
Tight Lower Bounds for Directed Cut Sparsification and
Distributed Min-Cut

Yu Cheng*, Max Li†, Honghao Lin‡, Zi-Yi Tai§, David P. Woodruff¶, Jason Zhang‖

* Brown University.

† Carnegie Mellon University.

‡ Carnegie Mellon University.

§ Carnegie Mellon University.

¶ Carnegie Mellon University.

‖ Carnegie Mellon University.

Abstract

In this paper, we consider two fundamental cut approximation problems on large graphs. We prove

new lower bounds for both problems that are optimal up to logarithmic factors.

The first problem is to approximate cuts in balanced directed graphs. In this problem, the goal is

to build a data structure that 1 ± ε -approximates cut values in graphs with n vertices. For arbitrary

directed graphs, such a data structure requires Ω n2 bits even for constant ε. To circumvent this,

recent works study β-balanced graphs, meaning that for every directed cut, the total weight of

edges in one direction is at most β times that in the other direction. We consider two models: the

for-each model, where the goal is to approximate each cut with constant probability, and the for-all
model, where all cuts must be preserved simultaneously. We improve the previous Ω(n β/ε) lower

bound to Ω(n β/ε) in the for-each model, and we improve the previous Ω nβ/ε lower bound to

Ω nβ/ε2 in the for-all model. 1 This resolves the main open questions of (Cen et al., ICALP, 2021).

The second problem is to approximate the global minimum cut in a local query model, where

we can only access the graph via degree, edge, and adjacency queries. We improve the previous

Ω m
k query complexity lower bound to Ω(min{m, m

ε2k
}) for this problem, where m is the number of

edges, k is the size of the minimum cut, and we seek a 1 + ε -approximation. In addition, we show

that existing upper bounds with slight modifications match our lower bound up to logarithmic

factors.

1In this paper, we use O(⋅) and Ω(⋅) to hide logarithmic factors in its parameters.

yu_cheng@brown.edu .

HHS Public Access
Author manuscript
Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

Published in final edited form as:
Proc ACM Manag Data. 2024 May ; 2(2): . doi:10.1145/3651148.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1 Introduction

The notion of cut sparsifiers has been extremely influential. It was introduced by Benczúr

and Karger [BK96] and it is the following: Given a graph G = V , E, w with n = V
vertices, m = E edges, edge weights we ≥ 0, and a desired error parameter ε > 0, a (1 ± ε)

cut sparsifier of G is a subgraph H on the same vertex set V with (possibly) different edge

weights, such that H approximates the value of every cut in G within a factor of 1 ± ε .

Benczúr and Karger [BK96] showed that every undirected graph has a 1 ± ε cut sparsifier

with only O n log n/ε2 edges. This was later extended to the stronger notion of spectral

sparsifiers [ST11] and the number of edges was improved to O n/ε2 [BSS12]; see also

related work with different bounds for both cut and spectral sparsifiers [FHHP19, KP12,

ST04, SS11, LS17, CKST19].

In the database community, a key result is the work of [AGM12], which shows how to

construct a sparsifer using O n/ε2 linear measurements to 1 + ε -approximate all cut

values. Sketching massive graphs arises in various applications where there are entities and

relationships between them, such as webpages and hyperlinks, people and friendships, and

IP addresses and data flows. As large graph databases are often distributed or stored on

external memory, sketching algorithms are useful for reducing communication and memory

usage in distributed and streaming models. We refer the readers to [McG14] for a survey of

graph stream algorithms in the database community.

For very small values of ε, the 1/ε2 dependence in known cut sparsifiers may be prohibitive.

Motivated by this, the work of [ACK+16] relaxed the cut sparsification problem to

outputting a data structure D, such that for any fixed cut S ⊂ V , the value D S is within

a 1 ± ε factor of the cut value of S in G with probability at least 2/3. Notice the

order of quantifiers — the data structure only needs to preserve the value of any fixed cut

(chosen independently of its randomness) with high constant probability. This is referred to

as the for-each model, and the data structure is called a for-each cut sketch. Surprisingly,

[ACK+16] showed that every undirected graph has a 1 ± ε for-each cut sketch of size

O(n/ε) bits, reducing the dependence on ε to linear. They also showed an Ω n/ε bits lower

bound in the for-each model. The improved dependence on ε is indeed coming from relaxing

the original sparsification problem to the for-each model: [ACK+16] proved an Ω n/ε2 bit

lower bound on any data structure that preserves all cuts simultaneously, which is referred to

as the for-all model. This lower bound in the for-all model was strengthened to Ω n log n/ε2

bits in [CKST19].

While the above results provide a fairly complete picture for undirected graphs, a natural

question is whether similar improvements are possible for directed graphs. This is the main

question posed by [CCPS21]. For directed graphs, even in the for-each model, there is an

Ω n2 lower bound without any assumptions on the graph. Motivated by this, [EMPS16,

IT18, CCPS21] introduced the notion of β-balanced directed graphs, meaning that for every

directed cut S, V \ S , the total weight of edges from S to V \ S is at most β times

that from V \ S to S. The notion of β-balanced graphs turned out to be very useful for

Cheng et al. Page 2

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

directed graphs, as [IT18, CCPS21] showed an O(n β/ε) upper bound in the for-each model,

and an O nβ/ε2 upper bound in the for-all model, thus giving non-trivial bounds for both

problems for small values of β. The work of [CCPS21] also proved lower bounds: they

showed an Ω(n β/ε) lower bound in the for-each model, and an Ω(nβ/ε) lower bound in the

for-all model. While their lower bounds are tight for constant ε, there is a quadratic gap for

both models in terms of the dependence on ε. The main open question of [CCPS21] is to

determine the optimal dependence on ε, which we resolve in this work.

Recent work further explored spectral sketches, faster computation of sketches, and

sparsification of Eulerian graphs (β-balanced graphs with β = 1) [ACK+16, JS18, CKK+18,

CGP+23, SW19]. In this paper, we focus on the space complexity of cut sketches for general

values of β.

As observed in [ACK+16], one of the main ways to use for-each cut sketches is to solve the

distributed minimum cut problem. This is the problem of computing a (1 + ε)-approximate

global minimum cut of a graph whose edges are distributed across multiple servers. One can

ask each server to compute a (1 ± 0.2) for-all cut sketch and a (1 ± ε) for-each cut sketch.

This allows one to find all O(1)-approximate minimum cuts, and because there are at most

nO(C) cuts with value within a factor of C of the minimum cut, one can query all these

poly(n) cuts using the more accurate for-each cut sketches, resulting in an optimal linear in

1/ε dependence in the communication.

Motivated by this connection to distributed minimum cut estimation, we also consider the

problem of directly approximating the minimum cut in a local query model, which was

introduced in [RSW18] and studied for minimum cut in [ER18, BGMP21]. The model is

defined as follows.

Let G(V , E) be an unweighted and undirected graph, where the vertex set V is known but

the edge set E is unknown. In the local query model, we have access to an oracle that can

answer the following three types of local queries:

1. Degree query: Given u ∈ V , the oracle returns the degree of u.

2. Edge query: Given u ∈ V and index i, the oracle returns the i-th neighbor of u, or

⊥ if the edge does not exist.

3. Adjacency query: Given u, v ∈ V , the oracle returns whether (u, v) ∈ E.

In the MIN-CUT problem, our goal is to estimate the global minimum cut up to a

(1 ± ε)-factor using these local queries. The complexity of the problem is measured by the

number of queries, and we want to use as few queries as possible. For this problem we focus

on undirected graphs.

Previous work [ER18] showed an Ω m
k query complexity lower bound, where k is the size of

the minimum cut. The main open question is what the dependence on ε should be. There is

also an O(m
k poly(ε)) upper bound in [BGMP21], and a natural question is to close this gap.

Cheng et al. Page 3

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1.1 Our Results

We resolve the main open questions mentioned above.

Cut Sketch for Balanced (Directed) Graphs.—We study the space complexity of

(1 ± ε) cut sketches for n-node β-balanced (directed) graphs. Previous work [IT18, CCPS21]

gave an O nβ/ε2 upper bound in the for-all model and an O(n β/ε) upper bound in the for-

each model, along with an Ω(nβ/ε) lower bound and an Ω(n β/ε) lower bound, respectively.

We close these gaps and resolve the dependence on ε, improving the lower bounds to match

the upper bounds for all parameters n, β, and ε (up to logarithmic factors). Formally, we

have:

Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).—Let β ≥ 1 and
0 < ε < 1. Assume β/ε ≤ n/2. Any (1 ± ε) for-each cut sketching algorithm for β-balanced

n-node graphs must output Ω(n β/ε) bits.

Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).—Let β ≥ 1 and 0 < ε < 1.

Assume β/ε2 ≤ n/2. Any (1 ± ε) for-all cut sketching algorithm for β-balanced n-node graphs

must output Ω nβ/ε2 bits.

Query Complexity of Min-Cut in the Local Query Model.—We study the problem of

(1 ± ε)-approximating the (undirected) global minimum cut in a local query model, where

we can only access the graph via degree, edge, and adjacency queries.

We close the gap on the ε dependence in the query complexity of this problem by proving a

tight Ω(min{m, m
ε2k

}) lower bound, where m is the number of edges and k is the size of the

minimum cut. This improves the previous Ω m
k lower bound in [ER18]. Formally, we have:

Theorem 1.3 (Approximating Min-Cut using Local Queries).—Any algorithm that
estimates the size of the global minimum cut of a graph G up to a (1 ± ε) factor requires

Ω(min{m, m
ε2k

}) queries in expectation in the local query model, where m is the number of

edges in G and k is the size of the minimum cut.

We also show that with a slight modification, the O(m
k poly(ε)) query complexity upper bound

in [BGMP21] can be improved to O m
ε2k

, which implies that our lower bound is tight (up to

logarithmic factors).

1.2 Our Techniques

A common technique we use for the different problems is communication complexity games

that involve the approximation parameter ε. For example, suppose Alice has a bit string s
of length 1/ε2 , and she can encode s into a graph G such that, if she sends Bob a (1 ± ε)

Cheng et al. Page 4

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(for-each or for-all) cut sketch to Bob, then Bob can recover a specific bit of s with high

constant probability. By communication complexity lower bounds, we know Alice must

send Ω 1/ε2 bits to Bob, which gives a lower bound on the size of the cut sketch.

For-Each Cut Sketch Lower Bound.—Let k = β/ε. At a high level, we partition the

n nodes into n/(2k) sub-graphs, where each sub-graph is a k-by-k bipartite graph with two

parts L and R. We then divide L and R into β disjoint clusters L1 = L2 = … = |L β | = 1/ε
and R1 = R2 = … = |R β | = 1/ε. For every cluster pair Li and Rj, there are a total of 1/ε2

edges. Intuitively, we wish to encode a bit string s ∈ − 1, 1 1/ε2
 into forward edges (left to

right) each with weight Θ(1), and add backward edges (right to left) each with weight 1/β so

that the graph β-balanced. If we could approximately decode this string from a for-each cut

sketch, then we would get an Ω((n/k) ⋅ (β)2 ⋅ (1/ε)2) = Ω(n β/ε) lower bound.

However, if we use a simple encoding method [ACK+16, CCPS21] where each bit si

is encoded into one edge (u, v) (e.g., with weight 1 or 2) and query the edges leaving

S = u ∪ (R\ v), then the (k − 1)2 = Ω β/ε2 backward edges with weight 1/β will cause

the cut value to be Ω 1/ε2 . The (1 ± ε) cut sketch will have additive error Ω(1/ε) ≫ Θ(1),

which will obscure si = − 1, 1 . To address this, we instead encode 1/ε2 bits of information

across 1/ε2 edges simultaneously. When we want to decode a specific bit si, we query the

(directed) cut values between two carefully designed subsets A ∈ Li and B ∈ Rj. The key idea

of our construction is that, although each edge in A × B is used to encode many bits of s, the

encoding of different bits of s is never too correlated: while encoding other bits does affect

the total weight from A to B, this effect is similar to adding noise which only varies the total

weight from A to B by a small amount.

For-All Cut Sketch Lower Bound.—Let k = β/ε2. At a high level, we partition

the n nodes into n/(2k) sub-graphs, where each sub-graph is a k-by-k bipartite graph

with two parts L and R. Let L = ℓ1 , …, ℓk . We partition R into β disjoint clusters

R1 = … = Rβ = 1/ε2. We use edges from ℓi to Rj to encode a bit string s ∈ 0, 1 1/ε2
 by

setting the weight of each forward edge to 1 or 2, and adding a backward edge of weight 1/β
to balance the graph.

We can show that the following problem requires Ω 1/ε2 bits of communication: Consider

ℓi ∈ L and a random subset T ⊂ Rj where |T | = Rj
2 . Let N ℓi denote ℓi’s neighbors v such

that ℓi , v has weight 2, which is uniformly random if s is uniformly random. The problem

is to decide whether N ℓi ∩ T ≥ 1
4ε2 + c

2ε or N ℓi ∩ T ≤ 1
4ε2 − c

2ε for a sufficiently small

constant c > 0. Intuitively, the graph encodes a (kβ)-fold version of this communication

problem, which implies an Ω((n/k) ⋅ kβ ⋅ (1/ε)2) = Ω nβ/ε2 lower bound.

We need to show that Bob can distinguish between the two cases of N ℓi ∩ T given a

for-all cut sketch. However, there are some challenges. The difference between the two cases

Cheng et al. Page 5

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is Θ(1/ε) while the natural cut to query S = ℓi ∪ (R \ T) has value Ω β/ε4 . The (1 ± ε) cut

sketch will have additive error Ω β/ε3 ≫ Θ(1/ε), which is too much. To overcome this, note

that we have not used the property that the for-all cut sketch preserves all cuts. We make use

of the following crucial observation in [ACK+16]: In expectation, roughly half of the nodes

ℓi ∈ L satisfy N ℓi ∩ T ≥ 1
4ε2 + c

2ε because c is small. If Bob enumerates all subsets Q ⊂ L

of size L
2 , he will eventually get lucky and find a set Q that contains almost all such nodes.

Since there are roughly L
2 = β

2ε2 such nodes, the (c/ε) bias per node will contribute Ω cβ/ε3

in total, which is enough to be detected even under an O β/ε3 additive error.

Query Complexity of Min-Cut in the Local Query Model.—We prove our lower

bound using communication complexity, but unlike previous work [ER18], we consider

the following 2SUM problem [WZ14]: Given 2t length-L binary strings x1, x2, …, xt and

y1, y2, …, yt , we want to approximate the value of ∑i ∈ t DISJ xi, yi up to a t additive error,

with the promise that at least a constant fraction of the xi, yi satisfy INT xi, yi = α while

the remaining pairs satisfy INT xi, yi = 0 or α. Here INT(x, y) = ∑i = 1
L xi ∧ yi is the number

of indices where x and y are both 1, and DISJ(x, y) is the set-disjointness problem, i.e.,

DISJ(x, y) = 1 if INT(x, y) = 0 and DISJ(x, y) = 0 otherwise. The parameters L, t, and α will

be chosen later.

We construct our graph Gx, y based on the vectors xi and yi in a way inspired by [ER18].

We then give a careful analysis of the size of the minimum cut of Gx, y, and show that under

certain conditions, the size of the minimum cut is exactly 2∑i ∈ t INT xi, yi . Consequently, a

(1 ± ε)-approximation of the minimum cut yields an approximation of ∑i ∈ t DISJ xi, yi up to

a ε additive error, which implies the desired lower bound.

2 Preliminaries

Let G = (V , E, w) be a weighted (directed) graph with n vertices and m edges, where each

edge e ∈ E has weight we ≥ 0. We write G = (V , E) if G is unweighted and leave out w. For

two sets of nodes S, T ⊆ V , let E(S, T) = (u, v) ∈ E:u ∈ S, v ∈ T denote the set of edges

from S to T . Let w(S, T) = ∑e ∈ E(S, T) we denote the total weight of edges from S to T . For a

node u ∈ V and a set of nodes S ⊆ V , we write w(u, S) for w(u , S).

We write n for 1, …, n . We use 1 to denote the all-ones vector. For a vector v, we

write v 2 and v ∞ for the ℓ2 and ℓ∞ norm of x respectively. For two vectors u, v ∈ ℝn, let

u ⊗ v ∈ ℝn2
 be the tensor product of u and v. Given a matrix A, we use Ai to denote the i-th

row of A.

Directed Cut Sketches.

We start with the definitions of β-balanced graphs, for-all and for-each cut sketches [BK96,

ST11, ACK+16, CCPS21].

Cheng et al. Page 6

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We say a directed graph is balanced if all cuts have similar values in both directions.

Definition 2.1 (β-Balanced Graphs).

A strongly connected directed graph G = (V , E, w) is β-balanced if, for all ∅ ⊂ S ⊂ V , it
holds that w(S, V \ S) ≤ β ⋅ w(V \ S, S).

We say sk(G) is a for-all cut sketch if the value of all cuts can be approximately recovered

from it. Note that sk(G) is not necessarily a graph and can be an arbitrary data structure.

Definition 2.2 (For-All Cut Sketch).

Let 0 < ε < 1. We say A is a (1 ± ε) for-all cut sketching algorithm if there exists a
recovering algorithm f such that, given a directed graph G = (V , E, w) as input, A can
output a sketch sk(G) such that, with probability at least 2/3, for all ∅ ⊂ S ⊂ V :

1 − ε ⋅ w S, V \ S ≤ f S, sk G ≤ 1 + ε ⋅ w S, V \ S .

Another notion of cut approximation is that of a “for-each” cut sketch, which requires that

the value of each individual cut is preserved with high constant probability, rather than

approximating the values of all cuts simultaneously.

Definition 2.3 (For-Each Cut Sketch).

Let 0 < ε < 1. We say A is a (1 ± ε) for-each cut sketching algorithm if there exists a
recovering algorithm f such that, given a directed graph G = (V , E, w) as input, A can output
a sketch sk(G) such that, for each ∅ ⊂ S ⊂ V , with probability at least 2/3,

1 − ε ⋅ w S, V \ S ≤ f S, sk G ≤ 1 + ε ⋅ w S, V \ S .

In Definitions 2.2 and 2.3, the sketching algorithm A and the recovering algorithm f can be

randomized, and the probability is over the randomness in A and f.

3 For-Each Cut Sketch

In this section, we prove an Ω(n β/ε) lower bound on the output size of (1 ± ε) for-each cut

sketching algorithms (Definition 2.3).

Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).

Let β ≥ 1 and 0 < ε < 1. Assume β/ε ≲ n/2. Any (1 ± ε) for-each cut sketching algorithm for

β-balanced n-node graphs must output Ω(n β/ε) bits.

Our result uses the following communication complexity lower bound for a variant of the

Index problem, where Alice and Bob’s inputs are random.

Cheng et al. Page 7

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lemma 3.1 ([KNR01]).

Suppose Alice has a uniformly random string s ∈ − 1, 1 n and Bob has a uniformly
random index i ∈ n . If Alice sends a single (possibly randomized) message to Bob, and
Bob can recover si with probability at least 2/3 (over the randomness in the input and their

protocol), then Alice must send Ω(n) bits to Bob.

Our lower-bound construction relies on the following technical lemma.

Lemma 3.2.

For any integer k ≥ 1, there exists a matrix M ∈ − 1, 1 2k − 1 2 × 22k
 such that:

1. Mt, 1 = 0 for all t ∈ [2k − 1 2].

2. Mt, Mt′ = 0 for all 1 ≤ t < t′ ≤ 2k − 1 2
.

3. For all t ∈ [2k − 1 2], the t-th row of M can be written as Mt = u ⊗ v where

u, v ∈ − 1, 1 2k
 and u, 1 = v, 1 = 0.

Proof.—Our construction is based on the Hadamard matrix H = H2k ∈ − 1, 1 2k × 2k
.

Recall that the first row of H is the all-ones vector and that Hi, Hj = 0 for all i ≠ j. For

every 2 ≤ i, j ≤ 2k, we add Hi ⊗ Hj ∈ − 1, 1 22k
 as a row of M, so M has 2k − 1 2

 rows.

Condition (3) holds because Hi, 1 = Hj, 1 = 0 for all i, j ≥ 2. For Conditions (1) and (2),

note that for any vectors u, v, w, and z, we have u ⊗ v, w ⊗ z = u, w v, z . Using this fact,

Condition (1) holds because Mt, 1 = Hi ⊗ Hj, 1 ⊗ 1 = Hi, 1 Hj, 1 = 0, and Condition (2)

holds because (i, j) ≠ i′, j′ and thus Mt, Mt′ = Hi ⊗ Hj, Hi′ ⊗ Hj′ = Hi, Hi′ Hj, Hj′ = 0. □

We first prove a lower bound for the special case n = Θ(β/ε). Our proof for this special case

introduces important building blocks for proving the general case n = Ω(β/ε).

Lemma 3.3.

Suppose n = Θ(β/ε). Any (1 ± ε) for-each cut sketching algorithm for β-balanced n-node

graphs must output Ω(n β/ε) = Ω β/ε2 bits.

At a high level, we reduce the Index problem (Lemma 3.1) to the for-each cut sketching

problem. Given Alice’s string s, we construct a graph G to encode s, such that Bob can

recover any single bit in s by querying O(1) cut values of G. Our lower bound (Lemma

3.3) then follows from the communication complexity lower bound of the Index problem

(Lemma 3.1), because Alice can run a for-each cut sketching algorithm and send the cut

sketch to Bob, and Bob can successfully recover the O(1) cut values with high constant

probability.

Cheng et al. Page 8

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Proof of Lemma 3.3.—We reduce from the Index problem. Let s ∈ − 1, 1 β(1
ε − 1)

2

denote Alice’s random string.

Construction of G.

We construct a directed complete bipartite graph G to encode s. Let L and R denote the

left and right nodes of G, where |L | = |R| = β/ε. We partition L into β disjoint blocks

L1, …, L β of equal size, and similarly partition R into R1, …, R β. We divide s into β disjoint

strings si, j ∈ − 1, 1 (1
ε − 1)

2
 of the same length. We will encode si, j using the edges from

Li to Rj. Note that the encoding of each si, j is independent since E Li, Rj ∩ E Li′, Rj′ = ∅ for

(i, j) ≠ i′, j′ .

We fix i and j and focus on the encoding of si, j. Note that Li = Rj = 1/ε. We refer to

the edges from Li to Rj as forward edges and the edges from Rj to Li as backward edges.

Let w ∈ ℝ1/ε2
 denote the weights of the forward edges, which we will choose soon. Every

backward edge has weight 1/β.

Let z = si, j ∈ − 1, 1 (1
ε − 1)

2
. Assume w.l.o.g. that 1/ε = 2k for some integer k. Consider the

vector x = ∑t = 1
(1
ε − 1)

2

ztMt ∈ ℝ1/ε2
 where M is the matrix in Lemma 3.2 with 2k = 1/ε. Because

zt ∈ − 1, 1 is uniformly random, each coordinate of x is a sum of O 1/ε2 i.i.d. random

variables of value ±1. By the Chernoff bound and the union bound, we know that with

probability at least 99/100, x ∞ ≤ c1 ln(1/ε)/ε for some constant c1 > 0. If this happens,

we set w = εx + 2c1 ln(1/ε)1, so that each entry of w is between c1 ln(1/ε) and 3c1 ln(1/ε).
Otherwise, we set w = 2c1 ln(1/ε)1 to indicate that the encoding failed.

We first verify that G is O(β log(1/ε))-balanced. This is because every edge has a reverse

edge with similar weight: For every u ∈ L and v ∈ R, the edge (u, v) has weight Θ(log(1/ε)),
while the edge (v, u) has weight 1/β.

We will show that given a (1 ± c2ε
ln(1/ε)) cut sketch for some constant c2 > 0, Bob can recover a

specific bit of z using 4 cut queries. By Lemma 3.1, this implies an Ω β/ε2 = Ω β′/ε′2 lower

bound for cut sketching algorithms for β′ = O(β log(1/ε)) and ε′ = c2ε/ ln(1/ε).

Recovering a bit in s from a for-each cut sketch of G.

Suppose Bob wants to recover a specific bit of s, which belongs to the substring z = si, j and

has an index t in z. We assume that z is successfully encoded by the subgraph between Li

and Rj.

For simplicity, we index the nodes in Li as 1, …, (1/ε) and similarly for Rj. We index the

forward edges (u, v) in alphabetical order, first by u ∈ Li and then by v ∈ Rj. Under this

Cheng et al. Page 9

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

notation, w, 1A ⊗ 1B gives the total weight w(A, B) of forward edges from A to B, where

1A, 1B ∈ 0, 1 1/ε are the indicator vectors of A ⊂ Li and B ⊂ Rj.

The crucial observation is that, given a cut sketch of G, Bob can approximate w, Mt using

4 cut queries. By Lemma 3.2, Mt = ℎA ⊗ ℎB for some ℎA, ℎB ∈ − 1, 1 1/ε. Let A ⊂ Li be the

set of nodes u ∈ Li with ℎA(u) = 1. Let B ⊂ Ri be the set of nodes v ∈ Rj with ℎB(v) = 1. Let

A‾ = Li \ A and B‾ = Rj \ B.

w, Mt = w, ℎA ⊗ ℎB = w, 1A − 1A ⊗ 1B − 1B

= w A, B − w A, B − w A, B + w A, B .

To approximate the value of w(A, B) (and similarly w(A, B), w(A, B), w(A, B)), Bob can

query w(S, V \ S) for S = A ∪ (R \ B). Consider the edges from S to (V \ S): the forward

edges are from A to B, each with weight Θ(log(1/ε)); and the backward edges are from

(R \ B) to (L \ A), each with weight 1/β. See Figure 1 as an example.

By Lemma 3.2, ℎA, 1 = ℎB, 1 = 0, so |A | = |B | = Li
2 = Rj

2 = 1
2ε . The total weight of

the forward edges is Θ log(1/ε)/ε2 , and the total weight of the backward edges is

(β
ε − 1

2ε)
2 1

β = Θ 1/ε2 , so the cut value w(S, V \ S) is Θ log(1/ε)/ε2 . Given a (1 ± c2ε
ln(1/ε))

for-each cut sketch, Bob can obtain a (1 ± c2ε
log(1/ε)) multiplicative approximation of

w(S, V \ S), which has O c2/ε additive error. After subtracting the total weight of backward

edges, which is fixed, Bob has an estimate of w(A, B) with O c2/ε additive error.

Consequently, Bob can approximate w, Mt with O c2/ε additive error using 4 cut queries.

Now consider w, Mt . By Lemma 3.2, Mt, 1 = 0 and the rows of M are orthogonal,

w, Mt = εx, Mt = ε
t′

zt′Mt′, Mt = εzt Mt 2
2 = zt

ε .

We can see that, for a sufficiently small universal constant c2, Bob can distinguish whether

zt = 1 or zt = − 1 based on an O c2/ε additive approximation of w, Mt .

Bob’s success probability is at least 0.95, because the encoding of z fails with probability at

most 0.01, and each of the 4 cut queries fails with probability at most 0.01.2 □

We next consider the case with general values of n, β, and ε, and prove Theorem 1.1.

2The success probability of a cut query given a for-each cut sketch (Definition 2.3) can be boosted from 2/3 to 99/100, e.g., by running
the sketching and recovering algorithms O(1) times and taking the median. This increases the length of Alice’s message by a constant
factor, which does not affect our asymptotic lower bound.

Cheng et al. Page 10

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Proof of Theorem 1.1.—Let k = β/ε. We assume w.l.o.g. that k is an integer, n
is a multiple of k, and (1/ε) is a power of 2. Suppose Alice has a random string

s ∈ − 1, 1 Ω(nk). We will show that s can be encoded into a graph G such that

i. G has n nodes and is O(β log(1/ε))-balanced, and

ii. Given a (1 ± c2ε
ln(1/ε)) for-each cut sketch of G and an index q, where c2 > 0 is a

sufficiently small universal constant, Bob can recover sq with probability at least

2/3.

Consequently, by Lemma 3.1, any for-each cut sketching algorithm must output

Ω(nk) = Ω(n β/ε) = Ω(n β′/ε′) bits for β′ = O(β log(1/ε)) and ε′ = c2ε/ ln(1/ε).

We first describe the construction of G. We partition the n nodes into ℓ = n/k ≥ 2 disjoint

sets V 1, …, V ℓ, each containing k nodes. Let s be Alice’s random string with length

β 1
ε − 1

2
(ℓ − 1) = Ω k2 ℓ = Ω(nk). We partition s into (ℓ − 1) strings si i = 1

ℓ − 1, with k2 bits

in each substring. We then follow the same procedure as in Lemma 3.3 to encode si into

a complete bipartite graph between V i and V i + 1. Notice that we have si = β 1
ε − 1

2
 and

V i = V i + 1 = β/ε, which is the same setting as in Lemma 3.3.

We can verify that G is O(β log(1/ε))-balanced. This is because every edge e has a reverse

edge whose weight is at most O(β log(1/ε)) times the weight of e. For every u ∈ V i and

v ∈ V i + 1, the edge (u, v) has weight Θ(log(1/ε)), while the edge (v, u) has weight 1/β.

We next show that Bob can recover the q-th bit of s. Suppose Bob’s index q belongs to the

substring si which is encoded by the subgraph between V i and V i + 1. Similar to the proof of

Lemma 3.3, Bob only needs to approximate w(A, B) for 4 pairs of (A, B) with O(1/ε) additive

error, where ⊂ V i, B ⊂ V i + 1, and |A | = |B | = 1
2ε . To achieve this, Bob can query the cut value

w(S, V \ S) for S = A ∪ V i + 1\B ⋃j = i + 2
ℓ V j. The edges from S to (V \ S) are:

• 1
4ε2 forward edges from A to B, each with weight Θ(log(1/ε)).

• β
ε − 1

2ε
2
 backward edges from V i + 1 \ B to V i \ A , each with weight 1

β .

• β
2ε2 backward edges from A to V i − 1 when i ≥ 2, each with weight 1

β .

The cut value w(S, V \ S) is Θ(log(1/ε)/ε2). Consequently, given a (1 ± c2ε
ln(1/ε)) for-each cut

sketch, after subtracting the fixed weight of the backward edges, Bob can approximate

w(A, B) with O c2/ε additive error. Similar to the proof of Lemma 3.3, for sufficiently small

constant c2 > 0, repeating this process for 4 different pairs of (A, B) will allow Bob to recover

sq ∈ − 1, 1 . □

Cheng et al. Page 11

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4 For-All Cut Sketch

In this section, we prove an Ω nβ/ε2 lower bound on the output size of (1 ± ε) for-all cut

sketching algorithms (Definition 2.2).

Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).

Let β ≥ 1 and 0 < ε < 1. Assume β/ε2 ≤ n/2. Any (1 ± ε) for-all cut sketching algorithm for

β-balanced n-node graphs must output Ω nβ/ε2 bits.

Our proof is inspired by [ACK+16] and uses the following communication complexity lower

bound for an n-fold version of the Gap-Hamming problem.

Lemma 4.1 ([ACK+16]).

Consider the following distributional communication problem: Alice has ℎ strings

s1, …, sℎ ∈ 0, 1 1/ε2
 of Hamming weight 1

2ε2 . Bob has an index i ∈ ℎ and a string

t ∈ 0, 1 1/ε2
 of Hamming weight 1

2ε2 , drawn as follows:

1. i is chosen uniformly at random;

2. every si′ for i′ ≠ i is chosen uniformly at random;

3. si and t are chosen uniformly at random, conditioned on their Hamming distance

Δ si, t being, with equal probability, either ≥ 1
2ε2 + c

ε or ≤ 1
2ε2 − c

ε for some

universal constant c > 0.

Consider a (possibly randomized) one-way protocol, in which Alice sends Bob a message,

and Bob then determines with success probability at least 2/3 whether Δ si, t is ≥ 1
2ε2 + c

ε or

≤ 1
2ε2 − c

ε . Then Alice must send Ω ℎ/ε2 bits to Bob.

Before proving Theorem 1.2, we first consider the special case n = Θ β/ε2 .

Lemma 4.2.

Suppose n = Θ β/ε2 . Any (1 ± ε) for-all cut sketching algorithm for β-balanced n-node

graphs must output Ω nβ/ε2 = Ω β2/ε4 bits.

We reduce the distributional Gap-Hamming problem (Lemma 4.1) to the for-all cut

sketching problem. Suppose Alice has ℎ strings s1, s2, …, sℎ ∈ 0, 1 1/ε2
 where ℎ = β2/ε2,

and Bob has an index i ∈ ℎ and a string t ∈ {0, 1}1/ε2
. We construct a graph G to

encode s1, s2, …, sℎ, such that given a for-all cut sketch of G, Bob can determine whether

Δ si, t ≥ 1
2ε2 + c

ε or Δ si, t ≤ 1
2ε2 − c

ε with high constant probability. Our lower bound then

follows from Lemma 4.1.

Cheng et al. Page 12

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Construction of G.

We construct a directed complete bipartite graph G. Let L and R denote the left and

right nodes of G, where L = R = β/ε2. We partition R into β disjoint sets with

R1 = … = Rβ = 1/ε2.

Consider the distributional Gap-Hamming problem in Lemma 4.1 with ℎ = β2/ε2. We re-

index Alice’s β2/ε2 strings as si, j, where i ∈ β/ε2 and j ∈ β . Let ℓ1 , ℓ2 , …, ℓβ/ε2 be the

nodes in L. We encode si, j ∈ 0, 1 1/ε2
 using the edges from ℓi to Rj: For node ℓi and

the v-th node in Rj, the forward edge ℓi , v has weight si, j(v) + 1, and the backward

edge v, ℓi has weight 1/β. Note that the encoding of each si, j is independent since

E ℓi , Rj ∩ E ℓi′ , Rj′ = ∅ for (i, j) ≠ i′, j′ .

Determining Δ si, j, t from a for-all cut sketch of G.

Suppose Bob’s input (after re-indexing) is 1 ≤ i ≤ β/ε2, 1 ≤ j ≤ β, and t ∈ 0, 1 1/ε2
. Bob

wants to decide whether Δ si, j, t ≥ 1
2ε2 + c

ε or Δ si, j, t ≤ 1
2ε2 − c

ε .

Let N ℓi denote the set of nodes v ∈ Rj where the forward edge ℓi , v has weight 2,

which corresponds to the positions of 1 in si, j. Let T be the set of nodes v ∈ Rj such that

t(v) = 1.

Δ si, j, t = N ℓi \ T + T \ N ℓi = N ℓi + |T | − 2 N ℓi ∩ T = 1
ε2 − 2 N ℓi ∩ T .

Hence, to determine whether Δ si, j, t ≤ 1
2ε2 − c

ε or Δ si, j, t ≥ 1
2ε2 + c

ε , Bob only needs to

decide whether N ℓi ∩ T ≥ 1
4ε2 + c

2ε or N ℓi ∩ T ≤ 1
4ε2 − c

2ε .

Let S = ℓi ∪ (R \ T). The cut w(S, V \ S) consists of forward edges from ℓi to T and

backward edges from (R \ T) to (L \ ℓi . Ideally, if Bob knows w(S, V \ S), he can

subtract the weight of backward edges to obtain w ℓi , T = 1
ε2 + N ℓi ∩ T and recover

N ℓi ∩ T . However, Bob can only get a (1 ± ε)-approximation of w(S, V \ S), which

may have Θ β/ε3 additive error because w(S, V \ S) = Θ β/ε4 . With this much error, Bob

cannot distinguish between the two cases.

To overcome this issue, we follow the idea of [ACK+16]. Intuitively, when c is

small, roughly half of ℓi ∈ L satisfy N ℓi ∩ T ≥ 1
4ε2 + c

2ε . By enumerating all subsets

Q ⊂ L of size |Q | = ∣ L ∣
2 , Bob can find a set Q such that most nodes v ∈ Q satisfy

N ℓi ∩ T ≥ 1
4ε2 + c

2ε . Since |Q | = β
2ε2 , the c

2ε bias per node adds up to roughly cβ
2ε3 , which

can be detected even with Θ β/ε3 error.

Cheng et al. Page 13

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

To prove Lemma 4.2, we need the following two technical lemmas, which are essentially

proved in [ACK+16].

Lemma 4.3 (Claim 3.5 in [ACK+16]).

Let c > 0 and β
ε ≥ 10

c . Consider the following sets:

Lhigh = { ℓi ∈ L: N ℓi ∩ T ≥ 1
4ε2 + c

2ε}, and

Llow = { ℓi ∈ L: N ℓi ∩ T ≤ 1
4ε2 − c

2ε} .

With probability at least 0.98, we have 1
2 − 10c ≤ Lhigh

L ≤ 1
2 and 1

2 − 10c ≤ Llow
L ≤ 1

2 .

Lemma 4.4 (Lemma 3.4 in [ACK+16]).

Let c1 > 0 be a sufficiently small universal constant. Suppose one can approximate w(U, T)

with additive error c1β/ε3 for every U ⊂ L with |U | = L
2 . Let Q ⊂ L be the subset with the

highest (approximate) cut value. Then, with probability at least 0.96, we have Lhigh ∩ Q
Lhigh

≥ 4
5 .

We are now ready to prove Lemma 4.2.

Proof of Lemma 4.2.—We reduce from the distributional Gap-Hamming problem

(Lemma 4.1) with ℎ = β2/ε2. We re-index Alice’s ℎ strings as si, j, where i ∈ β/ε2 and

j ∈ β .

We construct a directed bipartite graph G with two parts L and R, where L = R = β/ε2.

Let L = ℓ1 , ℓ2 , …, ℓβ/ε2 . We partition R into β disjoint sets with R1 = … = Rβ = 1/ε2. We

encode si, j ∈ 0, 1 1/ε2
 using the edges from ℓi to Rj: For node ℓi and the v-th node in Rj, the

forward edge ℓi , v has weight si, j(v) + 1, and the backward edge v, ℓi has weight 1/β.

Note that G is (2β)-balanced. We will show that given a 1 ± c2ε for-all cut sketch of G for

some constant c2 > 0, Bob can decide whether Δ si, j, t ≥ 1
2ε2 + c

ε or Δ si, j, t ≤ 1
2ε2 − c

ε with

probability at least 2/3. Consequently, by Lemma 4.1, any for-all cut sketching algorithm

must output Ω ℎ/ε2 = Ω β2/ε4 = Ω β′2/ε′4 bits for β′ = 2β and ε′ = c2ε.

Bob enumerates every U ⊂ L with |U | = L
2 = β

2ε2 and uses the cut sketch to approximate

w(U, T), where T ⊂ Rj corresponds to the positions of 1 in Bob’s string t and T = 1
2ε2 .

Let S = U ∪ (R \ T). The cut (S, V \ S) has β
4ε4 forward edges from U to T with weights

1 or 2, and β
ε2 − 1

2ε2
β

2ε2 = O β2

ε4 backward edges from (R \ T) to (L \ U) with weight

Cheng et al. Page 14

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

1
β . The total weight of these edges is O β/ε4 . Therefore, given a (1 ± c2ε) for-all cut sketch,

Bob can subtract the fixed weight of the backward edges and approximate w(U, T) with

additive error O c2β/ε3 . When c2 is sufficiently small, this additive error is at most c1β/ε3. By

Lemma 4.4, Bob can find Q ⊂ L with |Q | = L
2 such that Lhigh ∩ Q

Lhigh
≥ 4

5 . Finally, if ℓi ∈ Q,

Bob decides N ℓi ∩ T ≥ 1
4ε2 + c

2ε and Δ si, j, t ≤ 1
2ε2 − c

ε ; and if ℓi ∉ Q, Bob decides

Δ si, j, t ≥ 1
2ε2 + c

ε .

Suppose Bob’s index is (i, j). Notice that Bob uses j to determine which Rj to look

at, but does not use any information about i. Therefore, when Δ si, j, t ≤ 1
2ε2 − c

ε and

N ℓi ∩ T ≥ 1
4ε2 + c

2ε ,

Pr i ∈ Q = Lhigh ∩ Q
Lhigh

≥ 4
5 .

Conversely, when Δ si, j, t ≤ 1
2ε2 + c

ε and N ℓi ∩ T ≤ 1
4ε2 − c

2ε , because Llow ∩ Lhigh = ∅,

Pr i ∉ Q = Llow \ Q
Llow

= Llow − Llow ∩ Q
Llow

≥
Llow − 1

5 Lhigh

Llow
≥ 3

4 .

The last inequality holds because Llow ≥ 0.4 L and Lhigh ≤ 0.5 L by Lemma 4.3 when

c ≤ 0.1.

We analyze Bob’s success probability. Lemma 4.3 fails with probability at most 0.02,

Lemma 4.4 fails with probability at most 0.04, and the for-all cut sketch fails with

probability at most 0.013 If they all succeed, Bob’s probability of answering correctly is

at least min Lhigh ∩ Q
Lhigh

, Llow\Q
Llow

≥ 3
4 . Bob’s overall fail probability is at most 0.02 + 0.04 +

0.01 + 0.25 < 1/3. □

We next consider the case with general values of n, β, and ε, and prove Theorem 1.2.

Proof of Theorem 1.2.—Let k = β/ε2. We assume w.l.o.g. that k is an integer and n is a

multiple of k. We reduce from the distributional Gap-Hamming problem in Lemma 4.1 with

ℎ = Ω(nβ). We will show that Alice’s strings can be encoded into a graph G such that

i. G has n nodes and is (2β)-balanced, and

3The probability that a for-all cut sketch (Definition 2.2) preserves all cuts simultaneously can be boosted from 2/3 to 99/100, e.g., by
running the sketching and recovering algorithms O(1) times and taking the median. This increases the length of Alice’s message by a
constant factor, which does not affect our asymptotic lower bound.

Cheng et al. Page 15

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ii. After receiving a string t, an index q ∈ ℎ , and a (1 ± c2ε) for-all cut

sketch of G for some universal constant c2 > 0, Bob can distinguish whether

Δ sq, t ≤ 1
2ε2 − c

ε or Δ sq, t ≥ 1
2ε2 + c

ε with probability at least 2/3.

Consequently, by Lemma 4.1, any for-all cut sketching algorithm must output

Ω ℎ/ε2 = Ω nβ/ε2 = Ω nβ′/ε′2 bits for β′ = 2β and ε′ = c2ε.

We first describe the construction of G. We partition the n nodes into ℓ = n/k ≥ 2 disjoint

sets V 1, V 2, ⋯, V ℓ, each containing k nodes. Let s1, s2, ⋯, sℎ ∈ 0, 1 1/ε2
 be Alice’s random

strings where ℎ = (t − 1) β2/ε2 = Ω (n/k) β2/ε2 = Ω(nβ). We partition the ℎ strings into

(t − 1) disjoint sets S1, S2, ⋯, St − 1, each with β2/ε2 strings. We then follow the same

procedure as in Lemma 4.2 to encode Si into a complete bipartite graph between V i and

V i + 1. Notice that Si has β2/ε2 strings and V i = V i + 1 = k = β/ε2, which is the same setting as

in Lemma 4.2.

We can verify that G is (2β)-balanced. This is because every edge e has a reverse edge whose

weight is at most 2β times the weight of e. For every u ∈ V i and v ∈ V i + 1, the edge (u, v) has

weight 1 or 2, while the edge (v, u) has weight 1/β.

We next show how Bob can distinguish between the two cases. Suppose Bob’s index

q specifies a string encoded by the subgraph between V i and V i + 1. Similar to the proof

of Lemma 4.2, we only need to show that given a 1 ± c2ε for-all cut sketch, Bob can

approximate w(U, T) with additive error O β/ε3 for every U ⊂ V i with |U | = V i
2 = β

2ε2 and

for some T ⊂ V i + 1 with |T | = 1
2ε2 . To see this, consider S = U ∪ V i + 1 \ T ⋃j = i + 2

t V j. The

edges from S to (V \ S) are

• β
4ε4 forward edges from U to T , each with weight 1 or 2.

• β
ε2 − 1

2ε2
β

2ε2 backward edges from V i + 1 \ T to V i \ U , each with weight 1
β .

• β2

2ε4 backward edges from U to V i − 1 when i ≥ 2, each with weight 1
β .

The total weight of these edges is w(S, V \ S) = O β/ε4 . Consequently, given a 1 ± c2ε
cut sketch, Bob can subtract the fixed weight of the backward edges and approximate

w(U, T) with O c2ε β/ε4 = O c2β/ε3 additive error. Similar to the proof of Lemma 4.2, for

sufficiently small constant c2 > 0, this will allow Bob to distinguish between the two cases

Δ sq, t ≤ 1
2ε2 − c

ε or Δ sq, t ≥ 1
2ε2 + c

ε with probability at least 2/3. □

Cheng et al. Page 16

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5 Local Query Complexity of Min-Cut

In this section, we present an Ω(min{m, m
ε2k

}) lower bound on the query complexity of

approximating the global minimum cut of an undirected graph G to a (1 ± ε) factor in the

local query model. Formally, we have the following theorem.

Theorem 1.3 (Approximating Min-Cut using Local Queries).

Any algorithm that estimates the size of the global minimum cut of a graph G up to a (1 ± ε)

factor requires Ω(min{m, m
ε2k

}) queries in expectation in the local query model, where m is

the number of edges in G and k is the size of the minimum cut.

To achieve this, we define a variant of the 2-SUM communication problem in Section 5.1,

show a graph construction in Section 5.2, and show that approximating 2-SUM can be

reduced to the minimum cut problem using our graph construction in Section 5.3. In Section

5.4, we will show that our lower bound is tight up to logarithmic factors.

5.1 2-SUM Preliminaries

Building off of the work of [WZ14], we define the following variant of the 2 − SUM(t, L, α)
problem.

Definition 5.1.—For binary strings x = x1, …, xL ∈ 0, 1 L and y = y1, …, yL ∈ 0, 1 L,

let INT(x, y) = ∑i = 1
L xi ∧ yi denote the number of indices where x and y are both 1. Let

DISJ(x, y) denote whether x and y are disjoint. That is, DISJ(x, y) = 1 if INT(x, y) = 0, and
DISJ(x, y) = 0 if INT(x, y) ≥ 1.

Definition 5.2.—Suppose Alice has binary strings X1, …, Xt where each string

Xi ∈ 0, 1 L has length L and likewise Bob hast strings Y 1, …, Y t each of length

L . INT Xi, Y i is guaranteed to be either 0 or α ≥ 1 for each pair of strings Xi, Y i .

Furthermore, at least 1/1000 of the Xi, Y i pairs are guaranteed to satisfy INT Xi, Y i = α.

In the 2 − SUM(t, L, α) problem, Alice and Bob want to approximate ∑i ∈ t DISJ Xi, Y i up

to additive error t with high constant probability.

Lemma 5.3.—To solve 2 − SUM(t, L, 1) with high constant probability, the expected
number of bits Alice and Bob need to communicate is Ω(tL).

Proof.: [WZ14] proved an expected communication complexity of Ω(tL) for

2 − SUM(t, L, 1) without the promise that at least a 1/1000 fraction of the t string pairs

intersect. Adding this promise does not change the communication complexity, because if

(X1, …, Xt and Y 1, …, Y t do not satisfy the promise, we can add a number of new Xi and Y i

to satisfy the promise and later subtract their contribution to approximate ∑i ∈ t DISJ Xi, Y i

with additive error Θ(t). □

Cheng et al. Page 17

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Theorem 5.4.—To solve 2 − SUM(t, L, α) with high constant probability, the expected
number of bits Alice and Bob need to communicate is Ω(tL/α).

Proof.: Consider an instance of 2 − SUM(t, L/α, 1) with Alice’s strings X1, …, Xt and

Bob’s strings Y 1, …, Y t each with length L/α. For each of Alice’s strings Xi with length

L/α, we produce Xi, α (with length L) by concatenating α copies of Xi, and likewise we

produce Y i, α for each of Bob’s strings Y i. The setup where Alice has strings X1, α, …, Xt, α

and Bob has strings Y 1, α, …, Y t, α is an instance of 2 − SUM(t, L, α). From Lemma 5.3,

the communication complexity of 2 − SUM(t, L/α, 1) is Ω(tL/α). Thus, the communication

complexity of 2 − SUM(t, L, α) is Ω(tL/α). □

5.2 Graph Construction

Inspired by the graph construction from [ER18], given two strings x, y ∈ 0, 1 N, we

construct a graph Gx, y(V , E) such that V is partitioned into A, A′, B and B′, where

A = A′ = B = B′ = N = ℓ. Note that since ℓ2 = N, we can index the bits in x by

xi, j, where 1 ≤ i, j ≤ ℓ. We construct the edges E according to the following rule:

(ai, bj
′), (bi, aj

′) ∈ E if xi, j = yi, j = 1
(ai, aj

′), bi, bj
′ ∈ E otherwise

Figure 2 illustrates an example of the graph Gx, y(V , E) when x = 000000100 and

y = 100010100.

We will show that under certain assumptions about N and INT(x, y), the number of

intersections in x, y is twice the size of the minimum cut in Gx, y.

Lemma 5.5.—Given x, y ∈ 0, 1 N, if N ≥ 3 ⋅ INT(x, y), then
MINCUT Gx, y = 2 ⋅ INT(x, y).

Proof.: To prove this, we use some properties about γ-connectivity of a graph. A graph is

γ-connected if at least γ edges must be removed from G to disconnect it. In other words,

if a graph G is γ-connected, then MINCUT(G) ≥ γ. Equivalently, a graph G is γ-connected if

for every u, v ∈ V , there are at least γ edge-disjoint paths between u and v. Therefore, given

INT(x, y) = γ, if we can show that Gx, y is 2γ-connected and there exists one cut of size exactly

2γ, then we can show MINCUT Gx, y ≥ 2γ. By the construction of the graph, it is easy to see

that CUT A ∪ A′, B ∪ B′ has size 2γ, since each intersection of x, y produces two crossing

edges in between. Therefore, all we need to show here is that if N ≥ 3 ⋅ γ, then Gx, y is

2γ-connected.

Similar to [ER18], we prove this by looking at each pair of u, v ∈ V . Our goal is to show that

for every u, v ∈ V , there exist at least 2γ edge-disjoint paths from u to v.

Cheng et al. Page 18

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Case 1.—u, v ∈ A (or symmetrically u, v ∈ A′, B, B′). For each pair u, v ∈ A, we have that
there are at least ℓ − γ distinct common neighbors in A′. This is because one intersection
at xij and yij implies that the edge (ai, aj

′) is not contained in E, and would remove at most

one common neighbor in A′. Since ℓ = N ≥ 3γ, we have that there are at least ℓ − γ ≥ 2γ
distinct common neighbors in A′, which we denote by u1

A′, u2
A′, …, u2γ

A′. Therefore, each path

u ui
A′ v is edge-disjoint, and we have at least 2γ edge-disjoint paths from u to v, as shown

in Figure 3.

Case 2.—u ∈ A, v ∈ A′ (or symmetrically u ∈ B, v ∈ B′). Since ℓ − γ ≥ 2γ, we have that v
has at least 2γ distinct neighbors in A, which we denote by u1

A, u2
A, …, u2γ

A . From Case 1, we

also have that each ui
A has at least 2γ distinct common neighbors in A′. Therefore, we can

choose v1
A′, v2

A′, …, v2γ
A′ such that each path u vi

A′ ui
A v is edge-disjoint, so we have at least

2γ edge-disjoint paths from u to v, as shown in Figure 4. Note that it may be the case where
ui

A = u. In this case, we can simply take the edge (u, v) to be one of the edge-disjoint paths.

Case 3.—u ∈ A, v ∈ B′ (or symmetrically u ∈ A′, v ∈ B). In this case, we show two sets of
edge-disjoint paths, where each set has at least γ edge-disjoint paths from u to v, and the two
sets of paths do not overlap. Overall, we have at least 2γ edge-disjoint paths.

The first set of paths S1 uses the edges between A′ and B. Let

w1, x1 , w2, x2 , …, wγ, xγ ∈ A′ × B be the edges between A′ and B. Each of these edges

represents one intersection in x and y. Therefore, there are exactly γ of them. From Case 2,

we have that for every wi, there are 2γ edge-disjoint paths from u to wi. Hence, for every wi,

we can choose a path from u to wi and these γ paths are edge-disjoint. Figure 5 illustrates the

paths u ui ui
′ wi xi. By symmetry, we can extend the paths from xi to v. This gives us

γ edge-disjoint paths from u to v.

We now consider the second set of paths S2. Let

y1, z1 , y2, z2 , …, yγ, zγ ∈ A × B′

be the distinct edges between A and B′. Once again, it suffices to prove that there are
2γ edge-disjoint paths from u to yi, since the paths between v to zi would be symmetric.

From Case 1, we have that for every yi, there are at least 2γ common neighbors between yi

and u. Therefore, we can always find distinct u1
″, u2

″, …, uγ
″ such that the paths u ui

″ yi are

edge-disjoint, as shown in Figure 6. Once we extend the paths from zi to v, we have γ-edge

disjoint paths in the second set.

Now we have two sets of paths S1 and S2, where both sets have at least γ edge-disjoint paths.

It remains to show that the paths in S1 and S2 can be edge-disjoint. Observe that the only

possible edge overlaps between the paths from u to the wi and paths from u to the yi are

u ui
″ and u ui, since they are both neighbors of u. However, note that what we have shown

is that for every wi or yi, there are at least 2γ edge-disjoint paths from u to wi or yi. Therefore,

one can choose 2γ edge-disjoint paths from u to wi and yi such that ui
′ and ui

″ do not overlap.

Cheng et al. Page 19

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

And similarly one can choose 2γ edge-disjoint paths from v to the zi and the xi. Overall, we

have 2γ edge-disjoint paths from u to v.

Case 4.—u ∈ A, v ∈ B (or symmetrically u ∈ A′, v ∈ B′). This case is similar to Case 3,

where we have two edge-disjoint sets S1
′ and S2

′. Consider the set of paths S1
′, where we use

the edges

w1, x1 , w2, x2 , …, wγ, xγ ∈ A′ × B .

We can construct the paths from u to wi using the same way as for S1 in Case 3 (Figure

5). For the paths from xi to v, however, we construct them using the same way as in S2 in

Case 3 (Figure 6). By connecting these paths, we obtain at least γ edge-disjoint paths in S1
′.

Similarly, we can also construct at least γ edge-disjoint paths in S2
′, where we use the edges

y1, z1 , y2, z2 , …, yγ, zγ ∈ A × B′ .

We follow the same way of choosing the paths in S1
′ and S2

′ that are edge-disjoint. □

5.3 Reducing 2-SUM to MINCUT

In this section, we use the graph constructions in Section 5.2 to reduce the 2 − SUM(t, L, α)
problem to MINCUT and derive a lower bound on the number of queries in the local query

model.

Lemma 5.6.—Given M, λ > 0, and 0 < ε < 1, suppose that we have any algorithm A that
can estimate the size of the minimum cut of a graph up to a (1 ± ε) multiplicative factor
with T expected queries in the local query model. Then there exists an algorithm ℬ that

can approximate 2 − SUM ε−2, ε2M, max ε2λ, 1 up to an additive error ε−2 = ε−1 using at

most O(T) bits of communication in expectation given M ≥ 3 max λ, ε−2 .

Proof.: We will show that the following algorithm ℬ satisfies the above conditions:

1. Given Alice’s strings (X1, …, Xε−2
) each of length ε2M, let x be the

concatenation of Alice’s strings having total length ε−2 ε2M = M. Similarly

let y ∈ 0, 1 M be the concatenation of Bob’s strings.

2. Construct a graph Gx, y as in Section 5.2 using the above concatenated strings as x,

y.

3. Run A Gx, y and output (1
ε2 − A Gx, y

2 max ε2λ, 1
) as the solution to

2 − SUM ε−2, ε2M, max ε2λ, 1 .

For the 2-SUM problem, let r = ε−2 − ∑i ∈ ε−2 DISJ Xi, Y i be the number of string

pairs with intersections. Since there are ε−2 pairs Xi, Y i , r is at most ε−2.

Cheng et al. Page 20

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

From our definition of 2-SUM, each intersecting string pair has max ε2λ, 1

intersections. x, y are formed by concatenations, so INT x, y = r max ε2λ, 1 . Since

M ≥ 3 max λ, ε−2 = 3ε−2max ε2λ, 1 ≥ 3r max ε2λ, 1 = 3 ⋅ INT(x, y), Lemma 5.5 is

applicable to Gx, y so that

MinCUT Gx, y = 2r max ε2λ, 1 .

Since A approximates MINCUT up to a (1 ± ε) factor, A Gx, y = 2r(1 ± ε) max ε2λ, 1 . Thus,

ℬ ‘s output to the 2-SUM problem is within ε−2 − r ± rε = ∑i ∈ ε−2 DISJ Xi, Y i ± rε. Recall

that r ≤ ε−2. We can see that ℬ approximates 2 − SUM ε−2, ε2M, max ε2λ, 1 up to additive

error ε−1.

To compare the complexities of A and ℬ, recall A is measured by degree, neighbor, and pair

queries, whereas ℬ is measured by bits of communication. Given the construction of Gx, y, as

shown in [ER18], degree, neighbor, and pair queries can each be simulated using at most 2

bits of communication:

• Degree queries: each vertex in Gx, y has degree M so Alice and Bob do not need

to communicate to simulate degree queries.

• Neighbor queries: assuming an ordering where ai ‘s j’th neighbor is either aj
′ or bj

′,

Alice and Bob can exchange xi, j and yi, j with 2 bits of communication to simulate

a neighbor query.

• Pair queries: Alice and Bob can exchange xi, j and yi, j with 2 bits of

communication to determine whether edges (ai, bj
′) and (bi, aj

′) exist.

As each of A’s queries can be simulated using up to 2 bits of communication in ℬ, ℬ
can use O(T) bits of communication to simulate T queries in A. So we have established

a reduction from approximating 2 − SUM ε−2, ε2M, max ε2λ, 1 up to additive error ε−1 to

approximating MINCUT up to a (1 ± ε) multiplicative factor. □

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3.: Given an instance of 2 − SUM ε−2, ε2m, max ε2k, 1 , consider the

same way of constructing the graph Gx, y in Lemma 5.6. From the construction of Gx, y, the

number of edges is 2m since each of pair xi, yi corresponds to 2 edges. Using the promise

from 2-SUM, we get that r ≥ ε−2/1000, where r = ∑i ∈ ε−2 DISJ Xi, Y i , which means that the

size of the minimum cut of Gx, y is 2r ⋅ max ε2k, 1 ≥ Ω max k, ε−2 . When k ≥ ε−2, we have

that the size of the minimum cut of Gx, y is Ω(k), and from Lemma 5.6 we obtain that any

algorithm A that satisfies the guarantee on the distribution of Gx, y must have Ω m/ ε2k

queries in expectation. When k < ε−2, the size of the minimum cut of Gx, y is Ω ε−2

and similarly we get that any algorithm A that satisfies the guarantee on the distribution

Cheng et al. Page 21

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of Gx, y must use Ω(m) queries in expectation. Combining the two, we finally obtain an

Ω(min{m, m
ε2k

}) lower bound on the expected number of queries in the local query model. □

5.4 Almost Matching Upper Bound

In this section, we will show that our lower bound is tight up to logarithmic factors. In

the work of [BGMP21], the authors presented an algorithm that uses O(m
k ⋅ poly(logn, 1/ε))

queries, where k is the size of the minimum cut. We will show that, despite their analysis

giving a dependence of 1/ε4, a slight modification of their algorithm yields a dependence of

1/ε2. Formally, we have the following theorem.

Theorem 5.7 (essentially [BGMP21]).—There is an algorithm that solves the minimum
cut query problem up to a (1 ± ε)-multiplicative factor with high constant probability in
the local query model. Moreover, the expected number of queries used by this algorithm is

O m
ε2k

.

To prove Theorem 5.7, we first give a high-level description of the algorithm in [BGMP21].

The algorithm is based on the following sub-routine.

Lemma 5.8 ([BGMP21]).—There exists an algorithm VERIFY-GUESS (D, t, ε) which makes

O ε−2m/t queries in expectation such that (here D is the degree of each node)

1. If t ≥ 2000 log n
ε2 ⋅ k, then Verify − Guess(D, t, ε) rejects t with probability at least

1 − 1
poly(n) .

2. If t ≤ k, then Verify − Guess(D, t, ε) accepts t and outputs a (1 ± ε)-approximation

of k with probability at least 1 − 1
poly(n) .

Given the above sub-routine, the algorithm initializes a guess t = n
2 for the value of the

minimum cut k and proceeds as follows:

• if Verify − Guess(D, t, ε) rejects t, set t = t/2 and repeat the process.

• if Verify − Guess(D, t, ε) accepts t, set t = t/κ where κ = 2000 log n
ε2 . Let

k = Verify − Guess(D, t, ε) and return the value of k as the output.

To analyze the query complexity of the algorithm, notice that when VERIFY-GUESS first

accepts t, we have that k
2 < t < κk. which means that t/κ < k and hence one call to

Verify − Guess(D, t/κ, ε) will get the desired output. However, at a time in t = Θ(k/κ), the

VERIFY-GUESS procedure needs to make O m
ε4k

 queries in expectation.

To avoid this, the crucial observation is that, during the above binary search process,

the error parameter of Verify − Guess(D, t, ε) does not have to be set to ε. Using a

Cheng et al. Page 22

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

small constant β0 is sufficient. This way, when VERIFY-GUESS D, t, β0 first accepts

t, we have k
2 < t < c log(n) ⋅ k, where c is a constant. Consequently, the output of

Verify − Guess(D, t/(c log n), ε) will satisfy the error guarantee. Using the analysis in

[BGMP21], we can show that the query complexity of the new algorithm is O m
ε2k

.

Acknowledgement

Yu Cheng is supported in part by NSF Award CCF-2307106. Honghao Lin and David Woodruff would like to thank
support from the National Institute of Health (NIH) grant 5R01 HG 10798-2, and a Simons Investigator Award. Part
of this work was done while D. Woodruff was visiting the Simons Institute for the Theory of Computing.

References

[ACK+16]. Andoni Alexandr, Chen Jiecao, Krauthgamer Robert, Qin Bo, Woodruff David P., and
Zhang Qin. On sketching quadratic forms. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science (ITCS), pages 311–319, 2016. 2, 4, 5, 9, 10

[AGM12]. Kook Jin Ahn Sudipto Guha, and McGregor Andrew. Graph sketches: sparsification,
spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS), pages 5–14, 2012. 2

[BGMP21]. Bishnu Arijit, Ghosh Arijit, Mishra Gopinath, and Paraashar Manaswi. Query complexity
of global minimum cut. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), volume 207 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 6:1–6:15, 2021. 2, 3, 18, 19

[BK96]. Benczúr András A. and Karger David R.. Approximating s-t minimum cuts in Õ(n2) time. In
Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), pages
47–55, 1996. 1, 5

[BSS12]. Batson Joshua D., Spielman Daniel A., and Srivastava Nikhil. Twice-Ramanujan sparsifiers.
SIAM J. Comput, 41(6):1704–1721, 2012. 1

[CCPS21]. Cen Ruoxu, Cheng Yu, Panigrahi Debmalya, and Sun Kevin. Sparsification of directed
graphs via cut balance. In 48th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 198 of LIPIcs, pages 45:1–45:21, 2021. 2, 3, 4, 5

[CGP+23]. Chu Timothy, Gao Yu, Peng Richard, Sachdeva Sushant, Sawlani Saurabh, and Wang
Junxing. Graph sparsification, spectral sketches, and faster resistance computation via short cycle
decompositions. SIAM J. Comput, 52(6):S18–85, 2023. 2

[CKK+18]. Cohen Michael B., Kelner Jonathan A, Kyng Rasmus, Peebles John, Peng Richard, Rao
Anup B, and Sidford Aaron. Solving directed Laplacian systems in nearly-linear time through
sparse LU factorizations. In Proceedings of the 59th IEEE Annual Symposium on Foundations of
Computer Science (FOCS), pages 898–909, 2018. 2

[CKST19]. Carlson Charles, Kolla Alexandra, Srivastava Nikhil, and Trevisan Luca. Optimal lower
bounds for sketching graph cuts. In Proceedings of the 30th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2565–2569, 2019. 1, 2

[EMPS16]. Ene Alina, Miller Gary L., Pachocki Jakub, and Sidford Aaron. Routing under balance. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 598–611, 2016. 2

[ER18]. Eden Talya and Rosenbaum Will. Lower bounds for approximating graph parameters via
communication complexity. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques (APPROX/RANDOM), volume 116 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 11:1–11:18, 2018. 2, 3, 5, 13, 14, 17

[FHHP19]. Wai Shing Fung Ramesh Hariharan, Harvey Nicholas J. A., and Panigrahi Debmalya. A
general framework for graph sparsification. SIAM J. Comput, 48(4):1196–1223, 2019. 1

Cheng et al. Page 23

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[IT18]. Ikeda Motoki and Tanigawa Shin-ichi. Cut sparsifiers for balanced digraphs. In Approximation
and Online Algorithms - 16th International Workshop (WAOA), volume 11312 of Lecture Notes
in Computer Science, pages 277–294, 2018. 2, 3

[JS18]. Jambulapati Arun and Sidford Aaron. Efficient Õ(n/ϵ) spectral sketches for the Laplacian
and its pseudoinverse. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2487–2503, 2018. 2

[KNR01]. Kremer Ilan, Nisan Noam, and Ron Dana. Errata for: “on randomized one-round
communication complexity”. Comput. Complex, 10(4):314–315, 2001. 6

[KP12]. Kapralov Michael and Panigrahy Rina. Spectral sparsification via random spanners. In
Innovations in Theoretical Computer Science (ITCS), pages 393–398, 2012. 1

[LS17]. Lee Yin Tat and Sun He. An SDP-based algorithm for linear-sized spectral sparsification. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 678–687, 2017. 1

[McG14]. Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20,
2014. 2

[RSW18]. Rubinstein Aviad, Schramm Tselil, and Matthew Weinberg S. Computing exact minimum
cuts without knowing the graph. In 9th Innovations in Theoretical Computer Science Conference
(ITCS), volume 94 of LIPIcs, pages 39:1–39:16, 2018. 2

[SS11]. Spielman Daniel A. and Srivastava Nikhil. Graph sparsification by effective resistances. SIAM
J. Comput, 40(6):1913–1926, 2011. 1

[ST04]. Spielman Daniel A. and Teng Shang-Hua. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC), pages 81–90, 2004. 1

[ST11]. Spielman Daniel A. and Teng Shang-Hua. Spectral sparsification of graphs. SIAM J. Comput,
40(4):981–1025, 2011. 1, 5

[SW19]. Saranurak Thatchaphol and Wang Di. Expander decomposition and pruning: Faster, stronger,
and simpler. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2616–2635, 2019. 2

[WZ14]. Woodruff David P. and Zhang Qin. An optimal lower bound for distinct elements in the
message passing model. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), page 718–733, 2014. 5, 13

Cheng et al. Page 24

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
For S = A ∪ (R \ B), the (directed) edges from S to (V \ S) consist of the following: the

forward edges from A to B, each with weight Θ(log(1/ε)), and the backward edges from

(R \ B) to (L \ A), each with weight 1/β.

Cheng et al. Page 25

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Example of Gx, y(V , E) where x = 000000100 and y = 100010100. The red edges represent the

intersection at x31 = y31 = 1. The green edges represent all the non-intersections in x and y.

Cheng et al. Page 26

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
u, v ∈ A. We omit all the (ai, bj

′), (bi, bj
′), and (bi, aj

′) edges.

Cheng et al. Page 27

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
∈ A, v ∈ A′. We omit all the (ai, bj

′), (bi, bj
′), and (bi, aj

′) edges. The green edges exist since v has

at least 2γ neighbors in A. The orange edges exist since ui
A and u have at least 2γ common

neighbors in A′.

Cheng et al. Page 28

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
∈ A, v ∈ B′. The first set of paths S1 goes from u ui ui

′ wi xi. We omit the paths from

xi to v, as they are symmetric to the paths from wi to u. Once we extend the paths from xi to

v, we have γ edge-disjoint paths from u to v. Note that the wi and xi may not be distinct.

Cheng et al. Page 29

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
∈ A, v ∈ B′. The second set of paths S2 goes from u ui

″ yi zi. We omit the paths from zi

to v, as they are symmetric to the paths from yi to u. Once we extend the paths from xi to v,

we have γ edge-disjoint paths from u to v. Note that the yi and zi may not be distinct.

Cheng et al. Page 30

Proc ACM Manag Data. Author manuscript; available in PMC 2024 November 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Introduction
	Our Results
	Cut Sketch for Balanced (Directed) Graphs.
	Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).
	Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).
	Query Complexity of Min-Cut in the Local Query Model.
	Theorem 1.3 (Approximating Min-Cut using Local Queries).

	Our Techniques
	For-Each Cut Sketch Lower Bound.
	For-All Cut Sketch Lower Bound.
	Query Complexity of Min-Cut in the Local Query Model.

	Preliminaries
	Directed Cut Sketches.
	Definition 2.1 (β-Balanced Graphs).
	Definition 2.2 (For-All Cut Sketch).
	Definition 2.3 (For-Each Cut Sketch).

	For-Each Cut Sketch
	Theorem 1.1 (For-Each Cut Sketch for Balanced Graphs).
	Lemma 3.1 ([KNR01]).
	Lemma 3.2.
	Proof.

	Lemma 3.3.
	Proof of Lemma 3.3.

	Construction of G.
	Recovering a bit in s from a for-each cut sketch of G.
	Proof of Theorem 1.1.

	For-All Cut Sketch
	Theorem 1.2 (For-All Cut Sketch for Balanced Graphs).
	Lemma 4.1 ([ACK+16]).
	Lemma 4.2.
	Construction of G.
	Determining Δsi,j,t from a for-all cut sketch of G.
	Lemma 4.3 (Claim 3.5 in [ACK+16]).
	Lemma 4.4 (Lemma 3.4 in [ACK+16]).
	Proof of Lemma 4.2.
	Proof of Theorem 1.2.

	Local Query Complexity of Min-Cut
	Theorem 1.3 (Approximating Min-Cut using Local Queries).
	2-SUM Preliminaries
	Definition 5.1.
	Definition 5.2.
	Lemma 5.3.
	Proof.

	Theorem 5.4.
	Proof.

	Graph Construction
	Lemma 5.5.
	Proof.

	Case 1.
	Case 2.
	Case 3.
	Case 4.

	Reducing 2-SUM to MINCUT
	Lemma 5.6.
	Proof.
	Proof of Theorem 1.3.

	Almost Matching Upper Bound
	Theorem 5.7 (essentially [BGMP21]).
	Lemma 5.8 ([BGMP21]).

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:

