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detecting non-alcoholic fatty liver disease
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Abstract 
The development of an easy-to-use noninvasive model to screen nonalcoholic fatty liver disease (NAFLD) is warranted. This 
study aimed to develop and validate a simple noninvasive NAFLD risk score (NARS). We used the National Health and Nutrition 
Examination Survey 2017 to March 2020 cycle data. The sample size of derivation and validation cohort were 4056 and 2502, 
separately. The NAFLD was determined by FibroScan® measured controlled attenuation parameter scores of >285 dB/m in the 
absence of excessive alcohol use, steatogenic medications use, and viral hepatitis. The NARS was derived from a multivariable 
logistic regression model and variables were selected based on Boruta analysis. The performance of NARS was internally validated 
and compared with previous models using receiver-operating characteristics curve and C-statistics. The NARS was established 
using waist circumference, triglycerides, alanine aminotransferase, and fasting glucose, and the total score ranges from 0 to 8, 
with an increasing risk of NAFLD. NARS demonstrated ideal discrimination in the validation cohort, with C-statistics of 0.832 (95% 
confidence interval, 0.801–0.824), and was not inferior to any existing models. The optimal cutoff point for predicting NAFLD was 
obtained at 4 scores with a sensitivity of 82% and specificity of 69%. We reported the derivation and internal validation of a novel 
and easy-to-use risk score for detecting the presence of NAFLD. NARS demonstrated ideal discrimination performance and was 
practical in clinical practice for selecting individuals at higher risk of NAFLD for further examination or intervention.

Abbreviations: AIC = Akaike information criterion, ALT = alanine aminotransferase, AST = aspartate aminotransferase,  
AUROC = areas under the receiver-operating characteristic curve, CAP = controlled attenuation parameter, CI = confidence 
interval, FLI = fatty liver index, GGT = γ-glutamyl transferase, HbA1c = hemoglobin A1c, HDL-C = high-density lipoprotein 
cholesterol, HSI = hepatic steatosis index, ION = Index of nonalcoholic steatohepatitis, K-NAFLD = Korean National Health and 
Nutrition Examination Survey nonalcoholic fatty liver disease, LAP = Lipid accumulation product, NAFLD = nonalcoholic fatty liver 
disease, NAFLD-LFS = nonalcoholic fatty liver disease liver fat score, NARS = nonalcoholic fatty liver disease risk score, NCHS =  
National Center for Health Statistics, NHANES = National Health and Nutrition Examination Survey, ROC = receiver-operating 
characteristic, TG = triglycerides.
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1. Introduction
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disor-
ders characterized by excess fat accumulation in hepatocytes.[1] 
Globally, NAFLD affects approximately one-third of the popu-
lation, with its prevalence steadily rising from 2005 to 2016 and 
beyond.[2,3] Patients with NAFLD are at risk of developing liver 
disease-related morbidity, including cirrhosis, end-stage liver 
disease, even hepatocellular carcinoma, and mortality.[4,5] Given 
that NAFLD patients are generally asymptomatic or experi-
ence nonspecific symptoms, leading to delayed diagnosis,[6,7] 

which result in insufficient intervention and a worse prognosis. 
It is essential to identify individuals with an increased risk of 
NAFLD at an early stage.

Biopsy was regarded as the “gold standard” for diagnosing 
and grading liver steatosis. The invasive procedure is costly, 
prone to complications, and has a potential sampling error, 
which limits the application of the biopsy in clinical practice.[8] 
Conventional radiological imaging technology, such as ultra-
sonography, computed tomography, and magnetic resonance 
imaging, have been shown to be reasonably accurate in detect-
ing hepatic steatosis. However, most imaging examinations 
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were too expensive for mass screening in the general popula-
tion.[9–12] Consequently, there is growing interest in noninvasive 
approaches to NAFLD assessment, leveraging serum biomark-
ers, and anthropometric parameters.

