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ORIGINAL ARTICLE

Performance of Atrial Fibrillation Burden Trends 
for Stroke Risk Stratification
Jonathan P. Piccini , MD, MHS; Evan J. Stanelle , MS, MA; Cody C. Johnson , PhD; Elaine M. Hylek , MD; Rahul Kanwar, MS;  
Dhanunjaya R. Lakkireddy , MD; Suneet Mittal , MD; James Peacock , MD, MS; Andrea M. Russo , MD;  
Dana Soderlund , MPH; Mellanie True Hills , BS; Rod S. Passman , MD, MHS

BACKGROUND: Atrial fibrillation (AF) is associated with an increased risk of stroke, yet the limitations of conventional monitoring 
have restricted our understanding of AF burden risk thresholds. Predictive algorithms incorporating continuous AF burden 
measures may be useful for predicting stroke. This study evaluated the performance of temporal AF burden trends as 
predictors of stroke from a large cohort with insertable cardiac monitors.

METHODS: Using deidentified data from Optum Clinformatics Data Mart (2007–2019) linked with the Medtronic CareLink 
insertable cardiac monitor database, we identified patients with an insertable cardiac monitor for AF management (n=1197), 
suspected AF (n=1611), and cryptogenic stroke (n=2205). Daily AF burden was transformed into simple moving averages, 
and temporal AF burden trends were defined as the comparison of unique simple moving average pairs. Classification trees 
were used to predict ischemic stroke, and AF burden significance was quantified using bootstrapped mean variable importance.

RESULTS: Of 5013 patients (age, 69.2±11.7 years; 50% male; CHA2DS2-VASc, 3.7±1.9) who met inclusion criteria, 869 
had an ischemic stroke over 2 409 437 days total follow-up. Prior stroke or transient ischemic attack (variable importance, 
13.13) was the number 1 predictor of future stroke followed by no prior diagnosis of AF (7.35) and AF burden trends in 
follow-up (2.59). Temporal proximity of AF and risk of stroke differed by device indication (simple moving averages: AF 
management, <8 days and suspected AF and cryptogenic stroke, 8–21 days). Together, baseline characteristics and AF 
burden trends performed optimally for the area under the receiver operating characteristic curve (0.73), specificity (0.70), 
and relative risk (5.00).

CONCLUSIONS: AF burden trends may provide incremental prognostic value as leading indicators of stroke risk compared with 
conventional schemes.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: atrial fibrillation ◼ stroke ◼ thromboembolism ◼ time factors

While the association between atrial fibrillation (AF) 
and stroke is well established, our understanding 
of the temporal associations of AF and stroke and 

the duration of AF and stroke is incomplete.1 Prior studies 
using cardiovascular implantable electronic devices have 
shown an association between subclinical AF and thrombo-
embolic risk. These data have demonstrated an increased 

risk of stroke with the presence of subclinical AF,2,3 with the 
risk of stroke modified by the total burden or amount of 
subclinical AF.4–8 Moreover, the combination of AF duration 
and CHA2DS2-VASc score has been shown to risk-stratify 
patients and help guide stroke prevention therapy.9,10

Historically, studies investigating the relationship 
between AF duration and stroke all share a common 
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methodology: they focus on AF duration within a given 
follow-up interval to the subsequent risk of stroke.11 While 
these prior studies have provided important observations 
that have improved our understanding of AF-related 
stroke, the categorization of nominal AF burden thresh-
olds and extended time-to-event durations do not allow 
for the description of more complex temporal trends of 
AF that may predict stroke. Accordingly, the objective 
of the present study was to evaluate the importance of 
AF burden features using machine learning techniques 

(undersampling/oversampling, bootstrapping, and clas-
sification trees) to predict daily ischemic stroke risk in 
patients from a large, retrospective cohort with insertable 
cardiac monitors (ICMs).

METHODS
Study Cohort
To examine the temporal association of AF trends and stroke, 
we linked ICM and administrative claims data including patient 
characteristics and clinical outcomes. Patients were included 
if they had a Medtronic Reveal XT or LINQ ICM with a cor-
responding device implant indication for (1) AF management, 
(2) clinical concern for suspected AF, or (3) the occurrence 
of cryptogenic stroke as determined by the implanting physi-
cian (Figure S1). To test for the impact of the device model on 
these analyses, statistical models were conducted both with 
and without the inclusion of Medtronic Reveal XT devices. No 
statistical differences were observed, and Medtronic Reveal XT 
devices were included in the analysis.

