the varied distribution of these
particular glycolipids by anatomical site and host species,
the distinctive binding preference of the PapG variants
may underlie their somewhat divergent associations with
clinical syndromes and host groups, such as the associ-
ations of PapG II with pyelonephritis and of PapG III
with cystitis, dogs and cats, and compromised hosts with
urosepsis (84, 143, 168–173). Other examples of epide-
miologically significant molecular variation within a
particular VF, or VF family, include the sfa/foc (S and
F1C fimbriae) family (174), the afa/dra (afimbrial and
Dr-binding adhesins) family (92, 175, 176), the group 2
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and group 3 kps (capsule) families (177, 178), and cnf1
and cnf2 (cytotoxic necrotizing factor I and II; associated
with extraintestinal and intestinal virulence, respectively)
(179). Likewise, papA (P fimbriae structural subunit)
exhibits 13 known alleles (180, 181). These tend to be
clonally distributed, such that they can be used, in con-
junction with other VFs or seroantigens, as markers for
particular clones (110, 181). They also exhibit somewhat
distinctive associations with specific host groups or syn-
dromes, for example, F10, F12, and F48 with canine UTI
(132, 143, 182).

VFs as predictors of clinical outcomes
Apart from their role in pathogenesis, VFs also have been
studied as potential clinical predictors that could be used
to guide patient management. For example, P fimbriae
(or pap) testing has been proposed as a way to identify
boys at risk for renal scarring (183), adults with pyelo-
nephritis or urosepsis who have unrecognized predis-
posing conditions (184), and patients whose household
members should be screened for colonization with the
patient’s UTI strain (185). Other proposed clinical appli-

cations of such testing include determining length of
therapy for children with UTI (186) and identifying
pregnant women at high risk for developing pyelone-
phritis (187). However, the true clinical utility and cost-
effectiveness of such clinical applications of VF testing
are unconfirmed (188), such that at present they cannot
be recommended outside a research setting.

Antimicrobial resistance and virulence
Acquired resistance to therapeutically important anti-
microbial agents is increasingly prevalent among clinical
E. coli isolates, making management of E. coli infections
more difficult and costly (189, 190). The relationship
between resistance and virulence or phylogenetic back-
ground has been explored in multiple molecular epi-
demiological studies. Older data indicated that among
E. coli isolates from patients with urosepsis, resistance to
historical antimicrobial agents such as ampicillin, sul-
fonamides, tetracycline, and streptomycin is negatively
associated with virulence and a group B2 phylogenetic
background, but is positively associated with host com-
promise (191). This is consistent with a scenario wherein
resistance provides a greater fitness advantage than do
traditional VFs or a group B2 background for infections
in compromised hosts, who have weakened defenses but
are frequently exposed to antimicrobial agents.

Subsequent studies regarding fluoroquinolone resistance
that were done prior to the emergence of ST131-H30,
the currently dominant fluoroquinolone-resistant E. coli
lineage (which is from group B2), demonstrated simi-
lar negative associations between resistance and VFs
or a B2 phylogenetic background (192–195). Although
these were interpreted as suggesting that VFs may be lost
concomitant with mutation to fluoroquinolone resistance
(195), that explanation did not account for the concomi-
tant resistance-associated phylogenetic shifts away from
group B2, which suggested instead that resistant isolates
derive predominantly from distinct, less virulent bacterial
populations (192, 193). Therefore, selection for antimi-
crobial resistance within different host and bacterial pop-
ulations, rather than loss of virulence genes in exchange
for resistance, may have produced the observed VF dif-
ferences between susceptibility groups. Indeed, fluoro-
quinolone resistance has been shown to be associated
with host compromise. Thus, among clinical isolates se-
lection factors similar to those that historically produced
statistical associations between low virulence and resis-
tance to older antimicrobial agents may be operative also