Various predictive models have been developed to diag-
nose steatosis, including the fatty liver index (FLI), hepatic 
steatosis index (HSI), index of nonalcoholic steatohepatitis 
(ION), lipid accumulation product (LAP), and NAFLD liver 
fat score (NAFLD-LFS).[13–17] The diagnosis of NAFLD in pre-
vious models was mainly determined by liver ultrasound, a 
semiquantitative, operator-dependent, prone to bias NAFLD 
assessment,[8] which may undermine the reliability of the diag-
nosis. In addition, most of these predictive models were devel-
oped from small samples, and it was complicated to calculate 
these model results making them inconvenient to use in clin-
ical practice.

The controlled attenuation parameter (CAP), a newly devel-
oped parameter measured by vibration-controlled transient 
elastography, was a more reliable indicator of fatty liver and 
can overcome limitations of liver ultrasonography.[18–23] Several 
biopsy-controlled studies confirmed that increased CAP was 
highly correlated with histologically defined steatosis.[22,23] 
Taking the CAP-determined NAFLD as the diagnostic standard, 
the present study aims to propose a novel, simple-to-use nonin-
vasive assessment tool to predict NAFLD.

2. Methods

2.1. Study design and population

The National Health and Nutrition Examination Surveys 
(NHANES) is a nationally representative health survey program 
for the United States civilian noninstitutionalized resident popu-
lation. The National Center for Health Statistics (NCHS) at the 
Centers for Disease Control and Prevention administered the sur-
vey. It has been conducted on 2-year cycles since 1999 to monitor 
the health and nutritional status of the US population. The NCHS 
ethics review board has approved the NHANES protocols, and 
this study was reviewed by the Anzhen Hospital Institutional 
Review Board and considered exempt. Written informed consent 
was obtained from all participants before completing the survey. 
Before being published, all data were de-identified by the NCHS. 
This study followed the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis reporting 
guidelines for prognostic studies.[24]

In the 2017 to March 2020 cycle, 15,560 participants were 
enrolled. Six thousand five hundred ninety five individuals aged 
<18 years were excluded. We further excluded 1198 partici-
pants in whom elastography examination status was ineligible 
(n = 348), not performed (n = 233), partial (n = 616), or data 
missing (n = 1). Individuals were additionally excluded if they 
had one of the following conditions: (1) taking steatogenic med-
ications for at least 3 months or more before the survey (n = 91), 
(2) consuming more than 2 or 3 standard alcoholic drinks per day 
on average for both women and men, respectively (n = 230), (3) 
having hepatitis B or C history or positively in viral test (n = 142), 
(4) having missing values for anthropometric or laboratory data 
(n = 746), leaving a total of 6558 participants for the present 
analysis. For subsequent prediction performance evaluation, the 
study population was divided into the derivation cohort (2017–
2018 cycle) and the validation cohort (2019–March 2020 cycle) 
according to NHANES cycles (Figure S1, Supplemental Digital 
Content, http://links.lww.com/MD/N927).

2.2. Definition of demographic, anthropometric, and 
laboratory variables

Demographic variables were collected by standardized 
questionnaires during in-person interviews, including sex, 

age (years), and race/ethnicity (Mexican American, Other 
Hispanic, Non-Hispanic White, Non-Hispanic Black, Non-
Hispanic Asian, and Other race). Body measurements, includ-
ing standing height, weight, waist circumference, and blood 
pressure, were measured during the physical examination, 
and body mass index (BMI) was calculated as weight in kilo-
grams divided by height in meters squared. Serum was tested 
for high-density lipoprotein cholesterol (HDL-C), total cho-
lesterol, triglycerides (TG), alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), alkaline phosphatase, 
γ-glutamyl transferase (GGT), hemoglobin A1c (HbA1c), fast-
ing glucose, and fasting insulin. Diabetes was self-reported by 
participants who had been diagnosed by a health professional 
or determined by a prescription history for medications used 
to treat the condition. Self-report questionnaires collected 
medication history and alcohol consumption information. 
Steatogenic medications were defined as prednisone, tamoxi-
fen, and methotrexate. Alcohol consumption frequencies were 
converted into an estimated number per day using the median 
value (e.g., 3–4 times per week = 0.5 times per day). Viral hepa-
titis was identified either with hepatitis C virus RNA, hepatitis 
B surface antigen (NHANES 2017–2018) or with self-report 
previous hepatitis B/C diagnosis, or prescription medication 
treatment (NHANES 2019–March 2020).