Deidentified data from Optum Clinformatics Data Mart 
(2007–2019), which contains deidentified claim data from mul-
tiple hospitals in the United States, were linked to the Medtronic 
CareLink database of ICMs. Patients aged ≥18 years, without 
dual Medicare and Medicaid eligibility, were included if they had 
at least 12 months of continuous claims enrollment before and 
after the device implant. The study design is shown in Figure 1. 
An index date was nominally assigned 21 days after ICM 
implantation to initialize a time series for each device param-
eter. Patients with an ischemic stroke post-implantation were 
included if the first event occurred after the initialization period 
and with continuous enrollment (Figure 1, period C). Due to 
the data use agreement with Optum, the data cannot be made 
available to other researchers for purposes of reproducing the 
results or replicating the procedure.

Definitions of Comorbidities, Risk Factors, and 
Treatment
A patient was considered to have a claims history if there was an 
acute, inpatient, diagnosis code date, or 2 outpatient diagnosis 
code dates, separated at least 30 days apart, associated with 
the patient before the implant date. Table S1 presents diagno-
sis codes for each condition of interest. The CHA2DS2-VASc 

WHAT IS KNOWN?
• There is a known association between subclinical 

atrial fibrillation (AF) and stroke, with the risk of 
stroke modified by the total amount or burden of AF.

WHAT THE STUDY ADDS
• AF burden trends may be a better predictor of 

stroke than daily AF burden thresholds.
• Efforts to evaluate and implement atrial arrhythmia 

and device data into stroke risk prediction should 
be so in conjunction with traditional risk factors.

• The association of AF burden trends and stroke risk 
likely differs by device indication, with a shorter win-
dow occurring more frequently for AF management 
(<8 days) and a longer window for cryptogenic 
stroke (>13 days).

Nonstandard Abbreviations and Acronyms

AF atrial fibrillation
AT atrial tachycardia
AUC  area under the receiver operating  

characteristic curve
CMA cumulative moving average
ICM insertable cardiac monitor
OAC oral anticoagulation
SMA simple moving average
TIA transient ischemic attack

Figure 1. Study design.
An index date was nominally assigned at 
21 days after insertable cardiac monitor 
implantation to initialize a time series 
for each diagnostic device parameter. 
Patients with an ischemic stroke post-
implantation were included if the first event 
occurred after the initialization period and 
with continuous enrollment (period C).
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score was calculated before the implant date using the same 
list of diagnosis codes. Anticoagulation therapy was defined as 
a claim history of an oral anticoagulation (OAC) prescription 
for warfarin, apixaban, edoxaban, dabigatran, or rivaroxaban. 
OAC 90 days before device implantation and OAC post-device 
implantation were accounted for as separate binary (yes/no) 
indicators.

Outcomes
The occurrence of ischemic stroke was defined by an acute 
event with the occurrence of a diagnosis code10,12,13 (Table S1) 
or a diagnosis-related group code for ischemic stroke (061, 
062, and 063) from an inpatient or outpatient hospital, emer-
gency room, or ambulatory surgical center (place of service 
equal to 21, 22, 23, or 24, respectively) or by an inpatient hos-
pitalization with a diagnosis-related group code for ischemic 
stroke (061, 062, and 063). In the event of multiple strokes in 
an individual, the first occurrence was recorded as the primary 
outcome. If the stroke date for a patient occurred within 28 
days of a preceding hospitalization, the patient was excluded 
from the cohort to avoid confounding with zero levels of activity 
due to hospitalization. A 2-tailed Z test was used to test the dif-
ference for each baseline characteristic between patients with-
out ischemic stroke and patients with ischemic stroke groups. 
The test assumed unequal variances for continuous variables 
and equality of proportions (binomial distribution) for discrete 
variables.

Derivation of Diagnostic AF Data
The primary ICM detection device parameters of interest 
included daily total atrial tachycardia (AT)/AF burden (hours/d), 
total patient activity (minutes/d), average ventricular rate (bpm) 
measured from midnight to 4:00 am (night) and from 8:00 am 
to 8:00 pm (day), and heart rate variability (measured as the SD 
of the 5-minute relative risk medians over a 24-hour period). 
The minimum detection duration required to register an AT/AF 
event was 2 minutes. To avoid bias from missed AT/AF events, 
patients with <21 days of daily follow-up after implant, or with 
a gap in follow-up ≥30 days, were excluded from the cohort. 
Missing data resulting from a gap in daily follow-up were inter-
polated by forward-filling the last known value for each device 
parameter. Follow-up was limited to 2 years.

