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In this study, we investigate the impact of demographic
characteristics on Middle East respiratory syndrome
coronavirus (MERS-CoV) cases in Saudi Arabia, specifically
focusing on the time intervals between symptom onset
and key events such as hospitalization, case confirmation,
reporting and death. We estimate these intervals using data
from 2196 cases occurring between June 2012 and January
2020, partitioning the data into four age groups (0–24 years,
25–49 years, 50–74 years and 75–100 years). The duration
from symptom onset to hospitalization varies between age
cohorts, ranging from 4.03 to 4.75 days, with the 75–100
age group experiencing the longest delay. The interval from
symptom onset to case confirmation spans 5.83–8.24 days,
and again, the 75–100 age group faces the lengthiest delay.
The interval from symptom onset and case reporting ranges
from 7.0 to 9.8 days, with the 75–100 age group experiencing
the longest delay. The period from symptom onset to death
varies across age groups (12.3–16.1 days), with elevated
mortality rates during outbreaks. Importantly, we observe
age-based differences in the risk of hospitalization and other
measures of infection severity, including the probability of
death conditional on hospitalization. Careful quantification
of epidemiological characteristics, including inference of
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key epidemiological periods and assessments of differences between cases of different ages, plays
a crucial role in understanding the progression of MERS-CoV outbreaks and formulating effective
public health strategies to mitigate their impact.

1. Introduction
Middle East respiratory syndrome coronavirus (MERS-CoV) is a viral pathogen that was first
identified in 2012. The virus belongs to the family of coronaviruses [1], and the first MERS-CoV cases
were reported in Saudi Arabia. As of January 2020, the cumulative global incidence of MERS-CoV
comprised 2519 laboratory-confirmed cases, including 866 deaths, equating to a case-fatality rate of
34.3%. The majority of these cases have occurred in Saudi Arabia, totalling 2196, accompanied by 788
associated deaths, representing a case-fatality rate of 38.1% [2]. The virus is primarily transmitted to
humans through close contact with dromedary camels, which serve as the reservoir host [3]. However,
human-to-human transmission also occurs [4], with a particularly high level of transmission observed
in healthcare settings. Among the 1379 MERS-CoV cases documented during the study period of the
article by Adegboye et al. [5], 321 cases (23.3%) were linked to hospital infection, with 203 cases (14.7%)
specifically affecting healthcare workers.

The time elapsed between the onset of symptoms and admission to the hospital stands as a
significant factor influencing the prognosis of MERS-CoV. This delay can arise from various factors,
including individual characteristics, healthcare system infrastructure and the severity of the illness.
Age emerges as a particularly influential determinant, impacting both the promptness of seeking
medical attention and the overall course of the disease. Referred to as prehospital delay, the period
preceding hospitalization is commonly evaluated in individuals exhibiting MERS-CoV symptoms
to assess treatment trajectories [6]. Younger individuals without underlying health conditions may
overlook initial signs of MERS-CoV and undervalue the importance of seeking medical assistance.
This phenomenon could be because initial symptoms of MERS-CoV infection are non-specific or
could be owing to the widespread dissemination of information, particularly through social media,
regarding the higher morbidity and mortality rates of MERS-CoV in older populations. Consequently,
adolescents and young adults may perceive a lower personal risk of MERS-CoV compared with older
individuals, leading to delayed healthcare-seeking behaviour [7].

Timely diagnosis of MERS-CoV poses a significant obstacle for global healthcare systems, leading
to transmission clusters within both communities and healthcare settings [8,9]. Despite a high level of
clinical suspicion surrounding MERS-CoV cases [1,10], many patients experience delays in obtaining a
diagnosis and seeking prompt medical attention [11]. In addition, a considerable gap between the onset
of suspected clinical symptoms and laboratory confirmation of MERS-CoV highlights the persistent
challenge in achieving timely detection and intervention, necessitating improved diagnostic strategies
and an enhanced healthcare response.