2.3. Measurements and definition of NAFLD

For the 2017 to March 2020 cycle, NHANES conducted tran-
sient elastography examinations for all participants aged 12 
years and older. A detailed protocol of transient elastography 
examinations has been published previously.[25] Participants 
were examined to assess the CAP score and liver stiffness 
measurements using the FibroScan® model 502 V2 Touch 
(Echosens, Waltham, MA). According to NHANES protocol, 
a complete examination was defined as 10 or more valid stiff-
ness measurements, fasting time of at least 3 hours, and liver 
stiffness interquartile range/median ≤ 30%. According to the 
literature, the median CAP was dichotomized using 285 dB/m 
as a threshold for liver steatosis diagnosis with optimum 
diagnostic performance (sensitivity of 80% and specificity of 
77%).[22]

2.4. Statistical analysis

Continuous variables were presented as mean ± standard devia-
tion, and categorical data were presented as counts and percent-
ages. Logistic regression was applied to derive the NAFLD risk 
score (NARS). Variable selection and modeling were conducted 
in the derivation cohort in the following steps: (1) variables that 
were statistically significant by Boruta analysis were added to 
a full model to obtain the best predictive performance; (2) in 
variable selection, we began with the full model and tested mul-
tiple candidate models using a purposeful selection approach 
based on the trade-off of variable importance and accessibility 
and model simplicity. Different candidate models were assessed 
using the Akaike information criterion (AIC) and areas under 
the receiver-operating characteristic curve (AUROC) and 95% 
confidence intervals (CIs); (3) the predictive performance of the 
final model was evaluated in terms of calibration plot. Ideal cal-
ibration would be indicated by points lying along a 45-degree 
diagonal line; (4) based on the regression coefficients of the final 
model, the NARS was developed according to the methods of 
literature.[26]

The predictive performance of the NARS was evaluated and 
compared in the validation cohort in the following steps: (1) 
sensitivities, specificities, positive predictive value, and negative 
predictive value under different cutoff points of the total score 
were accessed. A receiver-operating characteristic (ROC) curve 
of the NARS was plotted, and the optimum cutoff point was 
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identified using Youden index. (2) The C-statistics and 95% CIs 
were used to evaluate the discrimination of NARS and existing 
models, and the difference among these models was tested by 
the DeLong test. Model discrimination was compared globally 
using 5 % as an alpha threshold, and the Bonferroni adjust-
ment was used in pairwise comparisons (1% alpha threshold 
for significance).

All analyses were conducted using R, version 4.0.5 (R Core 
Team, Vienna, Austria). Data analysis was performed in May 
2022.