To determine AF burden trends, each device parameter was 
evaluated as a cumulative moving average (CMA) from the day 
after implant and as a simple moving average (SMA) of dif-
ferent clinical windows (1, 2, 3, 5, 8, 13, and 21 days) start-
ing 21 days after implant. For device parameter d at time t, 

CMA = 1
t

t∑
i=1

di

SMAp =
1
p

t∑
i=t−p+1

di

where t denotes days after implant and p denotes the SMA 
period. A prior study investigating the short-term effects of daily 
AF burden on heart failure showed that a short-term trend in 
AF burden, defined as taking the offset between the 7-period 
SMA and the CMA, was a reliable risk factor for heart failure.14 
Extending this methodology to the present study, each mov-
ing average was compared with the other moving averages to 

create a unique combination of 28 offset variables for each 
device parameter.

An AF burden trend, defined as the offset of 2 moving aver-
ages, has 3 novel features that aid in describing the association 
between AF and stroke risk. First, it can account for an acute 
change in AF (Figure 2A: when one moving average crosses 
another) and a sustained trend (Figure 2B: when one moving 
average remains greater than another). Second, the offsets 
selected by the model fitting exercise may provide insight into 
the temporal relationship between AF and stroke risk. Finally, a 
comparison of moving averages describes relative changes in 
daily AF burden that might not be accounted for by traditional 
AF burden risk thresholds.

Predictive Modeling
Machine learning analysis was performed to identify the vari-
able importance of AF burden trends. Patients were randomly 
divided into 2 groups: 70% for training and 30% for validation. 
A decision tree classifier (rpart) was used to predict which fol-
low-up days had an occurrence of ischemic stroke using base-
line characteristics, CHA2DS2-VASc score, device parameters, 
and moving average offsets (SMAa−SMAb) as predictors. 
Variable importance was calculated as the goodness-of-fit for 
each predictor across a decision tree. The trained model was 
applied to the validation data, and discrimination was calcu-
lated using the area under the receiver operating character-
istic curve (AUC) of the receiver operating characteristic. To 
minimize bias and improve classifier accuracy, we repeated 
this process 1000 times using the bootstrap method 
(Supplemental Methods). For analysis, variable importance 
was calculated as the bootstrapped mean for each predic-
tor. Bar plots of the bootstrapped mean were used to com-
pare the difference in variable importance for each predictor. 
The bootstrapped mean was calculated for AUC, sensitivity, 
specificity, negative predictive value, and positive predictive 
value. These estimates were used as metrics to compare the 
predictive performance of different model structures. For AUC 
comparison, models were ranked by mean AUC and tested 
with a separate bootstrap (iterations, 10 000) to estimate the 
probability of equal means between successive models. All 
analyses were performed with R software, version 3.6.0. Data 
sets were deidentified before analysis as defined by Health 
Insurance Portability and Accountability Act in 45 Code of 
Federal Regulations Sec. 164.514(b), and institutional review 
board review exemption was obtained.

RESULTS
Baseline Characteristics
Among 229 653 patients with ICM with linked claims 
and ICM data, 5013 patients met our inclusion criteria 
(Figure S1), including 4852 (97%) LINQ devices and 
161 (3%) REVEAL XT devices. In this group, there were 
2871 (57.3%) patients with device-detected AF, 869 
(17.3%) patients who experienced an ischemic stroke, 
276 (5.5%) patients with device-detected AF who 
experienced a stroke, and 593 (11.8%) patients with-
out device-detected AF who experienced a stroke. The 
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median AF burden was 56 minutes (25th, 75th; 8 min-
utes, 534 minutes).

Table 1 presents the baseline characteristics of 
the patients according to the occurrence of ischemic 
stroke events. Overall, the mean age of the cohort was 
69.2±11.7 years, and 50% of the cohort was female. 
Patients who experienced an ischemic stroke had higher 
mean CHA2DS2-VASc scores (4.3±1.9 versus 3.5±1.9; 
P<0.001) and more often had chronic kidney disease 
(20% versus 16%; P<0.001). Patients with an ischemic 
stroke more frequently had a higher rate of prior stroke/
transient ischemic attack (TIA), hypertension, and diabe-
tes. Patients with ischemic stroke were less likely to have 
a prior diagnosis of AF (27% versus 48%; P<0.001), 
less likely to be treated with OAC (18% versus 29%; 
P<0.001), and were much more likely to have had their 
device implanted for monitoring after cryptogenic stroke 
(81% versus 36%; P<0.001).

Follow-Up
There were 2 409 437 total patient days of follow-up 
with an average of 150±166 days for patients with an 
ischemic stroke event and 550±199 days for patients 
without an ischemic stroke event. The number of patients 
with a gap in follow-up was 1016 (20%); the average gap 
size was 7.3±6.9 days. Patients with an ischemic stroke 
were less likely to have a gap in follow-up (6% versus 
23%; P<0.001), and in patients with ischemic stroke with 
a gap, their average gap size was shorter compared with 
those without an ischemic stroke (5.6 days versus 7.3 
days; P<0.001).

