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Abstract

In this paper, we consider two fundamental cut approximation problems on large graphs. We prove 

new lower bounds for both problems that are optimal up to logarithmic factors.

The first problem is to approximate cuts in balanced directed graphs. In this problem, the goal is 

to build a data structure that 1 ± ε -approximates cut values in graphs with n vertices. For arbitrary 

directed graphs, such a data structure requires Ω n2  bits even for constant ε. To circumvent this, 

recent works study β-balanced graphs, meaning that for every directed cut, the total weight of 

edges in one direction is at most β times that in the other direction. We consider two models: the 

for-each model, where the goal is to approximate each cut with constant probability, and the for-all 
model, where all cuts must be preserved simultaneously. We improve the previous Ω(n β /ε) lower 

bound to Ω(n β /ε) in the for-each model, and we improve the previous Ω nβ /ε  lower bound to 

Ω nβ /ε2  in the for-all model. 1 This resolves the main open questions of (Cen et al., ICALP, 2021).

The second problem is to approximate the global minimum cut in a local query model, where 

we can only access the graph via degree, edge, and adjacency queries. We improve the previous 

Ω m
k  query complexity lower bound to Ω(min{m, m

ε2k
}) for this problem, where m is the number of 

edges, k is the size of the minimum cut, and we seek a 1 + ε -approximation. In addition, we show 

that existing upper bounds with slight modifications match our lower bound up to logarithmic 

factors.

1In this paper, we use O( ⋅ ) and Ω( ⋅ ) to hide logarithmic factors in its parameters.
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1 Introduction

The notion of cut sparsifiers has been extremely influential. It was introduced by Benczúr 

and Karger [BK96] and it is the following: Given a graph G = V , E, w  with n = V
vertices, m = E  edges, edge weights we ≥ 0, and a desired error parameter ε > 0, a (1 ± ε) 

cut sparsifier of G is a subgraph H on the same vertex set V  with (possibly) different edge 

weights, such that H approximates the value of every cut in G within a factor of 1 ± ε . 

Benczúr and Karger [BK96] showed that every undirected graph has a 1 ± ε  cut sparsifier 

with only O n log n/ε2  edges. This was later extended to the stronger notion of spectral 

sparsifiers [ST11] and the number of edges was improved to O n/ε2  [BSS12]; see also 

related work with different bounds for both cut and spectral sparsifiers [FHHP19, KP12, 

ST04, SS11, LS17, CKST19].

In the database community, a key result is the work of [AGM12], which shows how to 

construct a sparsifer using O n/ε2  linear measurements to 1 + ε -approximate all cut 

values. Sketching massive graphs arises in various applications where there are entities and 

relationships between them, such as webpages and hyperlinks, people and friendships, and 

IP addresses and data flows. As large graph databases are often distributed or stored on 

external memory, sketching algorithms are useful for reducing communication and memory 

usage in distributed and streaming models. We refer the readers to [McG14] for a survey of 

graph stream algorithms in the database community.

For very small values of ε, the 1/ε2 dependence in known cut sparsifiers may be prohibitive. 

Motivated by this, the work of [ACK+16] relaxed the cut sparsification problem to 

outputting a data structure D, such that for any fixed cut S ⊂ V , the value D S  is within 

a 1 ± ε  factor of the cut value of S in G with probability at least 2/3. Notice the 

order of quantifiers — the data structure only needs to preserve the value of any fixed cut 

(chosen independently of its randomness) with high constant probability. This is referred to 

as the for-each model, and the data structure is called a for-each cut sketch. Surprisingly, 

[ACK+16] showed that every undirected graph has a 1 ± ε  for-each cut sketch of size 

O(n/ε) bits, reducing the dependence on ε to linear. They also showed an Ω n/ε  bits lower 

bound in the for-each model. The improved dependence on ε is indeed coming from relaxing 

the original sparsification problem to the for-each model: [ACK+16] proved an Ω n/ε2  bit 

lower bound on any data structure that preserves all cuts simultaneously, which is referred to 

as the for-all model. This lower bound in the for-all model was strengthened to Ω n log n/ε2

bits in [CKST19].

While the above results provide a fairly complete picture for undirected graphs, a natural 

question is whether similar improvements are possible for directed graphs. This is the main 

question posed by [CCPS21]. For directed graphs, even in the for-each model, there is an 

Ω n2  lower bound without any assumptions on the graph. Motivated by this, [EMPS16, 

IT18, CCPS21] introduced the notion of β-balanced directed graphs, meaning that for every 

directed cut S, V \ S , the total weight of edges from S to V \ S is at most β times 

that from V \ S to S. The notion of β-balanced graphs turned out to be very useful for 
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directed graphs, as [IT18, CCPS21] showed an O(n β /ε) upper bound in the for-each model, 

and an O nβ /ε2  upper bound in the for-all model, thus giving non-trivial bounds for both 

problems for small values of β. The work of [CCPS21] also proved lower bounds: they 

showed an Ω(n β /ε) lower bound in the for-each model, and an Ω(nβ /ε) lower bound in the 

for-all model. While their lower bounds are tight for constant ε, there is a quadratic gap for 

both models in terms of the dependence on ε. The main open question of [CCPS21] is to 

determine the optimal dependence on ε, which we resolve in this work.

Recent work further explored spectral sketches, faster computation of sketches, and 

sparsification of Eulerian graphs (β-balanced graphs with β = 1) [ACK+16, JS18, CKK+18, 

CGP+23, SW19]. In this paper, we focus on the space complexity of cut sketches for general 

values of β.

As observed in [ACK+16], one of the main ways to use for-each cut sketches is to solve the 

distributed minimum cut problem. This is the problem of computing a (1 + ε)-approximate 

global minimum cut of a graph whose edges are distributed across multiple servers. One can 

ask each server to compute a (1 ± 0.2) for-all cut sketch and a (1 ± ε) for-each cut sketch. 

This allows one to find all O(1)-approximate minimum cuts, and because there are at most 

nO(C) cuts with value within a factor of C of the minimum cut, one can query all these 

poly(n) cuts using the more accurate for-each cut sketches, resulting in an optimal linear in 

1/ε dependence in the communication.

Motivated by this connection to distributed minimum cut estimation, we also consider the 

problem of directly approximating the minimum cut in a local query model, which was 

introduced in [RSW18] and studied for minimum cut in [ER18, BGMP21]. The model is 

defined as follows.

Let G(V , E) be an unweighted and undirected graph, where the vertex set V  is known but 

the edge set E is unknown. In the local query model, we have access to an oracle that can 

answer the following three types of local queries:

1. Degree query: Given u ∈ V , the oracle returns the degree of u.

2. Edge query: Given u ∈ V  and index i, the oracle returns the i-th neighbor of u, or 

⊥ if the edge does not exist.

3. Adjacency query: Given u, v ∈ V , the oracle returns whether (u, v) ∈ E.

In the MIN-CUT problem, our goal is to estimate the global minimum cut up to a 

(1 ± ε)-factor using these local queries. The complexity of the problem is measured by the 

number of queries, and we want to use as few queries as possible. For this problem we focus 

on undirected graphs.

Previous work [ER18] showed an Ω m
k  query complexity lower bound, where k is the size of 

the minimum cut. The main open question is what the dependence on ε should be. There is 

also an O( m
k poly(ε) ) upper bound in [BGMP21], and a natural question is to close this gap.
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1.1 Our Results

We resolve the main open questions mentioned above.

Cut Sketch for Balanced (Directed) Graphs.—We study the space complexity of 

(1 ± ε) cut sketches for n-node β-balanced (directed) graphs. Previous work [IT18, CCPS21] 

gave an O nβ /ε2  upper bound in the for-all model and an O(n β /ε) upper bound in the for-

each model, along with an Ω(nβ /ε) lower bound and an Ω(n β /ε) lower bound, respectively.

We close these gaps and resolve the dependence on ε, improving the lower bounds to match 

the upper bounds for all parameters n, β, and ε (up to logarithmic factors). Formally, we 

have:

Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).—Let β ≥ 1 and 
0 < ε < 1. Assume β /ε ≤ n/2. Any (1 ± ε) for-each cut sketching algorithm for β-balanced 

n-node graphs must output Ω(n β /ε) bits.

Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).—Let β ≥ 1 and 0 < ε < 1. 