The time from symptom onset to confirmation affects the interval from symptom onset to discharge
substantially, with age playing a crucial role in this relationship. Specifically, a shorter duration from
symptom onset to confirmation correlates with a reduced time from symptom onset to discharge.
Early diagnosis of MERS-CoV could potentially improve the management of symptoms and disease
progression, leading to fewer severe cases and improving the availability of hospital beds for the
most urgent cases. Effective resource management is particularly important in locations with limited
medical facilities. In such circumstances, expediting patient treatment and discharge is paramount for
effective disease control. From a clinical perspective, reducing the treatment duration stands as a key
strategy for enhancing patient safety, improving quality of life, ensuring healthcare staff safety and
alleviating staff workload [12].

Efficient case isolation has the potential to limit the impact of outbreaks. The efficacy of case
isolation is notably influenced by the interval between symptom onset and a confirmed diagnosis or
report. A shorter reporting delay substantially diminishes the transmission risk, whereas a prolonged
delay hampers outbreak containment efforts and elevates the effective reproduction number.

The time delay from the onset of illness to death can be important for estimating the case fatality
ratio [13]. Factors unique to each individual, such as age and existing health conditions, may poten-
tially account for variations in the length of hospital stays [2]. The high mortality rate associated
with MERS-CoV compared with the number of confirmed cases remains a concern, underscoring
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the importance of continued surveillance and research efforts to better understand and control this
emerging infectious disease [14].

Currently, there is a limited understanding regarding the time between the onset of symptoms and
various stages of MERS-CoV cases, including hospital admission, confirmation, reporting and death,
specifically categorized by age groups in Saudi Arabia. Nonetheless, having information regarding the
duration of hospital stays is crucial for predicting the required number of hospital beds, including
both general beds and those in the intensive care unit, as well as monitoring the strain on healthcare
facilities [7].

Gaining a comprehensive understanding of the different sources of delays in diagnosis and seeking
medical care for MERS-CoV infection is crucial for improving the diagnostic process. By doing so, we
can reduce transmission and optimize medical care, highlighting the significance of addressing these
issues as essential efforts in combating the disease [2].

In this article, we estimate the time periods between symptom onset in MERS-CoV cases and
key clinical outcomes, such as hospitalization, confirmation, reporting and death. The period from
symptom onset to reporting reflects the delay in registering cases in Ministry of Health (MoH)
records, which in turn affects the time period before cases are reported in the public domain
after confirmation. Through a comprehensive analysis using various parametric distributions,
we scrutinize and compare time intervals characterizing these events. Our approach provides a
detailed analysis of epidemiological data, and we explain the statistical methods used to estimate
the parameters of delay distributions. We also investigate the probability of death given hospitali-
zation. Following this methodical groundwork, we present specific findings, providing a nuanced
understanding of the characteristics of MERS-CoV cases and identifying promising avenues for
future research.

Total MERS−CoV Cases: 2196

- Missing Information: 64 cases Cases with Complete

Information:

1990 cases

734 cases 904 cases 248 cases104 cases

Age 0 − 24 Age 25 − 49 Age 50 − 74 Age 75 − 100

734 cases 904 cases 248 cases104 cases

Onset to admission Onset to admission Onset to admission Onset to admission

734 cases 904 cases 248 cases104 cases

Onset to confirm Onset to confirm Onset to confirm Onset to confirm

734 cases 904 cases 248 cases104 cases

Onset to report Onset to report Onset to report Onset to report

190 cases 426 cases 164 cases36 cases

Onset to death Onset to death Onset to death Onset to death

- Inconsistent Information: 142

cases

Figure 1. The distribution of MERS-CoV cases across different age groups from symptom onset to death, showcasing the number of
cases analysed for each age category.
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2. Methods
2.1. Analysis of the time delay from symptom onset to clinical outcomes in MERS-CoV patients
Comprehensive data on MERS-CoV infections are available from hospitalized patients reported in the
Saudi Arabia clinical database, with reporting mandated by the MoH. This registry includes detailed
information on the dates of patient admission, infection confirmation and reporting to health authori-
ties, as well as outcomes (recovery or death). The data cover clinical symptoms and laboratory results,
providing valuable insights into disease presentation. Among 2196 hospitalizations in the database, 64
cases had missing information and 142 had inconsistencies in time intervals between symptom onset
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Figure 2. Monthly number of confirmed MERS-CoV cases in Saudi Arabia from June 2012 to January 2020.