Factors Associated With Stroke
Figure S2 illustrates the mean importance of each vari-
able in the analysis via a convergence plot. As shown 
in Figure S2, prior stroke/TIA, no history of AF, and 

Figure 2. Atrial tachycardia (AT)/atrial fibrillation (AF) burden temporal trends.
The comparison of a 21-day simple moving average (SMA) with its cumulative moving average (CMA) shows when the daily AT/AF burden 
amount is above or below average. The onset of relative risk occurs when the SMA crosses above the CMA, remains elevated when the SMA 
is greater than the CMA, and ends when the SMA crosses below the CMA. The trend is sensitive to a relative increase in daily AT/AF burden 
(A) and longer periods of increasing burden (B). The patients in both examples experienced an ischemic stroke on the last day of follow-up; 
follow-up dates were different for each example.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCEP.123.012394
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device parameters were the most frequently selected 
as predictors, accounting for over 98% of all selections. 
All features except ablation, sleep apnea, and valvular 
heart disease reached convergence within 1000 itera-
tions. Given the low variable importance and selection 
frequency of these 3 variables, 1000 bootstraps were 
considered sufficient for the remainder of the analysis.

We also examined the importance of each variable as 
a function of their contribution to the overall prediction 
analysis relative to other variables. Figure 3 provides a 
bar plot of mean variable importance, scaled as a percent 
of total variable importance, for each feature in the analy-
sis. Prior stroke/TIA (13.13) was the number 1 predic-
tor of future stroke followed by no prior diagnosis of AF 
(7.35). The presence of AF at device implantation was 
partially correlated with prior stroke (Pearson ρ, −0.18; 
P<0.001) as a function of device indication; there was no 
significant correlation between no prior diagnosis of AF 
and prior stroke when controlling for cryptogenic stroke 
device indication (Pearson partial correlation ρ, −0.02; 
P<0.001). The next best predictor was AF burden trends 
(2.59).

The inset in Figure 3 presents the top 30 individual 
features after stroke/TIA and AF that were selected as 
predictors. All temporal trends in this group were defined 
as a p-day SMA offset by its CMA. Seven of the top 10 
features describe trends of increasing AF burden amount 
without any clear priority for the window of the trend. The 
next best set of features, heart rate, and daily activity 
parameters, on the other hand, showed patterns of an 
increasing trend with a priority for longer windows (≥13 
days). The CMA of daily AF burden was also a top 10 
predictor and was negatively associated with stroke risk. 
To test this association, the maximum AF burden amount 
during follow-up was included in a principal components 
analysis, along with demographic, baseline, and stroke 
event covariates. Prior diagnosis of AF (0.72), maxi-
mum AF burden amount (0.69), prior OAC use (0.63), 
prior stroke (−0.46), and future ischemic stroke (−0.45) 
were identified as the second of 4 components, having 
an explained variance of 28%. Patients with more AF 
were more likely to have undergone OAC therapy before 
device implantation and were less likely to experience a 
future stroke. As a result, patients with a maximum AF 
burden of <1 hour during follow-up had a much higher 
rate of stroke than their counterparts who had a maxi-
mum AF burden of ≥1 hour on follow-up (23.2% versus 
7.3%; P<0.001).

To examine how well the model would perform for 
patients with known AF, a sensitivity analysis was per-
formed on patients with an AF management device indi-
cation (Figure S3). Increasing AF burden trends (0.82) 
was the sixth most important aggregate predictor pre-
ceded by a history of stroke/TIA (6.12), sleep apnea 
(2.30), age (1.04), diabetes (0.88), and decreasing activ-
ity levels (0.84). AF burden trends comprised 5 of the 
top 10 individual predictors (without any clear priority for 
the window of the trend) followed by increasing short-
term trends in daily activity level (trend window ≤8 days). 
Sensitivity results were similar to  results from the overall 
analysis but with a shift in variable importance from AF 
burden trends to baseline characteristics and daily activ-
ity levels.