3. Results

3.1. Clinical characteristics of derivation and validation 
cohorts

Among 6558 participants aged 18 years or older included in this 
study, the overall mean age was 48.6 (standard deviation 18.2) 
years and 3199 (48.8%) were male. A total of 36.3% (2383 of 
6558) had NAFLD. 4056 of them from the 2017 to 2018 cycle 
were divided into the derivation cohort, and 2502 from the 
2019 to March 2020 cycle were partitioned into the validation 
cohor. In the derivation cohort, the prevalence of NAFLD was 
37.2% (1507 of 4056). Compared to the individuals without 
NAFLD, participants with NAFLD were more likely to be older 
(52.8 vs 46.9 years), male (55.1% vs 44.7%), and had higher 
BMI (33.4 vs 27.1 kg/m2) and waist circumference (110.4 vs 
56.1 cm). Regarding laboratory parameters, total cholesterol 
(190.7 vs 185.7 mg/dL), TG (181.0 vs 118.5 mg/dL), ALT (27.3 
vs 19.1 U/L), AST (23.2 vs 20.5 U/L), GGT (38.4 vs 25.3 U/L), 
HbA1c (6.2% vs 5.6%), and fasting glucose (111.5 vs 95.7 mg/
dL) levels were consistently higher in those with NAFLD while 
HDL-C (47.5 vs 56.1 mg/dL) levels were lower. Diabetes was 
more prevalent in NAFLD participants (23.6% vs 8.9%) 
(Table 1). Similar characteristics pattern was also found in the 
validation cohort (Table 1).

3.2. Variable selection

The Boruta analysis results were presented as a boxplot 
of variables’ importance (Z-score) distribution (Figure S2, 
Supplemental Digital Content, http://links.lww.com/MD/
N927). Among 17 potential variables, 16 were identified as sig-
nificant important variables (green boxes). These 16 variables 
were added into a multivariable logistic regression (model 1) 
to achieve the optimal predictive performance as a reference. 
The AIC of model 1 was 3805, and the AUROC of model 1 
in the derivation cohort was 0.849 (95% CI, 0.838–0.861). In 
model 2, the top 7 important variables (waist circumference, 
TG, ALT, fasting glucose, HbA1c, GGT, BMI) remained, and the 
fitness and performance of model 2 dropped slightly compared 
with model 1 (AIC = 3906, AUROC = 0.839 [95% CI, 0.827–
0.851]). In model 2, waist circumference, ALT, TG, and HbA1c 
were significant (P < .001). We intended to use these 4 significant 
variables to build the final model (model 3). Considering HbA1c 
was not as routinely measured as fasting glucose, we replaced 
HbA1c with fasting glucose in model 3. Model 3, based on the 
remaining 4 predictors (waist circumference, ALT, TG, and fast-
ing glucose), had an AIC of 3925 and AUROC of 0.837 (95% 
CI, 0.825–0.849) (Table S1, Supplemental Digital Content, 
http://links.lww.com/MD/N927). The results of the multivariate 
logistic regression analysis were summarized in Table 2.

3.3. Development of the NAFLD risk score (NARS)

In model 3, waist circumference (per 10 cm increase odds 
ratio (OR), 2.06; 95% CI, 1.95–2.19), TG (per 10 mg/dL 
increase OR, 1.05; 95% CI, 1.04–1.06), glucose (per 10 mg/
dL increase OR, 1.09; 95% CI, 1.06–1.12), and ALT (per 
10 U/L increase OR, 1.09; 95% CI, 1.06–1.12) were inde-
pendent risk factors of NAFLD (Table 2). The calibration of 
model 3 was excellent across the spectrum of risk in deri-
vation sets (Fig. 1A). The NARS was constructed based on 

Table 1

Clinical characteristics of study population.

Characteristics*

Overall

Derivation Validation

Normal NAFLD Normal NAFLD

(N = 6558) (N = 2549) (N = 1507) (N = 1626) (N = 876)