Table 1. Estimated distributions characterizing the time from symptom onset to hospitalization, for individuals of different ages. (The
age groups are 0–24 years, 25–49 years, 50–74 years and 75–100 years, encompassing 104, 734, 904 and 248 cases, respectively;
95% credible intervals are shown in parentheses.)

gamma/age group mean shape rate AIC

0–24 4.25 (4.00–4.52) 1.32 (1.04–1.72) 0.31 (0.23–0.43) 505.8050

25–49 4.17 (4.00–4.21) 1.46 (1.33–1.60) 0.35 (0.32–0.40) 3362.776

50–74 4.36 (4.27–4.50) 1.57 (1.44–1.71) 0.36 (0.32–0.40) 4085.591

75–100 4.75 (4.54–4.86) 1.33 (1.12–1.59) 0.28 (0.23–0.35) 1103.379

Weibull/age group mean shape scale AIC

0–24 4.20 (3.65–4.81) 1.09 (0.94–1.29) 4.34 (3.55–5.20) 508.5948

25–49 4.08 (3.91–4.29) 1.21 (1.14–1.28) 4.35 (4.10–4.64) 3378.399

50–74 4.34 (4.16–4.54) 1.25 (1.18–1.32) 4.67 (4.41–4.94) 4109.753

75–100 4.69 (4.33–5.13) 1.14 (1.02–1.27) 4.92 (4.37–5.53) 1107.842

lognormal/age group mean mean-log s.d.-log AIC

0–24 4.03 (3.08–5.36) 1.00 (0.83–1.16) 0.89 (0.77–1.02) 486.8919

25–49 4.12 (3.67–4.53) 1.02 (0.95–1.08) 0.89 (0.84–0.93) 3307.768

50–74 4.35 (3.96–4.78) 1.11 (1.05–1.17) 0.85 (0.81–0.89) 4031.868

75–100 4.67 (3.83–5.75) 1.12 (1.00–1.24) 0.92 (0.83–1.01) 1080.411
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and clinical outcomes. Some cases had over 30 days between admission and confirmation, highlighting
the need for stringent exclusion criteria. The age distribution of MERS-CoV cases included in the study
is shown in figure 1.

Patients were classified into four age groups: children and young adults (0–24 years), working-age
(25–49 years), seniors (50–74 years) and elderly (over 75 years). These groupings were derived from
individual ages in the dataset. For reliability, we identified cases with comprehensive clinical out-
comes, including hospitalization, confirmation, reporting and recovery or death, and excluded cases
with missing information or inconsistent timelines. In our analysis, the dataset covered a long time
period so that the effect of right truncation would be expected to be negligible. Figure 2 illustrates the
distribution of cases in Saudi Arabia from June 2012 to January 2020.

We used three distinct parametric models to assess the time delay distributions from symptom
onset to various clinical outcomes. These models were gamma, Weibull and lognormal. These models
are commonly used for variables with non-negative values, offering a comprehensive framework
for describing delay distributions for events such as admission, confirmation, reporting and either
recovery or death [15]. Considering the recorded event times are specified in days, we account for
the discrete nature of the data and employ the exact method to estimate the time from onset to other
clinical outcomes, as in [16]. In our analysis, event i represents the date of symptom onset for a
MERS-CoV patient, with progression through various clinical stages such as hospitalization, confirma-
tion, reporting and ultimately either recovery or death, denoted as event j. This progression, illustrated
as i → j, depicts the transition from symptom onset (i) to the final clinical outcome (j). As noted above,
we model the time differences between symptom onset and subsequent clinical milestones using
gamma, lognormal and Weibull distributions, characterized by their respective probability density
functions as follows:

— Gamma distribution:

f(t;α, β) = βα
Γ(α) tα − 1e−βt,

where t > 0, α > 0 and β > 0;

Table 2. Estimated distributions characterizing the time from symptom onset and case confirmation, for individuals of different
ages. (The age groups are 0–24 years, 25–49 years, 50–74 years and 75–100 years, encompassing 104, 734, 904 and 248 cases,
respectively; 95% credible intervals are shown in parentheses.)

gamma/age group mean shape rate AIC

0–24 6.60 (6.10–7.00) 1.32 (1.05–1.71) 0.20 (0.15–0.28) 595.9135

25–49 5.83 (5.68–6.11) 1.81 (1.65–1.99) 0.31 (0.27–0.35) 3788.209

50–74 7.00 (6.88–7.71) 1.96 (1.79–2.15) 0.28 (0.26–0.32) 4753.468

75–100 8.19 (8.16–8.64) 1.72 (1.47–2.04) 0.21 (0.17–0.25) 1326.883

Weibull/age group mean shape scale AIC

0–24 6.49 (5.69–7.39) 1.14 (0.99–1.34) 6.81 (5.67–8.05) 597.6149

25–49 5.77 (5.53–6.03) 1.43 (1.36–1.52) 6.36 (6.04–6.70) 3787.632

50–74 6.84 (6.56–7.13) 1.47 (1.39–1.54) 7.56 (7.20–7.93) 4765.670

75–100 8.24 (7.62–8.98) 1.38 (1.24–1.54) 9.03 (8.17–9.98) 1327.634

lognormal/age group mean mean-log s.d.-log AIC

0–24 6.62 (4.88–9.15) 1.44 (1.25–1.62) 0.95 (0.82–1.09) 590.4715

25–49 6.01 (5.48–6.66) 1.45 (1.39–1.51) 0.83 (0.79–0.88) 3834.006

50–74 7.04 (6.48–7.72) 1.64 (1.58–1.70) 0.79 (0.76–0.83) 4801.383

75–100 8.66 (7.20–10.3) 1.79 (1.67–1.90) 0.86 (0.78–0.94) 1339.061

5
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240094



— Lognormal distribution:

f(t; μ,σ) = 1tσ 2π
e− (ln(t) − μ)2

2σ2 ,

where t > 0, and μ and σ are the mean and standard deviation (s.d.) of the distribution, respec-
tively.

— Weibull distribution:

f(t; λ, k) = kλ tλ k − 1e− tλ k
,

where t > 0, λ > 0 and k > 0.

To determine the optimal parametric distribution and regression model from the set of candidate
models, we employed the Akaike information criterion (AIC) [17]. The primary objective of the AIC is
to balance model simplicity and fit [18]. It addresses the trade-off between underfitting and overfitting
by estimating information loss and prioritizing models with minimal loss, ranking candidate models
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Figure 3. Probability distributions characterizing the observed times between symptom onset and hospitalization for four age groups
((a) 0–24 years, (b) 25–49 years, (c) 50–74 years and (d) 75–100 years, encompassing 104, 734, 904 and 248 cases, respectively).
These figures represent the proportion of the population captured in the survey. A comparative analysis of the delay distribution is
then conducted across these distinct age groups. The probability distributions of the gamma, Weibull and lognormal distributions
illustrate the distribution of times from symptom onset to hospitalization for each specific age group.
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based on their AIC values, with the lowest AIC indicating the ‘best’ model out of the candidate set of
models.

Additionally, we varied the date of symptom onset to compare our results with those obtained using a
parametric survival analysis method that accounts for interval-censored data, as detailed in the electronic
supplementary material, S2. Interval censoring describes a type of data where the exact timing of events
is unknown but falls within a certain interval [4]. By using this approach, we aim to better estimate the
distribution of time-to-event data and reduce potential biases associated with uncertain symptom onset
dates. This comparison helps to validate the robustness of our primary analysis method.

Varying the date of symptom onset is crucial for several reasons. First, it allows us to assess
the sensitivity of our results to different assumptions about symptom onset timing. This is impor-
tant because the exact date of symptom onset can significantly influence the estimated intervals to
subsequent events such as hospitalization, confirmation of infection and death. Second, it helps us
understand the potential impact of delays in reporting and testing, which can distort the observed
data. By varying the onset dates, we can account for uncertainty in delays and explore the effect of this
uncertainty on our quantitative results.