Assume β /ε2 ≤ n/2. Any (1 ± ε) for-all cut sketching algorithm for β-balanced n-node graphs 

must output Ω nβ /ε2  bits.

Query Complexity of Min-Cut in the Local Query Model.—We study the problem of 

(1 ± ε)-approximating the (undirected) global minimum cut in a local query model, where 

we can only access the graph via degree, edge, and adjacency queries.

We close the gap on the ε dependence in the query complexity of this problem by proving a 

tight Ω(min{m, m
ε2k

}) lower bound, where m is the number of edges and k is the size of the 

minimum cut. This improves the previous Ω m
k  lower bound in [ER18]. Formally, we have:

Theorem 1.3 (Approximating Min-Cut using Local Queries).—Any algorithm that 
estimates the size of the global minimum cut of a graph G up to a (1 ± ε) factor requires 

Ω(min{m, m
ε2k

}) queries in expectation in the local query model, where m is the number of 

edges in G and k is the size of the minimum cut.

We also show that with a slight modification, the O( m
k poly(ε) ) query complexity upper bound 

in [BGMP21] can be improved to O m
ε2k

, which implies that our lower bound is tight (up to 

logarithmic factors).

1.2 Our Techniques

A common technique we use for the different problems is communication complexity games 

that involve the approximation parameter ε. For example, suppose Alice has a bit string s
of length 1/ε2 , and she can encode s into a graph G such that, if she sends Bob a (1 ± ε)
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(for-each or for-all) cut sketch to Bob, then Bob can recover a specific bit of s with high 

constant probability. By communication complexity lower bounds, we know Alice must 

send Ω 1/ε2  bits to Bob, which gives a lower bound on the size of the cut sketch.

For-Each Cut Sketch Lower Bound.—Let k = β /ε. At a high level, we partition the 

n nodes into n/(2k) sub-graphs, where each sub-graph is a k-by-k bipartite graph with two 

parts L and R. We then divide L and R into β disjoint clusters L1 = L2 = … = |L β | = 1/ε
and R1 = R2 = … = |R β | = 1/ε. For every cluster pair Li and Rj, there are a total of 1/ε2

edges. Intuitively, we wish to encode a bit string s ∈ − 1, 1 1/ε2
 into forward edges (left to 

right) each with weight Θ(1), and add backward edges (right to left) each with weight 1/β so 

that the graph β-balanced. If we could approximately decode this string from a for-each cut 

sketch, then we would get an Ω((n/k) ⋅ ( β)2 ⋅ (1/ε)2) = Ω(n β /ε) lower bound.

However, if we use a simple encoding method [ACK+16, CCPS21] where each bit si

is encoded into one edge (u, v) (e.g., with weight 1 or 2) and query the edges leaving 

S = u ∪ (R\ v ), then the (k − 1)2 = Ω β /ε2  backward edges with weight 1/β will cause 

the cut value to be Ω 1/ε2 . The (1 ± ε) cut sketch will have additive error Ω(1/ε) ≫ Θ(1), 

which will obscure si = − 1, 1 . To address this, we instead encode 1/ε2 bits of information 

across 1/ε2 edges simultaneously. When we want to decode a specific bit si, we query the 

(directed) cut values between two carefully designed subsets A ∈ Li and B ∈ Rj. The key idea 

of our construction is that, although each edge in A × B is used to encode many bits of s, the 

encoding of different bits of s is never too correlated: while encoding other bits does affect 

the total weight from A to B, this effect is similar to adding noise which only varies the total 

weight from A to B by a small amount.

For-All Cut Sketch Lower Bound.—Let k = β /ε2. At a high level, we partition 

the n nodes into n/(2k) sub-graphs, where each sub-graph is a k-by-k bipartite graph 

with two parts L and R. Let L = ℓ1 , …, ℓk . We partition R into β disjoint clusters 

R1 = … = Rβ = 1/ε2. We use edges from ℓi to Rj to encode a bit string s ∈ 0, 1 1/ε2
 by 

setting the weight of each forward edge to 1 or 2, and adding a backward edge of weight 1/β
to balance the graph.

We can show that the following problem requires Ω 1/ε2  bits of communication: Consider 

ℓi ∈ L and a random subset T ⊂ Rj where |T | = Rj
2 . Let N ℓi  denote ℓi’s neighbors v such 

that ℓi , v  has weight 2, which is uniformly random if s is uniformly random. The problem 

is to decide whether N ℓi ∩ T ≥ 1
4ε2 + c

2ε  or N ℓi ∩ T ≤ 1
4ε2 − c

2ε  for a sufficiently small 

constant c > 0. Intuitively, the graph encodes a (kβ)-fold version of this communication 

problem, which implies an Ω((n/k) ⋅ kβ ⋅ (1/ε)2) = Ω nβ /ε2  lower bound.

We need to show that Bob can distinguish between the two cases of N ℓi ∩ T  given a 

for-all cut sketch. However, there are some challenges. The difference between the two cases 
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is Θ(1/ε) while the natural cut to query S = ℓi ∪ (R \ T ) has value Ω β /ε4 . The (1 ± ε) cut 

sketch will have additive error Ω β /ε3 ≫ Θ(1/ε), which is too much. To overcome this, note 

that we have not used the property that the for-all cut sketch preserves all cuts. We make use 

of the following crucial observation in [ACK+16]: In expectation, roughly half of the nodes 

ℓi ∈ L satisfy N ℓi ∩ T ≥ 1
4ε2 + c

2ε  because c is small. If Bob enumerates all subsets Q ⊂ L

of size L
2 , he will eventually get lucky and find a set Q that contains almost all such nodes. 

Since there are roughly L
2 = β

2ε2  such nodes, the (c/ε) bias per node will contribute Ω cβ /ε3

in total, which is enough to be detected even under an O β /ε3  additive error.

Query Complexity of Min-Cut in the Local Query Model.—We prove our lower 

bound using communication complexity, but unlike previous work [ER18], we consider 

the following 2SUM problem [WZ14]: Given 2t length-L binary strings x1, x2, …, xt  and 

y1, y2, …, yt , we want to approximate the value of ∑i ∈ t DISJ xi, yi  up to a t additive error, 

with the promise that at least a constant fraction of the xi, yi  satisfy INT xi, yi = α while 

the remaining pairs satisfy INT xi, yi = 0 or α. Here INT(x, y) = ∑i = 1
L xi ∧ yi is the number 

of indices where x and y are both 1, and DISJ(x, y) is the set-disjointness problem, i.e., 

DISJ(x, y) = 1 if INT(x, y) = 0 and DISJ(x, y) = 0 otherwise. The parameters L, t, and α will 

be chosen later.

We construct our graph Gx, y based on the vectors xi and yi in a way inspired by [ER18]. 

We then give a careful analysis of the size of the minimum cut of Gx, y, and show that under 

certain conditions, the size of the minimum cut is exactly 2∑i ∈ t INT xi, yi . Consequently, a 

(1 ± ε)-approximation of the minimum cut yields an approximation of ∑i ∈ t DISJ xi, yi  up to 

a ε additive error, which implies the desired lower bound.

2 Preliminaries

Let G = (V , E, w) be a weighted (directed) graph with n vertices and m edges, where each 

edge e ∈ E has weight we ≥ 0. We write G = (V , E) if G is unweighted and leave out w. For 

two sets of nodes S, T ⊆ V , let E(S, T ) = (u, v) ∈ E:u ∈ S, v ∈ T  denote the set of edges 

from S to T . Let w(S, T ) = ∑e ∈ E(S, T ) we denote the total weight of edges from S to T . For a 

node u ∈ V  and a set of nodes S ⊆ V , we write w(u, S) for w( u , S).

We write n  for 1, …, n . We use 1 to denote the all-ones vector. For a vector v, we 

write v 2 and v ∞ for the ℓ2 and ℓ∞ norm of x respectively. For two vectors u, v ∈ ℝn, let 

u ⊗ v ∈ ℝn2
 be the tensor product of u and v. Given a matrix A, we use Ai to denote the i-th 

row of A.

Directed Cut Sketches.

We start with the definitions of β-balanced graphs, for-all and for-each cut sketches [BK96, 

ST11, ACK+16, CCPS21].
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We say a directed graph is balanced if all cuts have similar values in both directions.

Definition 2.1 (β-Balanced Graphs).

A strongly connected directed graph G = (V , E, w) is β-balanced if, for all ∅ ⊂ S ⊂ V , it 
holds that w(S, V \ S) ≤ β ⋅ w(V \ S, S).