Table 1. Baseline Demographics

Characteristics
No ischemic 
stroke (n=4144)

Ischemic stroke 
(n=869) P value

Demographics

  Male sex 2066 (50%) 439 (51%) 0.751

  Age, y* 69.2±11.7 69.5±11.7 0.381

CHA2DS2-VASc†

  Mean 3.5±1.9 4.3±1.9 <0.001

  0 156 (4%) 21 (2%) 0.063

  1 481 (12%) 48 (6%) <0.001

  2 645 (16%) 91 (10%) <0.001

  3 791 (19%) 120 (14%) <0.001

  4 833 (20%) 170 (20%) 0.753

  5+ 1238 (30%) 419 (48%) <0.001

History

  AF 1986 (48%) 235 (27%) <0.001

  Oral anticoagulant‡ 1210 (29%) 160 (18%) <0.001

  Stroke/TIA 1165 (28%) 506 (58%) <0.001

  Systemic embolism 19 (0%) 8 (1%) 0.151

  Heart failure 585 (14%) 120 (14%) 0.854

  Hypertension 3308 (80%) 742 (85%) <0.001

  diabetes 1156 (28%) 322 (37%) <0.001

  Vascular disease 445 (11%) 97 (11%) 0.760

  Myocardial infarction 382 (9%) 97 (11%) 0.087

  Sleep apnea 832 (20%) 156 (18%) 0.166

  COPD 154 (4%) 35 (4%) 0.734

  Coronary artery 
disease

1206 (29%) 239 (28%) 0.365

  Kidney disease 646 (16%) 176 (20%) <0.001

  Valvular heart disease 448 (11%) 88 (10%) 0.594

  Hypothyroidism 789 (19%) 159 (18%) 0.645

  Hyperthyroidism 45 (1%) 7 (1%) 0.577

  Ablation 134 (3%) 11 (1%) 0.002

Device indication§

  AF management 1143 (28%) 54 (6%) <0.001

  AF suspected 1498 (36%) 113 (13%) <0.001

  Cryptogenic stroke 1503 (36%) 702 (81%) <0.001

AF indicates atrial fibrillation; COPD, chronic obstructive pulmonary 
disease; and TIA, transient ischemic attack.

*Age was calculated at the time of device implantation.
†CHA2DS2-VASc scores and comorbidities were assessed via claims based 

on the patient’s clinical history before device implantation. See Table S1 for 
definitions.

‡Oral anticoagulant was defined as the occurrence (yes/no) of a filled oral 
anticoagulant prescription within 90 days before device implantation.

§Device indication was recorded at the time of device implantation.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCEP.123.012394
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Figure 3. Mean variable importance by feature.
This figure provides a bar plot of mean variable importance, scaled as a percent of total variable importance, and a color-coded association 
with stroke risk for each feature in the analysis. For ease of presentation, device parameters show aggregate variable importance across all their 
respective features. The inset presents the top 30 individual features after stroke/transient ischemic attack (TIA) and history of atrial fibrillation 
(AF) that were selected as predictors. All trends are defined as the p-day simple moving average offset by its cumulative moving average. AFB 
indicates atrial fibrillation burden; COPD, chronic obstructive pulmonary disease; DA, daily activity; DHR, daytime heart rate; HRV, heart rate 
variability; NHR, nighttime heart rate; and OAC, oral anticoagulation.
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Temporal Relationship Between AF Burden and 
Stroke
We also examined the temporal relationship between 
AF burden and ischemic stroke risk. Figure 4 shows the 
percentage of time that an increase in AF burden was 
a positive predictor for stroke, arranged by device indi-
cation and the period of AF burden temporal trend. AF 
management prioritized shorter periods (1–5 days) more 
frequently than longer periods and cryptogenic stroke 
prioritized a longer period (21 days) more frequently than 
shorter periods. While a 21-day SMA, offset with its CMA, 
was the most robust AF burden trend across device indi-
cations, its frequency of selection as a predictor differed 
by indication, occurring 94% of the time for cryptogenic 
stroke and 11% of the time for AF management.

Factors Associated With Ischemic Stroke 
Relative to the CHA2DS2-VASc Score
We also analyzed predictors of stroke in the context of 
the current guideline-recommended risk stratification 
system: the CHA2DS2-VASc score. Figure S4 provides 
mean variable importance for the CHA2DS2-VASc score 

and all remaining features in the analysis. CHA2DS2-VASc 
score (7.23) was the number 1 predictor of future stroke 
followed by an absence of prior AF diagnosis (6.14) and 
trends of increasing AF burden (2.85). Prior stroke/TIA 
accounted for 64.0% of CHA2DS2-VASc variable impor-
tance followed by age (23.8%) and diabetes (4.3%).

The inset in Figure S4 presents the top 30 individual 
features after the CHA2DS2-VASc score and AF that 
were selected as predictors at least 5% of the time. AF 
burden trends, such as those in a previous analysis (Fig-
ure 3), represented seven of the top 10 predictors.