Regarding the presentation of both methods, we acknowledge the importance of clarity in our
approach. We included these analyses to provide a comprehensive comparison and to highlight the
robustness of our primary method. Our justification for their inclusion is that they demonstrate the
sensitivity of our results to different methodologies, which helps validate the reliability of our primary
findings. We believe that both analyses—those that account for direct analysis and those that address
interval censoring—are important for a thorough evaluation. Therefore, we will retain both approaches
to ensure the robustness and validity of our conclusions.

2.2. Probability of death given hospitalization
To estimate the probability of death given hospitalization for each age group, we employed Bayesian
inference. Bayesian inference allows for the updating of the probability distribution of a parameter
based on prior beliefs and observed data. In this study, we used a Beta distribution with parametersα = 1 and β = 1 as the prior distribution. This choice represents a flat (non-informative) prior, meaning
we started with no strong prior beliefs about the probability of death, thereby allowing the observed
data to predominantly inform the posterior distribution.

The likelihood of observing k deaths out of n hospitalizations follows a binomial distribution. When
combined with the flat prior, the posterior distribution for the probability of death given hospitaliza-
tion is a Beta distribution with updated parameters. Specifically, the posterior parameters are:αpost = αprior + k,βpost = βprior + n − k .

The posterior mean, which serves as the estimated probability of death, is calculated as:

posterior mean =
αpostαpost + βpost

.

To quantify the uncertainty in our estimates, we calculated 95% credible intervals (CI) from the
posterior beta distribution. These intervals, derived from the 2.5th and 97.5th percentiles, provide a
range within which the true probability of death is likely to fall, given the observed data and prior
distribution.

2.3. Software and analysis tools
We conducted our data analysis and model fitting using R v. 4.1.0. The results presented in this study
were obtained through the use of several R packages. Specifically, we used the ‘fitdistrplus’ package,
v. 4.1.2, for model fitting and calculation of the AIC. We used the ‘tidyverse’ package (v. 2.0.0), along
with the ‘dplyr’ package (v. 1.1.4), for data manipulation and visualization tasks. We accounted for
interval censoring using the ‘icenReg’ package (v. 2.0.1) to generate parametric estimates of the time
delay between symptom onset and various clinical outcomes.
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The MERS-CoV dataset is accessible upon direct request from the MoH of Saudi Arabia (https://
od.data.gov.sa/en/request-dataset). For transparency and reproducibility, the code used in this analysis
is available on GitHub at https://github.com/Yehyaalthobaity/MERS-COV_daley.

3. Results
3.1. Time from symptom onset to hospitalization
Age significantly impacts the time from symptom onset to hospitalization. Among the youngest age
group (0-24 years), the delay is notably short, with a mean of 4.03 (95% CI: 3.08–5.36) days, with
patients experiencing only a minor delay. By contrast, both the 25–49 years and the 50–74 years age
groups show increased delays, with mean values of approximately 4.12 (95% CI: 3.67–4.53) days
and 4.35 (95% CI: 3.96–4.78) days, respectively. Elderly individuals (over 75 years) face a further
increase in delay, with a mean of 4.67 (95% CI: 3.83–5.75) days. Notably, substantial variations exist
in delay durations within different age groups. The lognormal distribution consistently outperforms
the gamma and Weibull distributions (as shown in table 1), displaying lower AIC values across all
age groups. This suggests that the lognormal distribution provides the best fit for the observed data.
The fitted distributions are shown alongside the data in figure 3. Additionally, we varied the date of
symptom onset to compare our main results with analogous results accounting for interval censoring,
showing only a small variation as detailed in the electronic supplementary material, S2.
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3.2. Time from symptom onset to confirmation
In our analysis, we observed distinct patterns in the duration between symptom onset and confirma-
tion between age groups. For individuals aged 0−24 years, the lognormal distribution was identified
as the best-fitting model based on the AIC value, with an average duration of 6.62 days (95% CI:
4.88−9.15). For individuals aged 25−49 years, the Weibull distribution proved to be the best-fitting
model according to the AIC value, with an average of 5.77 days (95% CI: 5.53−6.03). Conversely, for
those aged 50–74 years and 75–100 years, the gamma distribution was a better fit, with means of 7.00
(95% CI: 6.88−7.71) and 8.19 (95% CI: 8.16−8.64) days, respectively. Detailed estimates of the parameters
for each distribution are presented in table 2, and the fitted probability distributions are depicted
in figure 4. Furthermore, we varied the date of symptom onset to compare our main results with
analogous results accounting for interval censoring, finding only a small variation in our results as
detailed in the electronic supplementary material, S2.2.