Figure 9 Receptor binding specificity of type 1 fimbrial adhesin
(FimH) variants. In vitro binding of isogenic recombinant strains ex-
pressing the Ala-62 or Ser-62 FimH variants (from strains NU14 and
536, respectively) to (A) a trimannose substrate (bovine RNAse B),
(B) human collagen type IV, and (C) a monomannose substrate
(yeast mannan). Both variants bind equally well to trimannose, but the
Ala-62 variant exhibits stronger type IV collagen and monomannose
binding than does the Ser-62 variant. (Commensal-associated FimH
variants exhibit equally strong trimannose binding but minimal
binding to type IV collagen or monomannose [not shown].) Open
columns, bacteria incubated without α-methyl mannoside (αmM);
solid columns, bacteria incubated with 50 mM αmM. Data are mean +
SEM (n = 4) of number of bacteria bound per well. Molecular epi-
demiological studies can be used to elucidate the likely clinical rele-
vance of such genetic and phenotypic variation within different
virulence factors. Adapted from reference 160, with permission.
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with fluoroquinolones. Notably, the current prominence
of ST131-H30, with its broad virulence gene repertoire
despite extensive multidrug resistance, has largely erased
the historical negative associations of resistance with
virulence genes and group B2 (79, 196).

Other findings confirm that antimicrobial resistance does
not necessarily equate with reduced virulence. For ex-
ample, among fecal E. coli from diseased cattle and swine,
and from retail meat products (which strains likely derive
from the source animal hosts), settings in which most of
the organisms are nonpathogens, resistance to extended-
spectrum cephalosporins or fluoroquinolones is associ-
ated with minimal shifts in VF profile (192, 197–204).
Likewise, two notable epidemic multidrug-resistant clonal
groups that preceded ST131-H30 by several decades,
i.e., E. coli “clonal group A” (ST69) and the O15:K52:H1
clonal group (STc31), are replete with VFs, which pre-
sumably contributed to these clonal groups’ success as
pathogens among otherwise healthy hosts. Resistance and
virulence presumably are uncoupled for the animal-
source isolates by the absence of selection for virulence,
and for human clinical isolates from clonal group A and
the O15:K52:H1 clonal group (as for those from ST131-
H30) by the uniform requirement for virulence, irrespec-
tive of resistance. Further studies clearly are needed to
clarify the relationship between virulence and resistance,
taking into account ecological source and relevant selec-
tion factors.

VFs versus colonization factors
Paradoxically, certain molecular epidemiological (205–
207) and experimental (208–212) data suggest that at
least some of what traditionally have been regarded
as VFs in ExPEC may also promote intestinal survival
and colonization, and that virulence may even be a by-
product of commensalism (213). This hypothesis pro-
vides a more plausible mechanism for the evolution
of these traits than does the enhanced pathogenicity
the traits confer, since the ability to persist and flourish
within the host intestinal tract represents a more obvious
survival advantage than does the ability to cause sporadic
and usually self-limited or even fatal disease.

Moreover, although many of the traditionally recog-
nized extraintestinal VFs are encoded on what have been
designated PAIs, which implies that pathogenicity is their
raison d’être, this terminology is evolving. The newer,
more inclusive designation “fitness island” reflects the

recognition that similar accretions of genes encoding
related functions, with associated insertion sequences
and other mobility-promoting elements, occur in non-
pathogens, including even environmental (non-host-
associated) organisms (214), and that even in ExPEC
strains PAIs may function as colonization factors (215).
However, the hypothesis that VFs have evolved primar-
ily as colonization factors does not explain why ExPEC
are not the dominant clone(s) within the intestinal tract
in most human hosts, as would be expected if they truly
have a fitness advantage in this niche (113, 216). Ad-
ditional epidemiological and experimental studies are
needed to clarify the relationship between specific bac-
terial traits, including recently discovered putative VFs,
and intestinal colonizing ability.

Genomic Profiling
In most of the studies discussed above, E. coli isolates
were analyzed in the aggregate, with conclusions being
based on comparisons between groups of isolates, without
particular regard to the constituent clones. In contrast,
genomic profiling (also called molecular fingerprinting
or clonal typing) allows individual clones or strains to
be resolved and analyzed. This approach underlies a dis-
tinct branch of molecular epidemiology, one that focuses
on the individual clone rather than on the group. Topics
that have been addressed using this approach include the
reservoirs, colonization patterns, transmission pathways,
and clinical diagnostics of ExPEC.