Model Performance for the Prediction of 
Ischemic Stroke
We used the AUC to assess how well different models 
could predict the risk of ischemic stroke within 5 days 
after follow-up for a given patient. Figure 5 presents an 
error bar plot of mean AUC performance for 12 different 
models. Ranked AUC values present 5 distinct group-
ings: models 1a to 1e: traditional AF burden thresholds; 
model 2: raw device parameter values for daily activity, 
time in AT/AF, daytime heart rate, nighttime heart rate, 
and heart rate variability; models 3 to 6: CHA2DS2-VASc 

Figure 4. Temporal association of atrial tachycardia (AT)/atrial fibrillation (AF) burden trend and stroke risk.
The temporal relationship between AT/AF burden and ischemic stroke risk differed by device indication with AF management prioritizing 
shorter durations of risk (1–5 days) more frequently than longer durations and cryptogenic stroke selecting a longer duration of risk (21 days) 
more frequently than shorter durations. While a 21-day simple moving average, offset with its cumulative moving average was the most robust 
temporal trend across device indications (Figure 3, inset), its frequency of selection as a predictor differed by indication, occurring 94% of the 
time for cryptogenic stroke and 11% of the time for AF management.
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https://www.ahajournals.org/doi/suppl/10.1161/CIRCEP.123.012394


Piccini et al AF Burden Trends and Stroke

Circ Arrhythm Electrophysiol. 2024;17:e012394. DOI: 10.1161/CIRCEP.123.012394 November 2024 781

score, device AF burden trends, as well as their corre-
sponding raw parameter values, and baseline charac-
teristics; model 6a: baseline characteristics and device 
temporal trends; and model 6b: baseline characteristics 
and AF burden trends for patients with at least 1 day of 
device-detected AF during follow-up. The change in vali-
dation statistics for each model and grouping is shown 
in Table 2.

The comparison of AUC across models demonstrates 
3 results. First, lower levels of AF burden had greater 
discriminatory power than higher levels. Second, while 
device parameter values had greater discriminatory 
power than traditional thresholds2,3,5,8,15,16 (0.557 versus 
0.520; P<0.001), they did not provide additional dis-
criminatory capacity to AF burden trends (0.616 versus 
0.617; P=0.655). Third, baseline characteristics (AUC, 
0.687) had greater discriminatory power than any of 
the device-based features, including traditional AF bur-
den thresholds. However, when patient characteristics 
were combined with AF burden trends, specifically for 
patients with device-detected AT/AF, the AUC, speci-
ficity, and relative risk of the models improved (AUC, 

0.694–0.726 depending on the combination; Table 2). 
This remained true for a sensitivity analysis performed on 
patients with an AF management device indication (AUC, 
0.69; specificity, 0.84; and relative risk, 6.74). To illustrate 
specific examples, we considered a random sample of 
16 patients having a CHA2DS2-VASc score >3 and the 
occurrence of ischemic stroke (Figure 6).

DISCUSSION
In this analysis, we demonstrated that the addition of 
AF burden trends to baseline patient characteristics 
improves discrimination and specificity for the prediction 
of ischemic stroke. In 5013 patients with linked clini-
cal and ICM data, recursive partitioning and regression 
demonstrate that the addition of AF diagnostic trends 
to baseline patient characteristics improves the pre-
diction of ischemic stroke. There are several important 
findings in this analysis. First, daily AT/AF burden thresh-
olds defined in previous analyses, while sensitive to the 
occurrence of stroke, are not specific. Second, baseline 
patient characteristics outperformed the CHA2DS2-VASc 

Figure 5. Mean area under the receiver operating characteristic curve (AUC) by model structure.
This error bar plot shows the mean AUC and 95% credible interval from 1000 bootstrapped, hold-out validation samples for 12 different model 
structures. Device values indicate the raw device parameter data for atrial tachycardia (AT)/atrial fibrillation (AF) burden, patient activity, daytime 
heart rate, nighttime heart rate, and heart rate variability; device trends; the temporal trends of the device parameter data; CHA2DS2-Vasc, 
the eponymous score assessed via claims based on the patient’s clinical history before device implantation; and baseline characteristics, all 
comorbidities assessed via claims based on the patient’s clinical history before device implantation. Model 6a adds its respective features to 
the preceding model structure. Model 6b is the same model structure as model 6a and fits with a subset of patients identified as having at least 
1 day during follow-up with an AT/AF burden amount of >0.
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score and its standard approach to weighting risk fac-
tors. Third, the combination of patient characteristics 
and device-detected AF resulted in the best discrimina-
tion (AUC, 0.726). Finally, the optimal window for AT/AF 
events predicting future stroke varies according to the 
treatment indication.