3.3. Time from symptom onset to reporting
We again compared fitted gamma, Weibull and lognormal distributions. For individuals aged 0–24
years, 50–74 years and 75–100 years, the gamma distribution provided the best fit, characterized by
mean values of 8.04 (95% CI: 7.11−8.86) days, 8.09 (95% CI: 8.01−8.17) days and 9.81 (95% CI: 8.55−9.73),
respectively. Conversely, individuals aged 25–49 years were best represented by the Weibull distribu-
tion, with means of 7.00 (95% CI: 6.70−7.32) days. These choices were substantiated by the lower AIC
values compared with the lognormal distribution, confirming the appropriateness of our selections as
detailed in table 3. These findings highlight the importance of understanding age-related differences in
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illustrate the distribution of times from symptom onset to confirmation within each specific age group.
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reporting timelines. The fitted distributions are shown in figure 5, and we again compared our results
to analogous results using the interval censoring method, revealing small differences as detailed in the
electronic supplementary material, S2.3.

3.4. Time from symptom onset to death
We conducted a comprehensive analysis of the duration between symptom onset and death, catego-
rizing our findings by age groups, as presented in table 4. Remarkably, significant variations were
observed in the meantime from symptom onset to death across these groups. For instance, the mean
delay ranged from approximately 12.3 (95% CI: 9.35–16.8) days for the 0–24 years age group to 16.1
(95% CI: 15.5–16.0) days for the 75–100 years age group. The gamma distribution emerged as the
most accurate representation for this duration across various age groups (25–49 years, 50–74 years and
75–100 years). Additionally, for the 0–24 years age group, the lognormal distribution demonstrated the
best fit. The selection of both the lognormal and gamma distributions was validated by their lower AIC
values compared with the gamma and Weibull distributions. For a detailed summary of our findings,
please refer to table 4 and figure 6, which provide visual representations. Furthermore, we varied the
date of symptom onset to compare our results with the interval censoring method, revealing slight
differences as outlined in the electronic supplementary material, S2.4.

3.5. Probability of death following hospitalization
We estimated the probability that individuals who are hospitalized go on to die. For the 0–24 years and
25–49 years age groups, the probability of death given hospitalization is relatively low, with median
estimates of 0.323 (95% CI: 0.220–0.446) and 0.241 (95% CI: 0.210–0.276), respectively. By contrast, in
the 50–74 years age group, the probability of death given hospitalization is notably higher (0.465; 95%
CI: 0.431–0.499). This signifies that individuals aged 50–74 years exhibit an increased vulnerability to
adverse outcomes such as mortality when they require hospitalization. Finally, in the 75–100 years age
group, the probability of death given hospitalization is at its highest at 0.681 (95% CI: 0.624–0.734).
This finding underscores that individuals in this older demographic group face the most elevated risk
of mortality following hospitalization. Boxplots representing the estimates of the probability of death
following hospitalization in different age groups are shown in figure 7.