We say sk(G) is a for-all cut sketch if the value of all cuts can be approximately recovered 

from it. Note that sk(G) is not necessarily a graph and can be an arbitrary data structure.

Definition 2.2 (For-All Cut Sketch).

Let 0 < ε < 1. We say A is a (1 ± ε) for-all cut sketching algorithm if there exists a 
recovering algorithm f such that, given a directed graph G = (V , E, w) as input, A can 
output a sketch sk(G) such that, with probability at least 2/3, for all ∅ ⊂ S ⊂ V :

1 − ε ⋅ w S, V \ S ≤ f S, sk G ≤ 1 + ε ⋅ w S, V \ S .

Another notion of cut approximation is that of a “for-each” cut sketch, which requires that 

the value of each individual cut is preserved with high constant probability, rather than 

approximating the values of all cuts simultaneously.

Definition 2.3 (For-Each Cut Sketch).

Let 0 < ε < 1. We say A is a (1 ± ε) for-each cut sketching algorithm if there exists a 
recovering algorithm f such that, given a directed graph G = (V , E, w) as input, A can output 
a sketch sk(G) such that, for each ∅ ⊂ S ⊂ V , with probability at least 2/3,

1 − ε ⋅ w S, V \ S ≤ f S, sk G ≤ 1 + ε ⋅ w S, V \ S .

In Definitions 2.2 and 2.3, the sketching algorithm A and the recovering algorithm f can be 

randomized, and the probability is over the randomness in A and f.

3 For-Each Cut Sketch

In this section, we prove an Ω(n β /ε) lower bound on the output size of (1 ± ε) for-each cut 

sketching algorithms (Definition 2.3).

Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).

Let β ≥ 1 and 0 < ε < 1. Assume β /ε ≲ n/2. Any (1 ± ε) for-each cut sketching algorithm for 

β-balanced n-node graphs must output Ω(n β /ε) bits.

Our result uses the following communication complexity lower bound for a variant of the 

Index problem, where Alice and Bob’s inputs are random.
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Lemma 3.1 ([KNR01]).

Suppose Alice has a uniformly random string s ∈ − 1, 1 n and Bob has a uniformly 
random index i ∈ n . If Alice sends a single (possibly randomized) message to Bob, and 
Bob can recover si with probability at least 2/3 (over the randomness in the input and their 

protocol), then Alice must send Ω(n) bits to Bob.

Our lower-bound construction relies on the following technical lemma.

Lemma 3.2.

For any integer k ≥ 1, there exists a matrix M ∈ − 1, 1 2k − 1 2 × 22k
 such that:

1. Mt, 1 = 0 for all t ∈ [ 2k − 1 2].

2. Mt, Mt′ = 0 for all 1 ≤ t < t′ ≤ 2k − 1 2
.

3. For all t ∈ [ 2k − 1 2], the t-th row of M can be written as Mt = u ⊗ v where 

u, v ∈ − 1, 1 2k
 and u, 1 = v, 1 = 0.

Proof.—Our construction is based on the Hadamard matrix H = H2k ∈ − 1, 1 2k × 2k
. 

Recall that the first row of H is the all-ones vector and that Hi, Hj = 0 for all i ≠ j. For 

every 2 ≤ i, j ≤ 2k, we add Hi ⊗ Hj ∈ − 1, 1 22k
 as a row of M, so M has 2k − 1 2

 rows.

Condition (3) holds because Hi, 1 = Hj, 1 = 0 for all i, j ≥ 2. For Conditions (1) and (2), 

note that for any vectors u, v, w, and z, we have u ⊗ v, w ⊗ z = u, w v, z . Using this fact, 

Condition (1) holds because Mt, 1 = Hi ⊗ Hj, 1 ⊗ 1 = Hi, 1 Hj, 1 = 0, and Condition (2) 

holds because (i, j) ≠ i′, j′  and thus Mt, Mt′ = Hi ⊗ Hj, Hi′ ⊗ Hj′ = Hi, Hi′ Hj, Hj′ = 0. □

We first prove a lower bound for the special case n = Θ( β /ε). Our proof for this special case 

introduces important building blocks for proving the general case n = Ω( β /ε).

Lemma 3.3.

Suppose n = Θ( β /ε). Any (1 ± ε) for-each cut sketching algorithm for β-balanced n-node 

graphs must output Ω(n β /ε) = Ω β /ε2  bits.

At a high level, we reduce the Index problem (Lemma 3.1) to the for-each cut sketching 

problem. Given Alice’s string s, we construct a graph G to encode s, such that Bob can 

recover any single bit in s by querying O(1) cut values of G. Our lower bound (Lemma 

3.3) then follows from the communication complexity lower bound of the Index problem 

(Lemma 3.1), because Alice can run a for-each cut sketching algorithm and send the cut 

sketch to Bob, and Bob can successfully recover the O(1) cut values with high constant 

probability.
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Proof of Lemma 3.3.—We reduce from the Index problem. Let s ∈ − 1, 1 β(1
ε − 1)

2

denote Alice’s random string.

Construction of G.

We construct a directed complete bipartite graph G to encode s. Let L and R denote the 

left and right nodes of G, where |L | = |R | = β /ε. We partition L into β disjoint blocks 

L1, …, L β of equal size, and similarly partition R into R1, …, R β. We divide s into β disjoint 

strings si, j ∈ − 1, 1 (1
ε − 1)

2
 of the same length. We will encode si, j using the edges from 

Li to Rj. Note that the encoding of each si, j is independent since E Li, Rj ∩ E Li′, Rj′ = ∅ for 

(i, j) ≠ i′, j′ .

We fix i and j and focus on the encoding of si, j. Note that Li = Rj = 1/ε. We refer to 

the edges from Li to Rj as forward edges and the edges from Rj to Li as backward edges. 

Let w ∈ ℝ1/ε2
 denote the weights of the forward edges, which we will choose soon. Every 

backward edge has weight 1/β.

Let z = si, j ∈ − 1, 1 (1
ε − 1)

2
. Assume w.l.o.g. that 1/ε = 2k for some integer k. Consider the 

vector x = ∑t = 1
(1
ε − 1)

2

ztMt ∈ ℝ1/ε2
 where M is the matrix in Lemma 3.2 with 2k = 1/ε. Because 

zt ∈ − 1, 1  is uniformly random, each coordinate of x is a sum of O 1/ε2  i.i.d. random 

variables of value ±1. By the Chernoff bound and the union bound, we know that with 

probability at least 99/100, x ∞ ≤ c1 ln(1/ε)/ε for some constant c1 > 0. If this happens, 

we set w = εx + 2c1 ln(1/ε)1, so that each entry of w is between c1 ln(1/ε) and 3c1 ln(1/ε). 
Otherwise, we set w = 2c1 ln(1/ε)1 to indicate that the encoding failed.

We first verify that G is O(β log(1/ε))-balanced. This is because every edge has a reverse 

edge with similar weight: For every u ∈ L and v ∈ R, the edge (u, v) has weight Θ(log(1/ε)), 
while the edge (v, u) has weight 1/β.

We will show that given a (1 ± c2ε
ln(1/ε) ) cut sketch for some constant c2 > 0, Bob can recover a 

specific bit of z using 4 cut queries. By Lemma 3.1, this implies an Ω β /ε2 = Ω β′/ε′2  lower 

bound for cut sketching algorithms for β′ = O(β log(1/ε)) and ε′ = c2ε/ ln(1/ε).

Recovering a bit in s from a for-each cut sketch of G.

Suppose Bob wants to recover a specific bit of s, which belongs to the substring z = si, j and 

has an index t in z. We assume that z is successfully encoded by the subgraph between Li

and Rj.

For simplicity, we index the nodes in Li as 1, …, (1/ε) and similarly for Rj. We index the 

forward edges (u, v) in alphabetical order, first by u ∈ Li and then by v ∈ Rj. Under this 
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notation, w, 1A ⊗ 1B  gives the total weight w(A, B) of forward edges from A to B, where 

1A, 1B ∈ 0, 1 1/ε are the indicator vectors of A ⊂ Li and B ⊂ Rj.