Fecal-vaginal-urethral hypothesis
According to the fecal-vaginal-urethral hypothesis, E. coli
strains causing UTI usually derive immediately from the
host’s own fecal and perineal flora. This model, which was
first suggested based on O serogroup data (217), is now
supported also by molecular data showing that, in most
episodes of acute cystitis or pyelonephritis in women,
prostatitis in men, or UTI in dogs, the urine organism
is also the host’s predominant fecal strain (60, 63, 132,
218, 219). This concept was also demonstrated by a study
that used daily sampling to obtain high-resolution track-
ing of colonization patterns leading up to an acute
UTI episode (220). Over the week prior to the UTI epi-
sode, the causative UTI strain’s prevalence in the vaginal
reservoir rose rapidly, preceding the strain’s appearance
in urine cultures, which in turn preceded the onset of
UTI symptoms. This is relevant to prevention efforts,
since it suggests that fecal (and vaginal) colonization with
a urovirulent organism is a potentially modifiable risk
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factor for subsequent UTI. This provides a rationale for
studying the determinants of intestinal (and vaginal) col-
onization with particular E. coli strains and for search-
ing for external reservoirs of virulent E. coli that might be
acquired by the host as intestinal (and vaginal) colonizers.

Same- versus different-strain recurrent UTI
Molecular fingerprinting also has been used to assess
the same- versus different-strain nature of recurrent UTI
isolates, in comparison with index isolates. The findings
have been quite variable, with same-strain episodes ac-
counting for from 25 to 100% of recurrences in different
studies (60, 63, 64, 221–224), with differences in selection
criteria and patient populations contributing to the var-
iability. In one study, 30/44 (68%) of recurrent UTIs were
caused by a strain previously identified in that person
(60). This percentage rose with the number of recurrences
per person-year, from 55% (6/11) among patients with
two recurrences, through 72% (17/24) among those with
four or five recurrences, to 78% (7/9) among those with
six or more recurrences. Analysis of a subset of subjects
established that most recurrent UTIs were due to same-
strain reinfection, not overt persistence within the urinary
tract, and suggested that the colonic flora was the reservoir
for these reinfecting strains (although intracellular persis-
tence within the urinary tract, as discussed below, could
not be ruled out). As observed in this study and others,
some patients experience multiple same-strain recurrences,
some of which can occur months or years after the initial
episode, occasionally with intervening UTI episodes due to
unrelated strains (60, 63, 64, 221, 224, 225).

The biological relevance of this sort of analysis is that
different-strain recurrence implies an independent in-
fection episode whereas same-strain recurrence implies
either relapse from a persisting endogenous focus or
reintroduction of the strain from a persisting external
reservoir in the host or the environment. This distinction
may have clinical relevance for prevention and treatment
efforts, since the occurrence of multiple independent
infection episodes suggests an underlying host predis-
position to infection (which may be amenable to inter-
vention, for example, through a change in contraceptive
method) (66), whereas the presence of a persisting res-
ervoir (whether external or internal) suggests a need to
identify and eradicate the reservoir.

Potential endogenous reservoirs include the long-term
intracellular persistence of a strain within the bladder

epithelium that seems to underlie the intermittent epi-
sodes of recurrent bacteriuria that occur in experimen-
tally infected mice following apparent resolution of the
initial infection (226). Limited clinical evidence supports
that this phenomenon occurs also in humans, although
its proportional contribution to same-strain recurrent
UTI is undefined (227). For external reservoirs, the host
may be persistently colonized with a strain in the intes-
tine and/or vagina or may repeatedly reacquire it from
the (animate or inanimate) external environment (221).
In either situation, efforts to identify and eliminate the
external reservoir conceivably could be protective.

Strain sharing between associated hosts
Environmental sources of uropathogenic or antimicrobial-
resistant E. coli have been investigated by using genomic
profiling, with or without VF detection and phyloge-
netic analysis. Within-household strain sharing has been
demonstrated by PCR-based genomic profiling, PFGE,
and whole-genome analysis between adult sex partners
(in some instances, accompanied by symptomatic UTI in
one or both individuals) and between parents and chil-
dren, siblings, and even humans and pets (Figs. 2, 10, and
11) (63, 148, 224, 228–237). Likewise, several hospital-
based pyelonephritis outbreaks have been documented in
which health care workers seemingly transmitted a virulent
strain to patients (238–240). Interestingly, some evidence
suggests that what classically have been regarded as VFs
also predict co-colonization of epidemiologically associ-
ated hosts, implying that these traits may promote person-
to-person transmission as well as infection (224, 233, 234,
237, 241, 242).