Patients with AF are at risk for increased cardio-
vascular events, including increased risks of hospital-
ization, new-onset heart failure, and ischemic events. 
Accurate prediction of these events is important to 
optimize prevention strategies and personalize care to 
achieve optimal outcomes. Prediction of cardiovascu-
lar events in patients with AF has been challenging. In 
particular, the prediction of stroke is complicated due 
to competing mechanisms in those with multiple vascu-
lar risk factors.17 Current guideline-recommended risk 
stratification schemes correctly identify those at risk for 
stroke 50% to 65% of the time and exhibit significant 
variation in predicted event rates across populations.18 
The addition of information on the density and pat-
tern of AF has been suggested as a potential way to 
improve risk stratification for stroke.19 Alternatively, the 
temporal association of significant amounts of AF has 
also been shown to be associated with increased risks 
of AF-related stroke.20,21

Continuous monitoring data from ICMs afford an 
optimal opportunity to evaluate the relation between 
trends of AF burden and the occurrence of stroke. In 
this analysis, we found that daily AT/AF burden thresh-
olds lack specificity despite being sensitive to the 
occurrence of stroke. While different durations of AF 
may serve as useful markers or reference thresholds in 
screening efforts, they have significant shortcomings 
for the accurate prediction of the occurrence of stroke 
in individual patients. In this analysis, AF burden trends 
were more closely associated with stroke. Among AF 
burden trends, the trends with the highest mean vari-
able importance after a prior history of stroke or TIA 
were the SMA of AF burden offset by the CMA over 
2, 3, 5, 8, 13, or 21 days. These AF burden trends, 
as analyzed here, present a novel method of evaluat-
ing risk by accounting for both long-term disease pro-
gression in addition to more acute changes associated 
with near-term temporal risk of adverse clinical events. 
By assessing AF burden trends on an individualized 
basis, opportunities for more specific and timely clini-
cal interventions are possible through a personalized 
approach to patient risk. Evaluation of OAC use in this 
analysis was noted to reduce the incidence of stroke 
among individuals who were characterized as high 

Table 2. Discrimination and Accuracy of Prediction Models

AUC Accuracy

Model Mean P value Sens Spec PPV NPV RR

AF burden

 �≥23.5 h 0.50 (0.50–0.51) 0.52 0.48 0.00178 0.99890 1.62

 �≥6 h 0.51 (0.50–0.51) <0.001 0.98 0.04 0.00181 0.99898 1.78

 �≥1 h 0.51 (0.50–0.52) <0.001 0.97 0.05 0.00183 0.99897 1.78

 �≥5 min 0.52 (0.51–0.53) <0.001 0.95 0.09 0.00186 0.99892 1.71

 �≥2 min 0.52 (0.51–0.53) <0.001 0.94 0.11 0.00186 0.99890 1.69

Device values* 0.56 (0.53–0.58) <0.001 0.49 0.61 0.00223 0.99849 1.48

CHA2DS2-VASc† 0.59 (0.56–0.61) <0.001 0.55 0.62 0.00266 0.99873 2.09

Device trends‡ 0.62 (0.59–0.65) <0.001 0.59 0.59 0.00254 0.99875 2.03

Device values+trends 0.62 (0.59–0.64) 0.655 0.59 0.59 0.00253 0.99875 2.03

Baseline characteristics§ 0.69 (0.66–0.71) <0.001 0.72 0.57 0.00298 0.99911 3.36

  Device trends‖ 0.69 (0.68–0.72) <0.001 0.71 0.61 0.00320 0.99914 3.74

  Device-detected AF¶ 0.73 (0.67–0.77) <0.001 0.68 0.70 0.00226 0.99955 5.00

Statistics are calculated as the respective mean or SD of 1000 bootstrapped, hold-out, validation samples. The baseline 
event probability is 0.0018. P value, a bootstrapped probability testing the null hypothesis of equal mean AUC values for 
successive models. RR is defined as PPV/(1−NPV). AF indicates atrial fibrillation; AT, atrial tachycardia; AUC, area under the 
receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; RR, relative risk; Sens, 
sensitivity; and Spec, specificity.

*Device values indicate the raw device parameter data for AT/AF burden, patient activity, daytime heart rate, nighttime heart 
rate, and heart rate variability.

†CHA2DS2-Vasc indicates the eponymous score assessed via claims based on the patient’s clinical history before device 
implantation.