The crucial observation is that, given a cut sketch of G, Bob can approximate w, Mt  using 

4 cut queries. By Lemma 3.2, Mt = ℎA ⊗ ℎB for some ℎA, ℎB ∈ − 1, 1 1/ε. Let A ⊂ Li be the 

set of nodes u ∈ Li with ℎA(u) = 1. Let B ⊂ Ri be the set of nodes v ∈ Rj with ℎB(v) = 1. Let 

A‾ = Li \ A and B‾ = Rj \ B.

w, Mt = w, ℎA ⊗ ℎB = w, 1A − 1A ⊗ 1B − 1B

= w A, B − w A, B − w A, B + w A, B .

To approximate the value of w(A, B) (and similarly w(A, B), w(A, B), w(A, B)), Bob can 

query w(S, V \ S) for S = A ∪ (R \ B). Consider the edges from S to (V \ S): the forward 

edges are from A to B, each with weight Θ(log(1/ε)); and the backward edges are from 

(R \ B) to (L \ A), each with weight 1/β. See Figure 1 as an example.

By Lemma 3.2, ℎA, 1 = ℎB, 1 = 0, so |A | = |B | = Li
2 = Rj

2 = 1
2ε . The total weight of 

the forward edges is Θ log(1/ε)/ε2 , and the total weight of the backward edges is 

( β
ε − 1

2ε )
2 1

β = Θ 1/ε2 , so the cut value w(S, V \ S) is Θ log(1/ε)/ε2 . Given a (1 ± c2ε
ln(1/ε) )

for-each cut sketch, Bob can obtain a (1 ± c2ε
log(1/ε) ) multiplicative approximation of 

w(S, V \ S), which has O c2/ε  additive error. After subtracting the total weight of backward 

edges, which is fixed, Bob has an estimate of w(A, B) with O c2/ε  additive error. 

Consequently, Bob can approximate w, Mt  with O c2/ε  additive error using 4 cut queries.

Now consider w, Mt . By Lemma 3.2, Mt, 1 = 0 and the rows of M are orthogonal,

w, Mt = εx, Mt = ε
t′

zt′Mt′, Mt = εzt Mt 2
2 = zt

ε .

We can see that, for a sufficiently small universal constant c2, Bob can distinguish whether 

zt = 1 or zt = − 1 based on an O c2/ε  additive approximation of w, Mt .

Bob’s success probability is at least 0.95, because the encoding of z fails with probability at 

most 0.01, and each of the 4 cut queries fails with probability at most 0.01.2 □

We next consider the case with general values of n, β, and ε, and prove Theorem 1.1.

2The success probability of a cut query given a for-each cut sketch (Definition 2.3) can be boosted from 2/3 to 99/100, e.g., by running 
the sketching and recovering algorithms O(1) times and taking the median. This increases the length of Alice’s message by a constant 
factor, which does not affect our asymptotic lower bound.
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Proof of Theorem 1.1.—Let k = β /ε. We assume w.l.o.g. that k is an integer, n
is a multiple of k, and (1/ε) is a power of 2. Suppose Alice has a random string 

s ∈ − 1, 1 Ω(nk). We will show that s can be encoded into a graph G such that

i. G has n nodes and is O(β log(1/ε))-balanced, and

ii. Given a (1 ± c2ε
ln(1/ε) ) for-each cut sketch of G and an index q, where c2 > 0 is a 

sufficiently small universal constant, Bob can recover sq with probability at least 

2/3.

Consequently, by Lemma 3.1, any for-each cut sketching algorithm must output 

Ω(nk) = Ω(n β /ε) = Ω(n β′/ε′) bits for β′ = O(β log(1/ε)) and ε′ = c2ε/ ln(1/ε).

We first describe the construction of G. We partition the n nodes into ℓ = n/k ≥ 2 disjoint 

sets V 1, …, V ℓ, each containing k nodes. Let s be Alice’s random string with length 

β 1
ε − 1

2
( ℓ − 1) = Ω k2 ℓ = Ω(nk). We partition s into ( ℓ − 1) strings si i = 1

ℓ − 1, with k2 bits 

in each substring. We then follow the same procedure as in Lemma 3.3 to encode si into 

a complete bipartite graph between V i and V i + 1. Notice that we have si = β 1
ε − 1

2
 and 

V i = V i + 1 = β /ε, which is the same setting as in Lemma 3.3.

We can verify that G is O(β log(1/ε))-balanced. This is because every edge e has a reverse 

edge whose weight is at most O(β log(1/ε)) times the weight of e. For every u ∈ V i and 

v ∈ V i + 1, the edge (u, v) has weight Θ(log(1/ε)), while the edge (v, u) has weight 1/β.

We next show that Bob can recover the q-th bit of s. Suppose Bob’s index q belongs to the 

substring si which is encoded by the subgraph between V i and V i + 1. Similar to the proof of 

Lemma 3.3, Bob only needs to approximate w(A, B) for 4 pairs of (A, B) with O(1/ε) additive 

error, where ⊂ V i, B ⊂ V i + 1, and |A | = |B | = 1
2ε . To achieve this, Bob can query the cut value 

w(S, V \ S) for S = A ∪ V i + 1\B ⋃j = i + 2
ℓ V j. The edges from S to (V \ S) are:

• 1
4ε2  forward edges from A to B, each with weight Θ(log(1/ε)).

• β
ε − 1

2ε
2
 backward edges from V i + 1 \ B  to V i \ A , each with weight 1

β .

• β
2ε2  backward edges from A to V i − 1 when i ≥ 2, each with weight 1

β .

The cut value w(S, V \ S) is Θ(log(1/ε)/ε2). Consequently, given a (1 ± c2ε
ln(1/ε) ) for-each cut 

sketch, after subtracting the fixed weight of the backward edges, Bob can approximate 

w(A, B) with O c2/ε  additive error. Similar to the proof of Lemma 3.3, for sufficiently small 

constant c2 > 0, repeating this process for 4 different pairs of (A, B) will allow Bob to recover 

sq ∈ − 1, 1 . □
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4 For-All Cut Sketch

In this section, we prove an Ω nβ /ε2  lower bound on the output size of (1 ± ε) for-all cut 

sketching algorithms (Definition 2.2).

Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).

Let β ≥ 1 and 0 < ε < 1. Assume β /ε2 ≤ n/2. Any (1 ± ε) for-all cut sketching algorithm for 

β-balanced n-node graphs must output Ω nβ /ε2  bits.

Our proof is inspired by [ACK+16] and uses the following communication complexity lower 

bound for an n-fold version of the Gap-Hamming problem.

Lemma 4.1 ([ACK+16]).

Consider the following distributional communication problem: Alice has ℎ strings 

s1, …, sℎ ∈ 0, 1 1/ε2
 of Hamming weight 1

2ε2 . Bob has an index i ∈ ℎ  and a string 

t ∈ 0, 1 1/ε2
 of Hamming weight 1

2ε2 , drawn as follows:

1. i is chosen uniformly at random;

2. every si′ for i′ ≠ i is chosen uniformly at random;

3. si and t are chosen uniformly at random, conditioned on their Hamming distance 

Δ si, t  being, with equal probability, either ≥ 1
2ε2 + c

ε  or ≤ 1
2ε2 − c

ε  for some 

universal constant c > 0.

Consider a (possibly randomized) one-way protocol, in which Alice sends Bob a message, 

and Bob then determines with success probability at least 2/3 whether Δ si, t  is ≥ 1
2ε2 + c

ε  or 

≤ 1
2ε2 − c

ε . Then Alice must send Ω ℎ/ε2  bits to Bob.

Before proving Theorem 1.2, we first consider the special case n = Θ β /ε2 .

Lemma 4.2.

Suppose n = Θ β /ε2 . Any (1 ± ε) for-all cut sketching algorithm for β-balanced n-node 

graphs must output Ω nβ /ε2 = Ω β2/ε4  bits.

We reduce the distributional Gap-Hamming problem (Lemma 4.1) to the for-all cut 

sketching problem. Suppose Alice has ℎ strings s1, s2, …, sℎ ∈ 0, 1 1/ε2
 where ℎ = β2/ε2, 

and Bob has an index i ∈ ℎ  and a string t ∈ {0, 1}1/ε2
. We construct a graph G to 

encode s1, s2, …, sℎ, such that given a for-all cut sketch of G, Bob can determine whether 

Δ si, t ≥ 1
2ε2 + c

ε  or Δ si, t ≤ 1
2ε2 − c

ε  with high constant probability. Our lower bound then 

follows from Lemma 4.1.
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Construction of G.