However, that person-to-person transmission actually
occurs is inferential except in the hospital setting: the
underlying mechanism for the observed within-household
strain sharing remains to be defined. Sexual transmis-
sion, a favored hypothesis, is supported by epidemiolog-
ical evidence associating certain sexual practices with
co-colonization of adult sex partners and by anatomical
coincidences such as colonization of the male partner’s
urethra or glans penis with a strain also found in the fe-
male partner’s vagina and urine (229, 241, 243). However,
sexual transmission is unlikely to explain co-colonization
involving children, pets, and nonsexually associated adults
(63, 148, 230, 236, 237, 242, 244); other modes of host-
to-host transmission (whether direct or indirect) must be
considered, as must be possible coordinate acquisition
from a common external source, such as the food supply.
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Community-wide dissemination of ExPEC
Transmission pathways of ExPEC within the larger com-
munity are relevant to the dissemination of virulent
clonal groups within the human population. Older ex-
amples of this phenomenon include the O15:K52:H1
clonal group, which (as mentioned above) first came to
attention when it caused the mysterious South London
outbreak of 1986 and 1987 (245–247), and E. coli clonal

group A, which (as also mentioned above) has emerged
as a prominent cause of drug-resistant UTI across the
United States (10, 61, 248) and appears to have under-
gone point-source spread within at least one community
(61). The most recent and dramatic example is ST131-
H30, which first emerged around 2000 and expanded
rapidly thereafter to become, by 2010, the leading cause
of fluoroquinolone-resistant and ESBL-associated E. coli

Figure 10 Pulsed-field gel electrophoresis (PFGE) profiles and colonization patterns of Escherichia coli isolates from three household members
(man, woman, and pet cat). (Top panel) PFGE profiles. Lane numbers are shown below gel images. Lanes 1 through 10, profiles of nine of the
unique strains, with strain designations shown above gel lanes, plus subtype 1″) (lane 9). Lanes 11 through 16, profiles of independent isolates of
strain 1, as recovered from various anatomical sites from the woman (lanes 11–13), man (lanes 14 and 15), and cat (lane 16). (Bottom panel)
Distribution of 14 unique E. coli strains over time (week of sampling shown below grid), as recovered from various anatomical sites from the three
household members. NG, no growth; •, no sample. Strains isolated more than once appear in colored boxes, with a unique color for each strain.
Strains isolated only once appear in colorless boxes. Week 12, which coincided with symptoms of acute urinary tract infection (UTI) in the
woman, yielded strain 1 from the woman’s urine specimen (boldface box). There is no strain 7. Strain 1, the woman’s UTI strain, was the most
extensively shared and persistent strain, and had the most virulence genes of the 14 strains. Reprinted from reference 242, with permission.
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Figure 11 Bootstrapped consensus core genome phylogeny for 33 household isolates and 47 comparison isolates of Escherichia coli sequence
type 131 (ST131). The tree was based on 1000 bootstrapped maximum likelihood trees, retaining only those nodes that appeared in >70% of trees,
and was rooted with strain CD306. Branch lengths are meaningless. Household isolates (as in Fig. 2) are color-coded by household (1–6);
comparison isolates are shown in black. For the household isolates: boldface indicates clinical isolates; regular font indicates fecal isolates;
underlining indicates fecal isolates from a clinical isolate’s source host; and asterisks indicate the 6 household isolates that were included in Price
et al (11), i.e., JJ1886, JJ1887, JJ2547, CU758, CU799, and CD364 (which in Price et al was labeled as CD449). Dates are shown for the 2
households that underwent serial sampling (households 4 and 6). Clustering by household supports within-household transmission (strain
sharing); near identify of clinical and fecal isolates within each household supports the fecal reservoir as the source for infection-causing strains;
and variation in a given strain within its source household over time (households 4 and 5) suggests microevolution during long-term host
colonization. Reprinted from reference 63, with permission.
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infections worldwide (249, 250). Several other resistance-
associated ExPEC clonal groups likewise have recently
emerged and disseminated (78, 251, 252).

The seeming point-source outbreak behavior of clonal
group A, mentioned above, prompted the suggestion
that, by analogy to E. coli O157:H7, Campylobacter, and
Salmonella, contaminated food products might serve as a
transmission vehicle also for ExPEC (61). Indeed, retail
foods are commonly contaminated with antibiotic-
resistant E. coli and ExPEC, along a descending preva-
lence gradient from poultry (highest) through other
meats (beef and pork) to produce and miscellaneous
foods (lowest), and a subset of these isolates resembles
human clinical isolates according to virulence genes and
genomic profiles (192, 197–204). The human health im-
plications of such contamination remain to be fully de-
fined. Insights into this question conceivably could derive
from higher-resolution molecular epidemiological com-
parisons of ExPEC isolates from retail foods versus col-
onized and infected humans to ascertain the extent of
commonality between these populations. Indeed, pre-
liminary results from a WGS-based comparison of tem-
porally and geographically matched E. coli isolates from
retail meat products and patients with UTI in a relatively
isolated community (Flagstaff, Arizona) suggest that 11
to 20% of UTI isolates derive from genome clades that are
dominated by meat-source isolates, implying a food an-
imal source (L. B. Price, personal communication). Such
cross-sectional ecological studies could be complemented
by longitudinal molecular epidemiological surveillance
of individuals and the foods they consume, thereby iden-
tifying temporal patterns of genomic commonality of
E. coli strains suggesting food-borne transmission.

Within-host epidemiology in a
single sample or across samples
Various molecular typing methods have been used to
investigate the clonal composition of a single fecal or
clinical sample or of concurrent paired samples (e.g.,
fecal or blood versus urine) from a given subject, and to
track this over time by analyzing serial samples, or to
compare same-clone and different-clone isolates from a
given host. Such studies have shown that what conven-
tionally would be regarded as monoclonal infections may
actually involve multiple clones (253–255) or a single
clone that has developed microheterogeneity (including
for antimicrobial resistance gene content) in vivo, likely
during adaptation to the infection niche (255). Plasmid

segregation can occur in vivo or in the clinical laboratory,
producing genetic variants with discordant resistance
profiles that could conceal the underlying clonal com-
monality and, thus, potentially obscure the likely source
of bacteremia (256). Subtle genetic differences between
concurrent or sequential same-clone isolates from dif-
ferent niches or disease contexts (e.g., feces, cystitis, bac-
teremia) in a single host, or closely associated hosts, may
(257, 258) or may not (255, 259) have apparent viru-
lence-related implications, so may or may not be re-
sponsible for the isolates’ divergent clinical behaviors.
Finally, at the time of an acute urinary tract infection
the disease-causing clone often not only predominates in
the host’s feces, consistent with both the “fecal-urethral”
and “prevalence” hypotheses, but also exhibits more
virulence-associated traits (e.g., VFs and group B2 back-
ground) than do the host’s concurrent “fecal-only” clones,
consistent with the “special pathogenicity” hypothesis
(132, 134, 260, 261).

Clonal diagnostics
The well-established associations of specific E. coli line-
ages (as defined at the level of ST complexes, STs, and
sub-ST clades, e.g., ST131-H30) with antimicrobial re-
sistance, clinical manifestations, and host characteris-
tics, together with the increasing availability of rapid
molecular detection methods, allow for the development
of clone-specific diagnostic tests to predict, in real time,
both antimicrobial resistance and clinical phenotype
(262–265). Emerging data suggest that if such tests were to
be used clinically to inform empirical treatment choices,
this could reduce significantly the frequency of “drug-bug”
(i.e., antimicrobial versus organism) mismatch and use of
overly broad-spectrum therapy, thereby improving both
clinical outcomes and antimicrobial stewardship (264).
Clinical studies are needed to determine the real-world
effectiveness of such tests.

SUMMARY AND CONCLUSIONS
Molecular epidemiological analyses of ExPEC, which
are based on structured observations of E. coli strains as
they occur in the wild, provide an important complement
to experimental assessment. Fundamental to the success
of molecular epidemiological studies are the careful se-
lection of subjects and the use of appropriate methods
for genotyping and statistical analysis. To date, molecular
epidemiological studies have yielded numerous impor-
tant insights into host-pathogen relationships, phylo-
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genetic background, reservoirs, clinical diagnostics, and
transmission pathways of ExPEC, including antimicro-
bial-resistant strains, and have delineated areas in which
further study is needed. The rapid pace of discovery of
new putative VFs and the increasing awareness of the
importance of VF regulation, expression, and molecular
variation should stimulate many future molecular epide-
miological investigations. The ever-increasing sophisti-
cation and availability of molecular typing methodologies,
and the new computational and statistical approaches
that are being developed to address the huge amounts of
data that WGS generates, provide improved tools for such
studies and allow entirely new questions to be addressed.
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