Age (y) 48.6 (18.2) 46.9 (18.9) 52.8 (16.5) 45.9 (18.7) 51.2 (15.8)
Male (%) 3199 (48.8) 1139 (44.7) 830 (55.1) 753 (46.3) 477 (54.5)
Race/ethnicity (%)
  Mexican American 825 (12.6) 283 (11.1) 124 (7.6) 297 (19.7) 121 (13.8)
  Other Hispanic 696 (10.6) 248 (9.7) 199 (12.2) 137 (9.1) 112 (12.8)
  NH White 2293 (35.0) 857 (33.6) 553 (34.0) 546 (36.2) 337 (38.5)
  NH Black 1606 (24.5) 622 (24.4) 520 (32.0) 259 (17.2) 205 (23.4)
  NH Asian 812 (12.4) 395 (15.5) 163 (10.0) 195 (12.9) 59 (6.7)
  Other Race 326 (5.0) 144 (5.6) 67 (4.1) 73 (4.8) 42 (4.8)
BMI (kg/m2) 29.6 (7.0) 27.1 (5.8) 33.4 (6.8) 27.6 (5.9) 34.4 (7.3)
Waist circumference (cm) 99.9 (16.8) 93.2 (14.3) 110.4 (14.9) 93.9 (14.3) 112.0 (15.1)
HDL-C (mg/dL) 53.1 (15.4) 56.1 (15.3) 47.5 (12.9) 56.7 (16.4) 47.2 (13.4)
TC (mg/dL) 185.1 (40.4) 185.7 (40.2) 190.7 (42.0) 180.2 (39.2) 183.0 (39.4)
TG (mg/dL) 136.2 (98.4) 118.5 (77.4) 181.0 (129.6) 107.9 (64.5) 163.1 (108.9)
ALT (U/L) 21.8 (16.1) 19.1 (14.6) 27.3 (19.3) 18.4 (11.2) 26.7 (18.3)
AST (U/L) 21.3 (11.6) 20.5 (10.4) 23.2 (14.0) 20.2 (9.4) 22.1 (13.7)
ALP (U/L) 77.5 (25.5) 76.3 (26.6) 82.6 (25.1) 73.9 (23.4) 79.0 (25.3)
Albumin (g/dL) 4.1 (0.3) 4.1 (0.3) 4.1 (0.3) 4.1 (0.3) 4.0 (0.3)
Total bilirubin (mg/dL) 0.5 (0.3) 0.5 (0.3) 0.4 (0.3) 0.5 (0.3) 0.4 (0.2)
GGT (U/L) 29.8 (40.9) 25.3 (37.4) 38.4 (47.7) 25.8 (35.9) 35.5 (43.5)
HbA1c (%) 5.8 (1.1) 5.6 (0.8) 6.2 (1.3) 5.6 (0.8) 6.2 (1.4)
Fasting glucose (mg/dL) 101.1 (34.8) 95.7 (26.0) 111.5 (43.0) 94.4 (25.6) 111.5 (47.6)
Diabetes (%) 893 (13.6) 226 (8.9) 356 (23.6) 120 (7.4) 191 (21.8)

ALP = alkaline phosphatase, ALT = alanine aminotransferase, AST = aspartate aminotransferase, BMI = body mass index, GGT = γ-glutamyl transferase, HbA1c = hemoglobin A1c, HDL-C = high-density 
lipoprotein cholesterol, NAFLD = nonalcoholic fatty liver disease, TC = total cholesterol, TG = triglycerides.
* Continuous variables are shown as mean (SD). Categorical variables are shown as numbers (percentage).
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model 3. The detailed developing process was described in 
Appendix 1, Supplemental Digital Content, Results, http://
links.lww.com/MD/N927. In brief, scores were weighted 
according to the regression coefficients. The NARS assigns 1 
score for fasting glucose ≥ 100 mg/dL or ALT ≥ 25 U/L, sep-
arately. Two scores were given to waist circumference in the 
range of 90 to 109 cm or TG ≥ 120 mg/dL. Four scores were 
assigned for waist circumference ≥ 110 cm (Table 3). The 
total score of NARS ranges from 0 to 8, and the estimated 
risks of NAFLD constantly increase with the increase in total 
score (Table 4).

3.4. Performance of the NARS in the validation cohort

The performance of the NARS at different cutoff total scores 
to diagnose NAFLD in the validation cohort was summa-
rized in Table 5. The optimum diagnosis performance of the 
NARS for identifying NAFLD was achieved at 4 scores with 
the maximum Youden index (sensitivity: 82%, specificity: 
69%) (Fig. 1B). We calculated the NARS and 5 previously 
proposed NAFLD predictive models (FLI, HSI, ION, LAP, and 
NAFLD-LFS) results of participants in the validation cohort. 
The variables needed for these models and the formulas were 
summarized in Tables S2 and S3, Supplemental Digital Content, 

Table 2

Multivariable logistic regression models for NAFLD in the derivative set.