We construct a directed complete bipartite graph G. Let L and R denote the left and 

right nodes of G, where L = R = β /ε2. We partition R into β disjoint sets with 

R1 = … = Rβ = 1/ε2.

Consider the distributional Gap-Hamming problem in Lemma 4.1 with ℎ = β2/ε2. We re-

index Alice’s β2/ε2  strings as si, j, where i ∈ β /ε2  and j ∈ β . Let ℓ1 , ℓ2 , …, ℓβ /ε2 be the 

nodes in L. We encode si, j ∈ 0, 1 1/ε2
 using the edges from ℓi to Rj: For node ℓi and 

the v-th node in Rj, the forward edge ℓi , v  has weight si, j(v) + 1, and the backward 

edge v, ℓi  has weight 1/β. Note that the encoding of each si, j is independent since 

E ℓi , Rj ∩ E ℓi′ , Rj′ = ∅ for (i, j) ≠ i′, j′ .

Determining Δ si, j, t  from a for-all cut sketch of G.

Suppose Bob’s input (after re-indexing) is 1 ≤ i ≤ β /ε2, 1 ≤ j ≤ β, and t ∈ 0, 1 1/ε2
. Bob 

wants to decide whether Δ si, j, t ≥ 1
2ε2 + c

ε  or Δ si, j, t ≤ 1
2ε2 − c

ε .

Let N ℓi  denote the set of nodes v ∈ Rj where the forward edge ℓi , v  has weight 2, 

which corresponds to the positions of 1 in si, j. Let T  be the set of nodes v ∈ Rj such that 

t(v) = 1.

Δ si, j, t = N ℓi \ T + T \ N ℓi = N ℓi + |T | − 2 N ℓi ∩ T = 1
ε2 − 2 N ℓi ∩ T .

Hence, to determine whether Δ si, j, t ≤ 1
2ε2 − c

ε  or Δ si, j, t ≥ 1
2ε2 + c

ε , Bob only needs to 

decide whether N ℓi ∩ T ≥ 1
4ε2 + c

2ε  or N ℓi ∩ T ≤ 1
4ε2 − c

2ε .

Let S = ℓi ∪ (R \ T ). The cut w(S, V \ S) consists of forward edges from ℓi to T  and 

backward edges from (R \ T ) to (L \ ℓi . Ideally, if Bob knows w(S, V \ S), he can 

subtract the weight of backward edges to obtain w ℓi , T = 1
ε2 + N ℓi ∩ T  and recover 

N ℓi ∩ T . However, Bob can only get a (1 ± ε)-approximation of w(S, V \ S), which 

may have Θ β /ε3  additive error because w(S, V \ S) = Θ β /ε4 . With this much error, Bob 

cannot distinguish between the two cases.

To overcome this issue, we follow the idea of [ACK+16]. Intuitively, when c is 

small, roughly half of ℓi ∈ L satisfy N ℓi ∩ T ≥ 1
4ε2 + c

2ε . By enumerating all subsets 

Q ⊂ L of size |Q | = ∣ L ∣
2 , Bob can find a set Q such that most nodes v ∈ Q satisfy 

N ℓi ∩ T ≥ 1
4ε2 + c

2ε . Since |Q | = β
2ε2 , the c

2ε  bias per node adds up to roughly cβ
2ε3 , which 

can be detected even with Θ β /ε3  error.
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To prove Lemma 4.2, we need the following two technical lemmas, which are essentially 

proved in [ACK+16].

Lemma 4.3 (Claim 3.5 in [ACK+16]).

Let c > 0 and β
ε ≥ 10

c . Consider the following sets:

Lhigh = { ℓi ∈ L: N ℓi ∩ T ≥ 1
4ε2 + c

2ε}, and

Llow = { ℓi ∈ L: N ℓi ∩ T ≤ 1
4ε2 − c

2ε} .

With probability at least 0.98, we have 1
2 − 10c ≤ Lhigh

L ≤ 1
2  and 1

2 − 10c ≤ Llow
L ≤ 1

2 .

Lemma 4.4 (Lemma 3.4 in [ACK+16]).

Let c1 > 0 be a sufficiently small universal constant. Suppose one can approximate w(U, T )

with additive error c1β /ε3 for every U ⊂ L with |U | = L
2 . Let Q ⊂ L be the subset with the 

highest (approximate) cut value. Then, with probability at least 0.96, we have Lhigh ∩ Q
Lhigh

≥ 4
5 .

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2.—We reduce from the distributional Gap-Hamming problem 

(Lemma 4.1) with ℎ = β2/ε2. We re-index Alice’s ℎ strings as si, j, where i ∈ β /ε2  and 

j ∈ β .

We construct a directed bipartite graph G with two parts L and R, where L = R = β /ε2. 

Let L = ℓ1 , ℓ2 , …, ℓβ /ε2 . We partition R into β disjoint sets with R1 = … = Rβ = 1/ε2. We 

encode si, j ∈ 0, 1 1/ε2
 using the edges from ℓi to Rj: For node ℓi and the v-th node in Rj, the 

forward edge ℓi , v  has weight si, j(v) + 1, and the backward edge v, ℓi  has weight 1/β.

Note that G is (2β)-balanced. We will show that given a 1 ± c2ε  for-all cut sketch of G for 

some constant c2 > 0, Bob can decide whether Δ si, j, t ≥ 1
2ε2 + c

ε  or Δ si, j, t ≤ 1
2ε2 − c

ε  with 

probability at least 2/3. Consequently, by Lemma 4.1, any for-all cut sketching algorithm 

must output Ω ℎ/ε2 = Ω β2/ε4 = Ω β′2/ε′4  bits for β′ = 2β and ε′ = c2ε.

Bob enumerates every U ⊂ L with |U | = L
2 = β

2ε2  and uses the cut sketch to approximate 

w(U, T ), where T ⊂ Rj corresponds to the positions of 1 in Bob’s string t and T = 1
2ε2 . 

Let S = U ∪ (R \ T ). The cut (S, V \ S) has β
4ε4  forward edges from U to T  with weights 

1 or 2, and β
ε2 − 1

2ε2
β

2ε2 = O β2

ε4  backward edges from (R \ T ) to (L \ U) with weight 
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1
β . The total weight of these edges is O β /ε4 . Therefore, given a (1 ± c2ε) for-all cut sketch, 

Bob can subtract the fixed weight of the backward edges and approximate w(U, T ) with 

additive error O c2β /ε3 . When c2 is sufficiently small, this additive error is at most c1β /ε3. By 

Lemma 4.4, Bob can find Q ⊂ L with |Q | = L
2  such that Lhigh ∩ Q

Lhigh
≥ 4

5 . Finally, if ℓi ∈ Q, 

Bob decides N ℓi ∩ T ≥ 1
4ε2 + c

2ε  and Δ si, j, t ≤ 1
2ε2 − c

ε ; and if ℓi ∉ Q, Bob decides 

Δ si, j, t ≥ 1
2ε2 + c

ε .

Suppose Bob’s index is (i, j). Notice that Bob uses j to determine which Rj to look 

at, but does not use any information about i. Therefore, when Δ si, j, t ≤ 1
2ε2 − c

ε  and 

N ℓi ∩ T ≥ 1
4ε2 + c

2ε ,

Pr i ∈ Q = Lhigh ∩ Q
Lhigh

≥ 4
5 .

Conversely, when Δ si, j, t ≤ 1
2ε2 + c

ε  and N ℓi ∩ T ≤ 1
4ε2 − c

2ε , because Llow ∩ Lhigh = ∅,

Pr i ∉ Q = Llow \ Q
Llow

= Llow − Llow ∩ Q
Llow

≥
Llow − 1

5 Lhigh

Llow
≥ 3

4 .

The last inequality holds because Llow ≥ 0.4 L  and Lhigh ≤ 0.5 L  by Lemma 4.3 when 

c ≤ 0.1.

We analyze Bob’s success probability. Lemma 4.3 fails with probability at most 0.02, 

Lemma 4.4 fails with probability at most 0.04, and the for-all cut sketch fails with 

probability at most 0.013 If they all succeed, Bob’s probability of answering correctly is 

at least min Lhigh ∩ Q
Lhigh

, Llow\Q
Llow

≥ 3
4 . Bob’s overall fail probability is at most 0.02 + 0.04 + 

0.01 + 0.25 < 1/3. □

We next consider the case with general values of n, β, and ε, and prove Theorem 1.2.