‡Device trends indicate the temporal trends of the device parameter data.
§Baseline characteristics indicate all comorbidities assessed via claims based on the patient’s clinical history before device 

implantation. See Table S1 for definitions.
‖Model 6a adds its respective features to the preceding model structure.
¶Model 6b is the same model structure as model 6a and is fit with a subset of patients identified as having at least 1 day 

during follow-up with an AT/AF burden amount of >0.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCEP.123.012394


Piccini et al AF Burden Trends and Stroke

Circ Arrhythm Electrophysiol. 2024;17:e012394. DOI: 10.1161/CIRCEP.123.012394 November 2024 783

stroke risk, providing optimism that the targeted appli-
cation of OAC using these moving averages could be 
utilized to guide personalized intervention strategies, 
such as a pill-in-the-pocket approach to intermittent 
OAC. However, this hypothesis will need to be tested in 
adequately powered and rigorous randomized trials.22,23

It is interesting, although not entirely surprising, that 
the performance of individual AF measurements exhib-
ited distinctive risk prediction in different populations with 
implanted ICMs. The temporal relationship between AF 
burden and ischemic stroke risk also differed by device 
indication. In patients with known AF, shorter windows 

Figure 6. Random sample of atrial fibrillation (AF) burden temporal trends and signaled ischemic stroke risk.
Shown are data from a random sample of 16 patients having a CHA2DS2-VASc score >3 and the occurrence of ischemic stroke. The x axis 
represents follow-up days from the day after device implantation through the day before the stroke event. Risk, denoted in red, is signaled after 
a relative increase in atrial tachycardia (AT)/AF burden and turned off/on by the daily AT/AF burden 21-day simple moving average crossing 
below/above its cumulative moving average. A correct classification is shown when any of the last 5 follow-up days is signaled at risk.
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(1–5 days) of AF burden trends were prioritized more 
frequently than longer periods. In contrast, in patients 
with cryptogenic stroke, a longer period (21 days) was 
prioritized more frequently than shorter windows of AF 
burden trends. This difference may be due to a higher 
cumulative AF burden in those with known or established 
AF. Patients with less AF may require a wider lens for 
observation compared with patients with higher degrees 
of AF, where a more focused window is more informa-
tive. It is important to emphasize that a 21-day SMA, off-
set with its CMA, was the most robust AF burden trend 
across device indications.

Despite continuous rhythm monitoring data, clinical 
risk factors achieved the best discrimination for future 
stroke. The CHA2DS2-VASc score alone had an AUC 
of 0.588 compared with an AUC of 0.503 to 0.520 for 
AF burden and 0.557 for raw device parameter values. 
However, the combination of baseline characteristics 
and device-detected AF resulted in the best discrimina-
tion with an AUC of 0.726 (Table 2). These results sug-
gest that future efforts to evaluate and implement atrial 
arrhythmia and device data into stroke risk prediction 
should be so in conjunction with traditional risk factors. 
The results from these analyses suggest that the use 
of CHA2DS2-VASc with a patient’s 21-day average of 
AF burden tracking above their CMA would represent 
a significant improvement over standard risk estima-
tion. Again, this is a hypothesis that should be tested 
in a prospective trial. The prospective DEFINE AFib 
(DEFINE Atrial Fibrillation) study will enroll patients with 
AF or suspected AF who have an ICM and will evalu-
ate whether summary and episodic measurements col-
lected by ICMs are able to predict when patients are at 
increased risk for adverse clinical outcomes, including 
stroke (NCT04926857).

Limitations
There are several limitations that should be kept in 
mind when considering the results of this study. First, all 
patients in this analysis had an ICM that was implanted 
during clinical care for AF, suspected AF, or evaluation 
of cryptogenic stroke. Arrhythmia events were classi-
fied by device algorithm and not adjudicated by clini-
cal experts. Therefore, the findings may or may not be 
generalizable to patients with other cardiac implanted 
electronic devices or other diagnostic devices such 
as wearables. Second, as this was a study of events 
in clinical practice, using administrative claims for 
the outcomes assessment, it is possible that some 
patients may have experienced nonischemic strokes or 
other misclassification; however, prior work suggests 
that diagnostic codes for ischemic stroke have good 
sensitivity (86%) and specificity (95%).12 Finally, our 
analysis included patients with treated and untreated 
stroke risk. We included OAC status in our candidate 

variables. While prior work has shown that predictors 
of stroke are similar in those with and without OAC,24 
separate validations in treated and untreated patients 
would be optimal. Finally, due to the nature of this ret-
rospective analysis, an exhaustive list of risk factors 
(ie, diet, smoking history, and body mass index) was 
not included as those data were not captured in the 
database.

Conclusions
In this analysis of >5000 patients with an ICM implanted 
for suspected AF, management of AF, or cryptogenic 
stroke, prior stroke was the most important predictor of 
future stroke in follow-up. After prior stroke, AF burden 
trends (not daily AF burden alone) were the most impor-
tant predictors of stroke. The optimal moving average 
window differed by device indication and was shorter 
in patients with known AF and longer in patients with 
cryptogenic stroke. In this real-world data set of patients 
with an ICM, AF burden trends may provide incremen-
tal prognostic value to conventional risk stratification 
schemes.
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