Variable

Model 1 Model 2 Model 3

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

Waist circumference* 1.87 (1.62–2.16) <.001 2.01 (1.79–2.25) <.001 2.06 (1.95–2.19) <.001
TG* 1.03 (1.02–1.04) <.001 1.05 (1.04–1.06) <.001 1.05 (1.04–1.06) <.001
ALT* 1.28 (1.12–1.40) <.001 1.26 (1.12–1.34) <.001 1.26 (1.20–1.34) <.001
Fasting glucose* 1.00 (0.96–1.04) .88 1.00 (0.97–1.05) .83 1.09 (1.06–1.12) <.001
HbA1c 1.32 (1.14–1.52) <.001 1.37 (1.21–1.55) <.001 –– –
GGT* 1.03 (1.01–1.05) .02 1.01 (0.99–1.03) .46 – –
BMI* 1.45 (1.05–2.01) .03 1.04 (0.80–1.35) .76 – –
Age* 1.16 (1.01–1.23) <.001 – – – –
HDL-C* 0.86 (0.80–0.93) <.001 – – – –
TC* 1.01 (0.99–1.03) .40 – – – –
AST* 0.93 (0.83–1.05) .25 – – – –
ALP* 0.98 (0.95–1.01) .23 – – – –
Albumin 1.62 (1.22–2.15) <.001 – – – –
Female 1.13 (0.93–1.37) .23 – – – –
Race/ethnicity – – – –
  Mexican American Reference – – – –
  Other Hispanic 0.51 (0.37–0.70) <.001 – – – –
  NH White 0.54 (0.42–0.69) <.001 – – – –
  NH Black 0.35 (0.26–0.46) <.001 – – – –
  NH Asian 0.89 (0.67–1.19) .44 – – – –
  Other race 0.41 (0.27–0.61) <.001 – – – –
Diabetes 1.02 (0.77–1.34) .91 – – – –

ALP = alkaline phosphatase, ALT = alanine aminotransferase, AST = aspartate aminotransferase, BMI = body mass index, CI = confidence interval, GGT = γ-glutamyl transferase, HbA1c = hemoglobin 
A1c, HDL-C = high-density lipoprotein cholesterol, NAFLD = nonalcoholic fatty liver disease, OR = odds ratio, TC = total cholesterol, TG = triglycerides.
* The ORs and 95% CIs of these variables were calculated per 10 units increase.

Figure 1. Diagnostic performance of the final model (model 3) in the derivation cohort and NARS in the validation cohort. (A) Calibration plot. The dashed line 
represents the ideal calibration. The solid blue line represents the bias-corrected calibration estimated in model 3. (B) ROC curve. Numbers in brackets are 95% 
CI. AUROC = the area under the receiver-operating characteristic curve; NARS = nonalcoholic fatty liver disease risk score.
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http://links.lww.com/MD/N927 and http://links.lww.com/MD/
N927. The C-statistics of NARS was higher than LAP (0.832 
vs 0.815, pairwise comparisons P < .01), and the difference in 
C-statistics between NARS and the other 4 models was not 
significant (NARS 0.832; FLI 0.836; HSI 0.814; ION 0.816; 
NAFLD-LFS 0.823, all pairwise comparisons P > .01) (Table 
S4, Supplemental Digital Content, http://links.lww.com/MD/
N927).

4. Discussion
In this study, we developed and validated the NARS, a novel 
and easy-to-use noninvasive assessment tool for detecting 
the presence of NAFLD in the general population using data 
from a large national population-based database. The risk of 
NAFLD could be evaluated with minimum computation cost 
based on waist circumference and the results of a few routinely 

performed laboratory tests, including fasting glucose, ALT, and 
TG. Moreover, the performance of NARS for detecting NAFLD 
was confirmed in the validation cohort.

The FLI, developed by Bedogni et al, uses BMI, waist cir-
cumference, TG, and GGT to predict fatty liver.[13] While FLI is 
a widely recognized tool, it heavily relies on BMI, which may 
not fully capture visceral adiposity’s role in NAFLD. In contrast, 
NARS emphasizes waist circumference, a more direct measure 
of visceral fat, which is a critical factor in hepatic steatosis. The 
HSI, introduced by Lee et al, incorporates ALT, AST, BMI, and 
diabetes status.[14] HSI relies on AST and BMI may limit its 
application in capturing the nuances of metabolic dysfunctions 
associated with NAFLD. NARS, by utilizing fasting glucose and 
ALT, concentrates on markers that more directly reflect insu-
lin resistance and liver inflammation, offering a possibly more 
refined assessment of NAFLD risk. The Korean National Health 
and Nutrition Examination Survey nonalcoholic fatty liver dis-
ease (K-NAFLD) score, as presented by Jeong et al, integrates 
clinical and laboratory parameters.[27] While comprehensive, its 
complexity might pose challenges in routine clinical settings. 
NARS, however, is designed to be user-friendly, utilizing widely 
available clinical measurements, thus facilitating its application 
in primary care and enabling quick risk assessment without 
extensive calculations. Our findings suggest that NARS strikes a 
balance between simplicity and accuracy, making it a practical 
tool for widespread clinical use. While FLI, HSI, and K-NAFLD 
scores each have their strengths, NARS’s focus on waist circum-
ference and metabolic parameters aligns closely with the patho-
physiological underpinnings of NAFLD.

NARS was more reflected in visceral abdominal adiposity, 
which is a key link to NAFLD.[28,29] Compared to the previous 
model, NARS included waist circumference, rather than BMI. 
Waist circumference was a recognized surrogate measure of vis-
ceral fat, the most abundant form of ectopic fat deposition.[16] 
Visceral adiposities is associated with a hyperlipolytic state that 
contributes to insulin resistance and a set of metabolic dysfunc-
tions specifically associated with increased liver fat.[30] Although 
BMI was also commonly used in previous models, and it was 
proved that the combination of BMI and waist circumference 
identify the highest-risk phenotype of obesity better than either 
measure alone,[31–33] the regression coefficient of BMI was not 
significant in the multivariable model and the predictive capac-
ity did not go worse after the exclusion of BMI from the model. 
This might be explained by the worldwide trends that the rel-
ative increases in waist circumference were larger than the rel-
ative increases in BMI.[34] The phenotype of obesity might be 
changing over time to one that reflects an increase in abdominal 
adiposity.[30] This emerging evidence might explain the failure 
of BMI to provide extra information to detect the presence of 
NAFLD.

Variables included in NARS were more available. Previous 
models included insulin to reflect glucose metabolic, in our 
model, fasting glucose was included, fasting glucose per-
formed similar ability to predict NAFLD as insulin, and is 

Table 3

The nonalcoholic fatty liver disease risk score (NARS).

Variables Categories Scores

Waist circumference (cm)
<90 0

90–109 2
≥110 4

TG (mg/dL)
<120 0
≥120 2

Fasting glucose (mg/dL)
<100 0
≥100 1

ALT (U/L)
<25 0
≥25 1

ALT = alanine aminotransferase, TG = triglycerides.

Table 4

The estimated NAFLD risk under different total scores of NARS.

Total score Estimate of risk (%)

0 0.06
1 0.12
2 0.24
3 0.41
4 0.61
5 0.77
6 0.88
7 0.94
8 0.97

NAFLD = nonalcoholic fatty liver disease, NARS = nonalcoholic fatty liver disease risk score.

Table 5

Predictive performance of NARS in the validation cohort.

Cutoff point Accuracy Sensitivity Specificity Pos pred value Neg pred value

1 0.52 0.99 0.27 0.42 0.97
2 0.55 0.98 0.32 0.44 0.96
3 0.69 0.90 0.58 0.53 0.91
4 0.74 0.82 0.69 0.59 0.88
5 0.77 0.63 0.85 0.69 0.81
6 0.75 0.40 0.94 0.79 0.74
7 0.72 0.24 0.98 0.84 0.70
8 0.68 0.08 1.00 0.93 0.67

NARS = nonalcoholic fatty liver disease risk score.

http://links.lww.com/MD/N927
http://links.lww.com/MD/N927
http://links.lww.com/MD/N927
http://links.lww.com/MD/N927
http://links.lww.com/MD/N927
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more available in clinical practice. Insulin is the dominant 
hepatic glucose and lipid metabolism regulator, and insu-
lin resistance was also identified as a metabolic mechanism 
responsible for developing NAFLD.[35] Previous studies have 
demonstrated a good correlation between fasting serum 
insulin and NAFLD.[36] However, compared with NARS, 
the model using fasting glucose as the surrogate indicator 
of diabetes, models applied fasting insulin (NAFLD-LFS) or 
homeostasis model assessment of insulin resistance (ION) 
did not demonstrate superior predictive performance in the 
validation cohort. This finding suggests that combined with 
TG; fasting glucose could be used as an effective predictor of 
NAFLD, flagging the glucose and lipid dysmetabolism given 
their correlation with insulin resistance and impaired glucose 
tolerance.[37]

NARS based on widely available physical examinations and 
laboratory test variables is easy to use and very practical. Most 
existing NAFLD noninvasive predictive models were derived 
from complex statistical models, and efforts to get these mod-
els’ results were also troublesome. Some models require rela-
tively expensive laboratory tests and are not widely available 
in primary care. The calculation of these models’ results often 
requires multiple steps of multiplication, division, or even 
exponential operations. In addition, the sensitivity–specific-
ity trade-off was ambiguous under various continuous cutoff 
points. Due to the above inconvenience, the clinical utility 
of these models has yet to be established. NARS is one way 
to simplify the assessment of the multi-factorial nature of 
NAFLD risk. With the given results of routinely measured risk 
factors in clinical practice, clinicians can quickly obtain NARS 
results of patients and evaluate the risk of NAFLD without 
complicated calculations. The results could help professionals 
select patients for further assessments or intervention under 
given reference sensitivity and specificity of different cutoff 
scores. This tool is also readily available to patients who can 
easily estimate their own NAFLD risk and monitor this risk 
over time.

4.1. Strengths and limitations

The current study has several strengths. First, we used the latest 
available national representative population-based dataset of 
the US for model derivation and validation. As described above, 
obesity phenotypes are changing over time. Models developed 
from earlier data might not be accurate as time passes by. 
Second, the diagnosis of NAFLD in this study was determined 
by FibroScan® measured CAP. FibroScan® is a quantitative 
assessment of fatty infiltration in the liver, which has higher sen-
sitivity than B-mode ultrasound and lower cost than histology 
and proton magnetic resonance spectroscopy. It is an optimum 
noninvasive diagnostic method for large-scale general popula-
tion-based modeling studies. Third, we developed a simple pre-
dictive model for NAFLD based on widely available physical 
examinations and laboratory tests commonly evaluated in indi-
viduals with metabolic risk factors. This model is very practical 
as a clinical instrument.

A potential weakness of our study is that although the NARS 
was internally validated, it has not been evaluated to predict 
liver steatosis in different populations. Therefore, the predictive 
performance in populations other than the U.S. remains to be 
tested.

5. Conclusion
We proposed and validated a risk score system to predict 
NAFLD based on waist circumference, fasting glucose, ALT, and 
TG. This simple and accurate noninvasive assessment tool could 
be used to select subjects at higher risk of NAFLD for further 
examination or lifestyle counseling.
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