Proof of Theorem 1.2.—Let k = β /ε2. We assume w.l.o.g. that k is an integer and n is a 

multiple of k. We reduce from the distributional Gap-Hamming problem in Lemma 4.1 with 

ℎ = Ω(nβ). We will show that Alice’s strings can be encoded into a graph G such that

i. G has n nodes and is (2β)-balanced, and

3The probability that a for-all cut sketch (Definition 2.2) preserves all cuts simultaneously can be boosted from 2/3 to 99/100, e.g., by 
running the sketching and recovering algorithms O(1) times and taking the median. This increases the length of Alice’s message by a 
constant factor, which does not affect our asymptotic lower bound.
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ii. After receiving a string t, an index q ∈ ℎ , and a (1 ± c2ε) for-all cut 

sketch of G for some universal constant c2 > 0, Bob can distinguish whether 

Δ sq, t ≤ 1
2ε2 − c

ε  or Δ sq, t ≥ 1
2ε2 + c

ε  with probability at least 2/3.

Consequently, by Lemma 4.1, any for-all cut sketching algorithm must output 

Ω ℎ/ε2 = Ω nβ /ε2 = Ω nβ′/ε′2  bits for β′ = 2β and ε′ = c2ε.

We first describe the construction of G. We partition the n nodes into ℓ = n/k ≥ 2 disjoint 

sets V 1, V 2, ⋯, V ℓ, each containing k nodes. Let s1, s2, ⋯, sℎ ∈ 0, 1 1/ε2
 be Alice’s random 

strings where ℎ = (t − 1) β2/ε2 = Ω (n/k) β2/ε2 = Ω(nβ). We partition the ℎ strings into 

(t − 1) disjoint sets S1, S2, ⋯, St − 1, each with β2/ε2  strings. We then follow the same 

procedure as in Lemma 4.2 to encode Si into a complete bipartite graph between V i and 

V i + 1. Notice that Si has β2/ε2  strings and V i = V i + 1 = k = β /ε2, which is the same setting as 

in Lemma 4.2.

We can verify that G is (2β)-balanced. This is because every edge e has a reverse edge whose 

weight is at most 2β times the weight of e. For every u ∈ V i and v ∈ V i + 1, the edge (u, v) has 

weight 1 or 2, while the edge (v, u) has weight 1/β.

We next show how Bob can distinguish between the two cases. Suppose Bob’s index 

q specifies a string encoded by the subgraph between V i and V i + 1. Similar to the proof 

of Lemma 4.2, we only need to show that given a 1 ± c2ε  for-all cut sketch, Bob can 

approximate w(U, T ) with additive error O β /ε3  for every U ⊂ V i with |U | = V i
2 = β

2ε2  and 

for some T ⊂ V i + 1 with |T | = 1
2ε2 . To see this, consider S = U ∪ V i + 1 \ T ⋃j = i + 2

t V j. The 

edges from S to (V \ S) are

• β
4ε4  forward edges from U to T , each with weight 1 or 2.

• β
ε2 − 1

2ε2
β

2ε2  backward edges from V i + 1 \ T  to V i \ U , each with weight 1
β .

• β2

2ε4  backward edges from U to V i − 1 when i ≥ 2, each with weight 1
β .

The total weight of these edges is w(S, V \ S) = O β /ε4 . Consequently, given a 1 ± c2ε
cut sketch, Bob can subtract the fixed weight of the backward edges and approximate 

w(U, T ) with O c2ε β /ε4 = O c2β /ε3  additive error. Similar to the proof of Lemma 4.2, for 

sufficiently small constant c2 > 0, this will allow Bob to distinguish between the two cases 

Δ sq, t ≤ 1
2ε2 − c

ε  or Δ sq, t ≥ 1
2ε2 + c

ε  with probability at least 2/3. □
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5 Local Query Complexity of Min-Cut

In this section, we present an Ω(min{m, m
ε2k

}) lower bound on the query complexity of 

approximating the global minimum cut of an undirected graph G to a (1 ± ε) factor in the 

local query model. Formally, we have the following theorem.

Theorem 1.3 (Approximating Min-Cut using Local Queries).

Any algorithm that estimates the size of the global minimum cut of a graph G up to a (1 ± ε)

factor requires Ω(min{m, m
ε2k

}) queries in expectation in the local query model, where m is 

the number of edges in G and k is the size of the minimum cut.

To achieve this, we define a variant of the 2-SUM communication problem in Section 5.1, 

show a graph construction in Section 5.2, and show that approximating 2-SUM can be 

reduced to the minimum cut problem using our graph construction in Section 5.3. In Section 

5.4, we will show that our lower bound is tight up to logarithmic factors.

5.1 2-SUM Preliminaries

Building off of the work of [WZ14], we define the following variant of the 2 − SUM(t, L, α)
problem.

Definition 5.1.—For binary strings x = x1, …, xL ∈ 0, 1 L and y = y1, …, yL ∈ 0, 1 L, 

let INT(x, y) = ∑i = 1
L xi ∧ yi denote the number of indices where x and y are both 1. Let 

DISJ(x, y) denote whether x and y are disjoint. That is, DISJ(x, y) = 1 if INT(x, y) = 0, and 
DISJ(x, y) = 0 if INT(x, y) ≥ 1.

Definition 5.2.—Suppose Alice has binary strings X1, …, Xt  where each string 

Xi ∈ 0, 1 L has length L and likewise Bob hast strings Y 1, …, Y t  each of length 

L . INT Xi, Y i  is guaranteed to be either 0 or α ≥ 1 for each pair of strings Xi, Y i . 

Furthermore, at least 1/1000 of the Xi, Y i  pairs are guaranteed to satisfy INT Xi, Y i = α. 

In the 2 − SUM(t, L, α) problem, Alice and Bob want to approximate ∑i ∈ t DISJ Xi, Y i  up 

to additive error t with high constant probability.

Lemma 5.3.—To solve 2 − SUM(t, L, 1) with high constant probability, the expected 
number of bits Alice and Bob need to communicate is Ω(tL).

Proof.: [WZ14] proved an expected communication complexity of Ω(tL) for 

2 − SUM(t, L, 1) without the promise that at least a 1/1000 fraction of the t string pairs 

intersect. Adding this promise does not change the communication complexity, because if 

(X1, …, Xt  and Y 1, …, Y t  do not satisfy the promise, we can add a number of new Xi and Y i

to satisfy the promise and later subtract their contribution to approximate ∑i ∈ t DISJ Xi, Y i

with additive error Θ( t). □
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Theorem 5.4.—To solve 2 − SUM(t, L, α) with high constant probability, the expected 
number of bits Alice and Bob need to communicate is Ω(tL/α).

Proof.: Consider an instance of 2 − SUM(t, L/α, 1) with Alice’s strings X1, …, Xt  and 

Bob’s strings Y 1, …, Y t  each with length L/α. For each of Alice’s strings Xi with length 

L/α, we produce Xi, α (with length L) by concatenating α copies of Xi, and likewise we 

produce Y i, α for each of Bob’s strings Y i. The setup where Alice has strings X1, α, …, Xt, α

and Bob has strings Y 1, α, …, Y t, α  is an instance of 2 − SUM(t, L, α). From Lemma 5.3, 

the communication complexity of 2 − SUM(t, L/α, 1) is Ω(tL/α). Thus, the communication 

complexity of 2 − SUM(t, L, α) is Ω(tL/α). □

5.2 Graph Construction

Inspired by the graph construction from [ER18], given two strings x, y ∈ 0, 1 N, we 

construct a graph Gx, y(V , E) such that V  is partitioned into A, A′, B and B′, where 

A = A′ = B = B′ = N = ℓ. Note that since ℓ2 = N, we can index the bits in x by 

xi, j, where 1 ≤ i, j ≤ ℓ. We construct the edges E according to the following rule:

(ai, bj
′), (bi, aj

′) ∈ E if xi, j = yi, j = 1
(ai, aj

′), bi, bj
′ ∈ E otherwise

Figure 2 illustrates an example of the graph Gx, y(V , E) when x = 000000100 and 

y = 100010100.

We will show that under certain assumptions about N and INT(x, y), the number of 

intersections in x, y is twice the size of the minimum cut in Gx, y.