Table 3. Estimated distributions characterizing the time from symptom onset to reporting, for individuals of different ages. (The age
groups are 0–24 years, 25–49 years, 50–74 years and 75–100 years, encompassing 104, 734, 904 and 248 cases, respectively; 95%
credible intervals are shown in parentheses.)

gamma/age group mean shape rate AIC

0–24 8.04 (7.11–8.86) 1.69 (1.33–2.19) 0.21 (0.15–0.27) 631.9216

25–49 7.17 (7.00–7.26) 2.08 (1.89–2.31) 0.29 (0.26–0.33) 4000.193

50–74 8.09 (8.01–8.17) 2.51 (2.29–2.75) 0.31 (0.28–0.34) 4894.916

75–100 9.81 (8.55–9.73) 2.16 (1.81–2.58) 0.22 (0.18–0.27) 1365.783

Weibull/age group mean shape scale AIC

0–24 8.06 (7.11–9.08) 1.32 (1.15–1.55) 8.76 (7.48–10.1) 634.0786

25–49 7.00 (6.70–7.32) 1.57 (1.48–1.66) 7.80 (7.41–8.20) 3993.266

50–74 8.06 (7.74–8.38) 1.66 (1.58–1.75) 9.02 (8.63–9.42) 4918.846

75–100 9.53 (8.88–10.34) 1.55 (1.42–1.72) 10.6 (9.77–11.6) 1368.161

lognormal/age group mean mean-log s.d.-log AIC

0–24 8.18 (6.41–10.81) 1.75 (1.60–1.92) 0.84 (0.72–0.96) 632.1582

25–49 7.33 (6.69–8.04) 1.68 (1.62–1.74) 0.79 (0.75–0.83) 4074.812

50–74 8.17 (7.62–8.75) 1.87 (1.82–1.91) 0.68 (0.65–0.72) 4937.991

75–100 9.78 (8.42–11.5) 2.00 (1.90–2.10) 0.75 (0.68–0.83) 1379.239
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4. Discussion and conclusion
In this study, we used data from MERS-CoV cases in Saudi Arabia to estimate a range of epide-
miological time intervals, including onset-to-admission, onset-to-confirmation, onset-to-reporting and
onset-to-death. Specifically, we fitted different probability distributions to the data and selected the
best-fitting distributions based on the AIC values. We found that epidemiological distributions can
be sensitive to the age of the cases under consideration, highlighting the importance of considering
age-related heterogeneities in epidemiological analyses. Furthermore, the precise parametric distribu-
tion that fitted the data best sometimes depended on the age group under consideration. A compre-
hensive understanding of the time intervals associated with MERS-CoV infections can contribute to
informed policy decisions aimed at containment and the suppression of transmission.

The mean delay from symptom onset to hospitalization was shorter than the mean delay from
symptom onset to reporting because only severe cases tend to be hospitalized. By contrast, all cases
are reported, but those with mild symptoms may be reported with less urgency. After confirmation,
information about each case is compiled and sent to the Saudi Arabia MoH, where it is processed and
reported to the public within 1–2 days. This rapid reporting system ensures not only accuracy but
also timeliness in disseminating vital information about an ongoing outbreak. Every confirmed case,
whether the symptoms were severe or mild, was meticulously documented, confirmed and reported,
enabling healthcare professionals and the public to stay updated on the disease’s progression and to
take necessary precautions.

In addition to estimating epidemiological time intervals, we calculated the probability of death after
hospitalization for different age groups. This provided insights into patients’ chances of recovery after
being hospitalized based on their age. It is imperative to highlight the substantial variation observed
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Figure 6. The probability density of the observed time between symptom onset and death is portrayed for four age groups: (a)
0–24 years, (b) 25–49 years, (c) 50–74 years and (d) 75–100 years, encompassing 36, 190, 426 and 164, respectively. These figures
represent the proportion of the population captured in the survey. A comparative analysis of the delay distribution is then conducted
across these distinct age groups. The probability density distributions of the gamma, Weibull and lognormal distributions illustrate the
distribution of times from symptom onset to confirmation within each specific age group.
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between different age groups in the probability of death following hospitalization. This variation
underscores the diverse risk profiles and outcomes experienced by individuals of varying ages when
confronted with MERS-CoV. It is crucial that this is considered when planning targeted healthcare
strategies, as it provides a nuanced understanding of the unique challenges and vulnerabilities specific
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Figure 7. Probability of death given hospitalization in different age groups. For each age group, the central thick line depicts
the median estimate, with the surrounding interval representing a 95% credible interval. The noticeable variation in these
probabilities among different age groups underscores the importance of considering age-related differences in healthcare planning
and interventions.

Table 4. Estimated distributions characterizing the time from symptom onset to death, for individuals of different ages. (The age
groups are 0–24 years, 25–49 years, 50–74 years and 75–100 years, encompassing 36, 190, 426 and 164 cases, respectively; 95%
credible intervals are shown in parentheses.)

gamma/age group mean shape rate AIC

0–24 12.59 (12.0–13.9) 2.77 (1.81–4.68) 0.22 (0.13–0.39) 223.6931

25–49 15.5 (14.8–16.3) 2.17 (1.79–2.68) 0.14 (0.11–0.18) 1261.345

50–74 15.7 (14.8–16.2) 2.21 (1.95–2.52) 0.14 (0.12–0.17) 2841.778

75–100 16.1 (15.5–16.9) 2.75 (2.24–3.42) 0.17 (0.14–0.22) 1076.022

Weibull/age group mean shape scale AIC

0–24 12.7 (10.0–15.6) 1.61 (1.23–2.15) 14.2 (10.8–17.7) 227.5161

25–49 14.7 (13.5–16.1) 1.58 (1.41–1.77) 16.4 (14.9–18.1) 1262.351

50–74 15.0 (14.1–15.8) 1.57 (1.46–1.70) 16.7 (15.6–17.8) 2847.374

75–100 15.5 (14.3–16.9) 1.87 (1.58–2.02) 17.5 (16.0–19.1) 1078.929

lognormal/age group mean mean-log s.d.-log AIC

0–24 12.3 (9.35–16.8) 2.33 (2.13–2.55) 0.60 (0.46–0.74) 219.1320

25–49 15.3 (12.8–18.2) 2.44 (2.32–2.55) 0.76 (0.68–0.84) 1276.453

50–74 15.3 (13.7–17.3) 2.46 (2.38–2.54) 0.74 (0.69–0.79) 2865.034

75–100 15.6 (13.5–18.3) 2.54 (2.44–2.65) 0.65 (0.58–0.72) 1084.599
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to each age group. This comprehensive insight allows for the implementation of age-tailored interven-
tions, ultimately enhancing the effectiveness of healthcare responses and ensuring a more efficient
allocation of resources.

We further conducted a sensitivity analysis to compare our main results to analogous results in
which interval-censored event times are accounted for. Specifically, interval censoring accounts for the
range of different possible times at which events occur on the dates concerned. For example, if an
individual develops symptoms on the day before they then report their infection, the true symptom
onset to reporting delay could lie anywhere in the range 0–2 days (i.e. they could develop symptoms
at the end of the first day and report at the beginning of the second day, or vice versa). We found our
results to be very similar to whether or not interval censoring is accounted for.

As with any epidemiological analysis, our study does have some limitations. For example, recall
bias may have affected our results. In particular, the recorded dates of symptom onset rely on patients’
recall after admission for MERS-CoV, which can introduce inaccuracies. In addition, in some analyses,
we considered uncertainty in the dates of symptom onset. However, future analyses should also
consider uncertainty in the dates of other events, such as hospitalization, confirmation, reporting and
death dates. Finally, some patients were excluded from our analyses owing to incomplete clinical
histories or missing characteristics, potentially leading to selection bias. Collection and analysis of
additional data in the future would be useful to confirm the results of our study, as well as to explore
heterogeneities that are not age-related.

In conclusion, we used a comprehensive and extensive nationwide database describing the
characteristics of MERS-CoV patients to estimate a range of epidemiological periods. We fitted a range
of parametric distributions to those data and demonstrated that there is substantial variation between
individuals of different ages. We hope that the estimates obtained in our analysis will be useful for
future modelling studies, as well as to inform effective public health policies to mitigate the negative
impacts of MERS-CoV going forward.
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