Lemma 5.5.—Given x, y ∈ 0, 1 N, if N ≥ 3 ⋅ INT(x, y), then 
MINCUT Gx, y = 2 ⋅ INT(x, y).

Proof.: To prove this, we use some properties about γ-connectivity of a graph. A graph is 

γ-connected if at least γ edges must be removed from G to disconnect it. In other words, 

if a graph G is γ-connected, then MINCUT(G) ≥ γ. Equivalently, a graph G is γ-connected if 

for every u, v ∈ V , there are at least γ edge-disjoint paths between u and v. Therefore, given 

INT(x, y) = γ, if we can show that Gx, y is 2γ-connected and there exists one cut of size exactly 

2γ, then we can show MINCUT Gx, y ≥ 2γ. By the construction of the graph, it is easy to see 

that CUT A ∪ A′, B ∪ B′  has size 2γ, since each intersection of x, y produces two crossing 

edges in between. Therefore, all we need to show here is that if N ≥ 3 ⋅ γ, then Gx, y is 

2γ-connected.

Similar to [ER18], we prove this by looking at each pair of u, v ∈ V . Our goal is to show that 

for every u, v ∈ V , there exist at least 2γ edge-disjoint paths from u to v.
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Case 1.—u, v ∈ A (or symmetrically u, v ∈ A′, B, B′). For each pair u, v ∈ A, we have that 
there are at least ℓ − γ distinct common neighbors in A′. This is because one intersection 
at xij and yij implies that the edge (ai, aj

′) is not contained in E, and would remove at most 

one common neighbor in A′. Since ℓ = N ≥ 3γ, we have that there are at least ℓ − γ ≥ 2γ
distinct common neighbors in A′, which we denote by u1

A′, u2
A′, …, u2γ

A′. Therefore, each path 

u ui
A′ v is edge-disjoint, and we have at least 2γ edge-disjoint paths from u to v, as shown 

in Figure 3.

Case 2.—u ∈ A, v ∈ A′ (or symmetrically u ∈ B, v ∈ B′). Since ℓ − γ ≥ 2γ, we have that v
has at least 2γ distinct neighbors in A, which we denote by u1

A, u2
A, …, u2γ

A . From Case 1, we 

also have that each ui
A has at least 2γ distinct common neighbors in A′. Therefore, we can 

choose v1
A′, v2

A′, …, v2γ
A′ such that each path u vi

A′ ui
A v is edge-disjoint, so we have at least 

2γ edge-disjoint paths from u to v, as shown in Figure 4. Note that it may be the case where 
ui

A = u. In this case, we can simply take the edge (u, v) to be one of the edge-disjoint paths.

Case 3.—u ∈ A, v ∈ B′ (or symmetrically u ∈ A′, v ∈ B). In this case, we show two sets of 
edge-disjoint paths, where each set has at least γ edge-disjoint paths from u to v, and the two 
sets of paths do not overlap. Overall, we have at least 2γ edge-disjoint paths.

The first set of paths S1 uses the edges between A′ and B. Let 

w1, x1 , w2, x2 , …, wγ, xγ ∈ A′ × B be the edges between A′ and B. Each of these edges 

represents one intersection in x and y. Therefore, there are exactly γ of them. From Case 2, 

we have that for every wi, there are 2γ edge-disjoint paths from u to wi. Hence, for every wi, 

we can choose a path from u to wi and these γ paths are edge-disjoint. Figure 5 illustrates the 

paths u ui ui
′ wi xi. By symmetry, we can extend the paths from xi to v. This gives us 

γ edge-disjoint paths from u to v.

We now consider the second set of paths S2. Let

y1, z1 , y2, z2 , …, yγ, zγ ∈ A × B′

be the distinct edges between A and B′. Once again, it suffices to prove that there are 
2γ edge-disjoint paths from u to yi, since the paths between v to zi would be symmetric. 

From Case 1, we have that for every yi, there are at least 2γ common neighbors between yi

and u. Therefore, we can always find distinct u1
″, u2

″, …, uγ
″ such that the paths u ui

″ yi are 

edge-disjoint, as shown in Figure 6. Once we extend the paths from zi to v, we have γ-edge 

disjoint paths in the second set.

Now we have two sets of paths S1 and S2, where both sets have at least γ edge-disjoint paths. 

It remains to show that the paths in S1 and S2 can be edge-disjoint. Observe that the only 

possible edge overlaps between the paths from u to the wi and paths from u to the yi are 

u ui
″ and u ui, since they are both neighbors of u. However, note that what we have shown 

is that for every wi or yi, there are at least 2γ edge-disjoint paths from u to wi or yi. Therefore, 

one can choose 2γ edge-disjoint paths from u to wi and yi such that ui
′ and ui

″ do not overlap. 
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And similarly one can choose 2γ edge-disjoint paths from v to the zi and the xi. Overall, we 

have 2γ edge-disjoint paths from u to v.

Case 4.—u ∈ A, v ∈ B (or symmetrically u ∈ A′, v ∈ B′). This case is similar to Case 3, 

where we have two edge-disjoint sets S1
′ and S2

′. Consider the set of paths S1
′, where we use 

the edges

w1, x1 , w2, x2 , …, wγ, xγ ∈ A′ × B .

We can construct the paths from u to wi using the same way as for S1 in Case 3 (Figure 

5). For the paths from xi to v, however, we construct them using the same way as in S2 in 

Case 3 (Figure 6). By connecting these paths, we obtain at least γ edge-disjoint paths in S1
′. 

Similarly, we can also construct at least γ edge-disjoint paths in S2
′, where we use the edges

y1, z1 , y2, z2 , …, yγ, zγ ∈ A × B′ .

We follow the same way of choosing the paths in S1
′ and S2

′ that are edge-disjoint. □

5.3 Reducing 2-SUM to MINCUT

In this section, we use the graph constructions in Section 5.2 to reduce the 2 − SUM(t, L, α)
problem to MINCUT and derive a lower bound on the number of queries in the local query 

model.

Lemma 5.6.—Given M, λ > 0, and 0 < ε < 1, suppose that we have any algorithm A that 
can estimate the size of the minimum cut of a graph up to a (1 ± ε) multiplicative factor 
with T  expected queries in the local query model. Then there exists an algorithm ℬ that 

can approximate 2 − SUM ε−2, ε2M, max ε2λ, 1  up to an additive error ε−2 = ε−1 using at 

most O(T ) bits of communication in expectation given M ≥ 3 max λ, ε−2 .

Proof.: We will show that the following algorithm ℬ satisfies the above conditions:

1. Given Alice’s strings (X1, …, Xε−2
) each of length ε2M, let x be the 

concatenation of Alice’s strings having total length ε−2 ε2M = M. Similarly 

let y ∈ 0, 1 M be the concatenation of Bob’s strings.

2. Construct a graph Gx, y as in Section 5.2 using the above concatenated strings as x, 

y.

3. Run A Gx, y  and output ( 1
ε2 − A Gx, y

2 max ε2λ, 1
) as the solution to 

2 − SUM ε−2, ε2M, max ε2λ, 1 .

For the 2-SUM problem, let r = ε−2 − ∑i ∈ ε−2 DISJ Xi, Y i  be the number of string 

pairs with intersections. Since there are ε−2 pairs Xi, Y i , r is at most ε−2. 
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From our definition of 2-SUM, each intersecting string pair has max ε2λ, 1

intersections. x, y are formed by concatenations, so INT x, y = r max ε2λ, 1 . Since 

M ≥ 3 max λ, ε−2 = 3ε−2max ε2λ, 1 ≥ 3r max ε2λ, 1 = 3 ⋅ INT(x, y), Lemma 5.5 is 

applicable to Gx, y so that

MinCUT Gx, y = 2r max ε2λ, 1 .

Since A approximates MINCUT up to a (1 ± ε) factor, A Gx, y = 2r(1 ± ε) max ε2λ, 1 . Thus, 

ℬ ‘s output to the 2-SUM problem is within ε−2 − r ± rε = ∑i ∈ ε−2 DISJ Xi, Y i ± rε. Recall 

that r ≤ ε−2. We can see that ℬ approximates 2 − SUM ε−2, ε2M, max ε2λ, 1  up to additive 

error ε−1.

To compare the complexities of A and ℬ, recall A is measured by degree, neighbor, and pair 

queries, whereas ℬ is measured by bits of communication. Given the construction of Gx, y, as 

shown in [ER18], degree, neighbor, and pair queries can each be simulated using at most 2 

bits of communication:

• Degree queries: each vertex in Gx, y has degree M so Alice and Bob do not need 

to communicate to simulate degree queries.

• Neighbor queries: assuming an ordering where ai ‘s j’th neighbor is either aj
′ or bj

′, 

Alice and Bob can exchange xi, j and yi, j with 2 bits of communication to simulate 

a neighbor query.

• Pair queries: Alice and Bob can exchange xi, j and yi, j with 2 bits of 

communication to determine whether edges (ai, bj
′) and (bi, aj

′) exist.

As each of A’s queries can be simulated using up to 2 bits of communication in ℬ, ℬ
can use O(T ) bits of communication to simulate T  queries in A. So we have established 

a reduction from approximating 2 − SUM ε−2, ε2M, max ε2λ, 1  up to additive error ε−1 to 

approximating MINCUT up to a (1 ± ε) multiplicative factor. □

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3.: Given an instance of 2 − SUM ε−2, ε2m, max ε2k, 1 , consider the 

same way of constructing the graph Gx, y in Lemma 5.6. From the construction of Gx, y, the 

number of edges is 2m since each of pair xi, yi  corresponds to 2 edges. Using the promise 

from 2-SUM, we get that r ≥ ε−2/1000, where r = ∑i ∈ ε−2 DISJ Xi, Y i , which means that the 

size of the minimum cut of Gx, y is 2r ⋅ max ε2k, 1 ≥ Ω max k, ε−2 . When k ≥ ε−2, we have 

that the size of the minimum cut of Gx, y is Ω(k), and from Lemma 5.6 we obtain that any 

algorithm A that satisfies the guarantee on the distribution of Gx, y must have Ω m/ ε2k

queries in expectation. When k < ε−2, the size of the minimum cut of Gx, y is Ω ε−2

and similarly we get that any algorithm A that satisfies the guarantee on the distribution 
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of Gx, y must use Ω(m) queries in expectation. Combining the two, we finally obtain an 

Ω(min{m, m
ε2k

}) lower bound on the expected number of queries in the local query model. □

5.4 Almost Matching Upper Bound

In this section, we will show that our lower bound is tight up to logarithmic factors. In 

the work of [BGMP21], the authors presented an algorithm that uses O(m
k ⋅ poly(logn, 1/ε))

queries, where k is the size of the minimum cut. We will show that, despite their analysis 

giving a dependence of 1/ε4, a slight modification of their algorithm yields a dependence of 

1/ε2. Formally, we have the following theorem.

Theorem 5.7 (essentially [BGMP21]).—There is an algorithm that solves the minimum 
cut query problem up to a (1 ± ε)-multiplicative factor with high constant probability in 
the local query model. Moreover, the expected number of queries used by this algorithm is 

O m
ε2k

.

To prove Theorem 5.7, we first give a high-level description of the algorithm in [BGMP21]. 

The algorithm is based on the following sub-routine.

Lemma 5.8 ([BGMP21]).—There exists an algorithm VERIFY-GUESS (D, t, ε) which makes 

O ε−2m/t  queries in expectation such that (here D is the degree of each node)

1. If t ≥ 2000 log n
ε2 ⋅ k, then Verify − Guess(D, t, ε) rejects t with probability at least 

1 − 1
poly(n) .

2. If t ≤ k, then Verify − Guess(D, t, ε) accepts t and outputs a (1 ± ε)-approximation 

of k with probability at least 1 − 1
poly(n) .

Given the above sub-routine, the algorithm initializes a guess t = n
2  for the value of the 

minimum cut k and proceeds as follows:

• if Verify − Guess(D, t, ε) rejects t, set t = t/2 and repeat the process.

• if Verify − Guess(D, t, ε) accepts t, set t = t/κ where κ = 2000 log n
ε2 . Let 

k = Verify − Guess(D, t, ε) and return the value of k as the output.

To analyze the query complexity of the algorithm, notice that when VERIFY-GUESS first 

accepts t, we have that k
2 < t < κk. which means that t/κ < k and hence one call to 

Verify − Guess(D, t/κ, ε) will get the desired output. However, at a time in t = Θ(k/κ), the 

VERIFY-GUESS procedure needs to make O m
ε4k

 queries in expectation.

To avoid this, the crucial observation is that, during the above binary search process, 

the error parameter of Verify − Guess(D, t, ε) does not have to be set to ε. Using a 
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small constant β0 is sufficient. This way, when VERIFY-GUESS D, t, β0  first accepts 

t, we have k
2 < t < c log(n) ⋅ k, where c is a constant. Consequently, the output of 

Verify − Guess(D, t/(c log n), ε) will satisfy the error guarantee. Using the analysis in 

[BGMP21], we can show that the query complexity of the new algorithm is O m
ε2k

.
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Figure 1: 
For S = A ∪ (R \ B), the (directed) edges from S to (V \ S) consist of the following: the 

forward edges from A to B, each with weight Θ(log(1/ε)), and the backward edges from 

(R \ B) to (L \ A), each with weight 1/β.
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Figure 2: 
Example of Gx, y(V , E) where x = 000000100 and y = 100010100. The red edges represent the 

intersection at x31 = y31 = 1. The green edges represent all the non-intersections in x and y.
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Figure 3: 
u, v ∈ A. We omit all the (ai, bj

′), (bi, bj
′), and (bi, aj

′) edges.
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Figure 4: 
∈ A, v ∈ A′. We omit all the (ai, bj

′), (bi, bj
′), and (bi, aj

′) edges. The green edges exist since v has 

at least 2γ neighbors in A. The orange edges exist since ui
A and u have at least 2γ common 

neighbors in A′.
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Figure 5: 
∈ A, v ∈ B′. The first set of paths S1 goes from u ui ui

′ wi xi. We omit the paths from 

xi to v, as they are symmetric to the paths from wi to u. Once we extend the paths from xi to 

v, we have γ edge-disjoint paths from u to v. Note that the wi and xi may not be distinct.
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Figure 6: 
∈ A, v ∈ B′. The second set of paths S2 goes from u ui

″ yi zi. We omit the paths from zi

to v, as they are symmetric to the paths from yi to u. Once we extend the paths from xi to v, 

we have γ edge-disjoint paths from u to v. Note that the yi and zi may not be distinct.

Cheng et al. Page 30

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Our Results
	Cut Sketch for Balanced (Directed) Graphs.
	Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).
	Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).
	Query Complexity of Min-Cut in the Local Query Model.
	Theorem 1.3 (Approximating Min-Cut using Local Queries).

	Our Techniques
	For-Each Cut Sketch Lower Bound.
	For-All Cut Sketch Lower Bound.
	Query Complexity of Min-Cut in the Local Query Model.


	Preliminaries
	Directed Cut Sketches.
	Definition 2.1 (β-Balanced Graphs).
	Definition 2.2 (For-All Cut Sketch).
	Definition 2.3 (For-Each Cut Sketch).

	For-Each Cut Sketch
	Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).
	Lemma 3.1 ([KNR01]).
	Lemma 3.2.
	Proof.

	Lemma 3.3.
	Proof of Lemma 3.3.

	Construction of G.
	Recovering a bit in s from a for-each cut sketch of G.
	Proof of Theorem 1.1.


	For-All Cut Sketch
	Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).
	Lemma 4.1 ([ACK+16]).
	Lemma 4.2.
	Construction of G.
	Determining Δsi,j,t from a for-all cut sketch of G.
	Lemma 4.3 (Claim 3.5 in [ACK+16]).
	Lemma 4.4 (Lemma 3.4 in [ACK+16]).
	Proof of Lemma 4.2.
	Proof of Theorem 1.2.


	Local Query Complexity of Min-Cut
	Theorem 1.3 (Approximating Min-Cut using Local Queries).
	2-SUM Preliminaries
	Definition 5.1.
	Definition 5.2.
	Lemma 5.3.
	Proof.

	Theorem 5.4.
	Proof.


	Graph Construction
	Lemma 5.5.
	Proof.

	Case 1.
	Case 2.
	Case 3.
	Case 4.

	Reducing 2-SUM to MINCUT
	Lemma 5.6.
	Proof.
	Proof of Theorem 1.3.


	Almost Matching Upper Bound
	Theorem 5.7 (essentially [BGMP21]).
	Lemma 5.8 ([BGMP21]).


	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:

