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Abstract

Multimodal learning has emerged as a powerful technique that leverages diverse data

sources to enhance learning and decision-making processes. Adapting this approach

to analyzing data collected from different biological domains is intuitive, especially for

studying neuropsychiatric disorders. A complex neuropsychiatric disorder like schizo-

phrenia (SZ) can affect multiple aspects of the brain and biologies. These biological

sources each present distinct yet correlated expressions of subjects' underlying physi-

ological processes. Joint learning from these data sources can improve our under-

standing of the disorder. However, combining these biological sources is challenging

for several reasons: (i) observations are domain specific, leading to data being repre-

sented in dissimilar subspaces, and (ii) fused data are often noisy and high-

dimensional, making it challenging to identify relevant information. To address these

challenges, we propose a multimodal artificial intelligence model with a novel fusion

module inspired by a bottleneck attention module. We use deep neural networks to

learn latent space representations of the input streams. Next, we introduce a two-

dimensional (spatio-modality) attention module to regulate the intermediate fusion

for SZ classification. We implement spatial attention via a dilated convolutional neural

network that creates large receptive fields for extracting significant contextual pat-

terns. The resulting joint learning framework maximizes complementarity allowing us

to explore the correspondence among the modalities. We test our model on a
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multimodal imaging-genetic dataset and achieve an SZ prediction accuracy of 94.10%

(p < .0001), outperforming state-of-the-art unimodal and multimodal models for the

task. Moreover, the model provides inherent interpretability that helps identify con-

cepts significant for the neural network's decision and explains the underlying physio-

pathology of the disorder. Results also show that functional connectivity among

subcortical, sensorimotor, and cognitive control domains plays an important role in

characterizing SZ. Analysis of the spatio-modality attention scores suggests that

structural components like the supplementary motor area, caudate, and insula play a

significant role in SZ. Biclustering the attention scores discover a multimodal cluster

that includes genes CSMD1, ATK3, MOB4, and HSPE1, all of which have been identi-

fied as relevant to SZ. In summary, feature attribution appears to be especially useful

for probing the transient and confined but decisive patterns of complex disorders,

and it shows promise for extensive applicability in future studies.
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1 | INTRODUCTION

Our brain processes multimodal signals from the outer world to

understand real events and respond accordingly (Bayoudh

et al., 2021; Guo et al., 2019; Kosslyn et al., 2010; Nanay, 2018;

Summaira et al., 2021). Leveraging information from diverse sources

allows for a better understanding of a given phenomenon. Likewise,

multimodal learning enables researchers and practitioners to benefit

from the unique strengths of each modality, leading to improved per-

formance, enhanced accuracy, and richer insights (Ngiam et al., 2011;

Sohn et al., 2014). Applications of multimodal learning models are

wide-ranging and include fields such as computer vision

(Hosseinzadeh & Wang, 2021; Liu et al., 2021; Xi et al., 2020), health-

care (Huang, Pareek, Seyyedi, et al., 2020; Menon &

Krishnamurthy, 2021; Naderi et al., 2019), and speech recognition

(Palaskar et al., 2018; Yuhas et al., 1989), among others (Sengupta

et al., 2020). Moreover, the potential applications of multimodal learn-

ing in studying mental disorders are vast and continue to expand

(Calhoun & Sui, 2016; Rahaman et al., 2021; Rahaman et al., 2023; Shi

et al., 2017; Venugopalan et al., 2021; Zhang et al., 2022). The ratio-

nale lies in multiple biological domains that are affected by the under-

lying physical conditions. Therefore, maximizing the complementarity

among these sources can potentially lead to a more comprehensive

understanding of the data.

Research indicates that useful biological information is encoded

across different sources. Neuroimaging provides structural and func-

tional information about the brain through various imaging modalities

(Calhoun & Sui, 2016; Zhang et al., 2022). Genetic data provide

another source of information regarding disease-related aberrations

(Hardoon et al., 2009; Le Floch et al., 2012). The integration of data

from different modalities and sources can offer a richer and more

nuanced understanding of complex mental disorders. Data from multi-

ple modalities are not mutually exclusive but complement each other

in describing brain processes (Zhang et al., 2022). Particularly, neuro-

imaging modalities, when combined, can achieve enhanced temporal

and spatial resolution and bridge the gap between physiological and

cognitive representations (Liu, Sun, & Zhang, 2018). Hence, multi-

modal learning frameworks have emerged as effective tools for ana-

lyzing data from multiple sources, including neuroimaging (Aine

et al., 2017; Calhoun & Sui, 2016; Shi et al., 2017; Tulay et al., 2019)

and genetic data (Bogdan et al., 2017; Rahaman et al., 2021). Past

research has demonstrated significant correlations between structural

and functional changes in the brain and mental disorders (Salgado-

Pineda et al., 2011; Segall et al., 2012). Moreover, existing scientific

literature points to a promising area of exploration: the correlation

between genetic variants and neural activity concerning neuropsychi-

atric disease-related degeneration (Hardoon et al., 2009; Le Floch

et al., 2012; Liu & Calhoun, 2014). Such a disorder schizophrenia

(SZ) is genetically complex and affects the brain's structure and func-

tion (MacDonald III et al., 2009; Meyer-Lindenberg, 2010; Rahaman

et al., 2021). Nevertheless, significant challenges arise in the joint

analysis of genetic, structural, and functional data, as they often carry

information at different scales and formats. A perceptive fusion mod-

ule is necessary for enhancing the model's performance as it ensures

the judicious use of the most informative sources in subsequent tasks.

A bottleneck strategy might facilitate the integration of these diverse

knowledge domains, overcoming the obstacles posed by differing data

scales and formats. The bottleneck in a neural network (NN) is a layer

with fewer neurons than the layer below or above it (He et al., 2016;

Park et al., 2018). It helps to learn representations better and empha-

size salient features for the target variable. Thus, our intuition is to

operate fusion in this layer with bottleneck attention.
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Research has provided a thorough classification of fusion meth-

odologies (Huang, Pareek, Zamanian, et al., 2020; Poria et al., 2017).

These fusion strategies are broadly divided into three subcategories:

early fusion, mid/intermediate fusion, and late fusion, depending on

the phase of the model where the integration takes place. The

mid-fusion approach is particularly notable due to its wide range of

applications. In this scheme, fusion occurs after feature extraction

from different input modes (Huang, Pareek, Zamanian, et al., 2020).

However, integrating multiple sources in the intermediate phase pre-

sents a challenge, as differences in data types, collection methods,

scales, and preprocessing can lead to inconsistencies in data represen-

tations. To address this issue, modality-specific NNs are used to first

learn the hidden space representations of the inputs. These networks

translate the multimodal inputs into a uniform embedding space, after

which the mid-fusion module is used for the integration (Poria

et al., 2017; Roitberg et al., 2019). It is important to note that even

when employing latent space fusion, the resulting fused feature map

can be high-dimensional, with each unit's contribution to the subse-

quent task potentially varying in importance. Consequently, simply

connecting the fused tensor to the predictor may limit the model's

performance. This problem is especially pronounced when data

modalities are unevenly informative about the downstream task, a

common occurrence in medical data collection. Neuroimaging and

genomics datasets often contain weak descriptors of the underlying

biology for a few samples. Therefore, the fusion module needs to

enhance the synergies between these data sources. Previous research

has proposed various embedding fusion techniques, including

attention-based (Hazarika et al., 2018; Vaswani et al., 2021), multipli-

cative combination layer (Liu, Li, et al., 2018), and transformer

(Nagrani et al., 2021). An early adaptation of the bottleneck attention

module (BAM) (Park et al., 2018) known as the mBAM (Rahaman

et al., 2022) examined both spatial and modality dimensions. It

employed a fully connected (FC) layer with compression to learn spa-

tial attention from the fused two-dimensional tensor.

In this study, we present a fusion module called spatio-modality

fusion using bottleneck attention, which carefully examines the amal-

gamation. We use dilated convolutional (Yu & Koltun, 2015) methods

to learn the contextual pattern. The module explores spatial dimen-

sions using a convolutional neural network (CNN) (Gu et al., 2018)

augmented by a larger receptive field (RF), a feature known as dilated

convolution. Using dilated convolutions significantly expands the RF,

facilitating the collection of contextual patterns from the combined

data (Park et al., 2018). These contextual patterns play a crucial role in

the downstream tasks. Our study shows that the dilated convolutional

layer performs better than the FC layers (Figure 3). In earlier studies,

the FC layers lost considerable spatial information while downsam-

pling from the combined tensor to a one-dimensional vector

(Rahaman et al., 2022). Furthermore, the subsequent attention

operation performed on the compressed version produced a low-

dimensional (vector) mask. Our method, on the other hand, imple-

ments spatial attention on the original version of the fused tensor,

generating a two-dimensional attention mask. Simultaneously,

the module learns to apply attention across the modalities to select

the best source, and in spatial dimensions to mask the compressed

feature vectors, fostering a richer knowledge extraction. The attention

mask delineates the significance of each feature on classification, in

our case identifying SZ. Therefore, the mask can also be utilized to

generate other analytics of the test samples, for example, subgrouping

based on disease relevance.

The modalities we use for the classification are structural and

functional neuroimaging data and genome-wide polymorphism data.

We test the model on a dataset comprising 437 subjects, including

individuals with SZ (162) and controls (275), intending to classify

SZ. Our proposed method produces a multidimensional attention

mask to elucidate the model's decisions and underlying neurobiologi-

cal basis. This attention mask encodes the relative importance of each

modality and spatial significance. The spatio-modality attention iden-

tifies structural magnetic resonance imaging (sMRI) components—such

as the supplementary motor area (SMA), left insula, caudate, and tem-

poral pole—of high importance for detecting SZ (Figure 4). The atten-

tion scores on static functional connectivity suggest that several

connections among the sensorimotor (SM), subcortical (SC), and cog-

nitive control (CC) are particularly salient in SZ. Biclustering the atten-

tion scores from three modalities discovers a multimodal cluster that

includes a subset of relevant structural components, functional con-

nections, and genes. The implicated genes, CSMD1, ATK3, MOB4,

and HSPE1, have been previously recognized as relevant to SZ. The

primary features of our method are as follows:

1. A fusion module capable of encoding both modality and spatial

attention.

2. A dilated convolution to extract spatial patterns with a large RF.

3. A two-dimensional spatio-modality attention mask, enabling fur-

ther data analytics such as subgroup identification.

4. A self-explainable model via the attention scores for modality and

contextual dimension.

2 | DATA PREPROCESSING

2.1 | Structural MRI

We preprocessed sMRI scans using statistical parametric mapping

(SPM12, http://www.fil.ion.ucl.ac.uk/spm/). The preprocessing steps

include unified segmentation and normalization of sMRI scans into

gray matter, white matter, and CSF. During the segmentation step,

we use a modulated normalization algorithm to generate gray matter

volume. Following this, we use a Gaussian kernel with a full width at

half maximum (FWHM) of 6 mm to smooth the gray matter

densities.

2.2 | Functional MRI

We use the SPM12 toolbox for preprocessing functional MRI data. To

ensure steady-state magnetization, we remove the first five time
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points of the fMRI. Next, we carry out rigid body motion correction

using the INRI-Align robust M-estimation approach and apply the

slice-timing correction. We then spatially normalized fMRI images into

the Montreal Neurological Institute standard space, using an echo-

planar imaging template, and resampled to 3 � 3 � 3 mm3 isotropic

voxels. The images are then smoothed with a Gaussian kernel with

FWHM = 6 mm, similar to the sMRI data.

2.3 | Genomics

The preprocessing steps for the genetic data are described in our

prior work (Adhikari et al., 2019; Chen et al., 2013). There are sev-

eral standard preprocessing tools for genomics data, and we use

Plink (Purcell et al., 2007) for both preprocessing and imputation.

Linkage disequilibrium (LD) pruning was administered at r2 < .9. We

use the Psychiatric Genomics Consortium (PGC) for SZ suggested

genome-wide association study (GWAS) (Purcell et al., 2007) score

to select the features. The analysis selects 1280 single-nucleotide

polymorphisms (SNPs) distributed across 108 risk loci. The PGC

study (He et al., 2015) reveals these SNPs express statistically sig-

nificant associations with SZ at p < 1 � 10�4. The datasets verify

the test retest experiment for MRI acquisitions by recording multi-

ple repetitive scans for each subject and also account for the stable

MRI signal.

More details about preprocessing and quality control are

described in these studies (Fu, Iraji, et al., 2021; Iraji et al., 2022).

3 | OUR PROPOSED MULTIMODAL
ARCHITECTURE

Figure 1 demonstrates our proposed architecture for multimodal

learning. The model incorporates three modality-specific NNs,

referred to as subnetworks, which are used for learning the latent

space embedding from each input source. These NNs are selected

based on their effectiveness given the type of input data, and we

empirically validate their efficacy. The subnetworks conduct dimen-

sionality reduction and account for missing entries and other discrep-

ancies to effectively learn the representations from each incoming

modality. The latent embeddings from all modalities are concatenated

into a multidimensional tensor. This tensor goes through a novel

spatio-modality attention-based fusion module, which is described in

Figure 2. Once this is completed, the two-dimensionally attended

fused embedding is used as input to a multilayer perceptron (MLP).

This is followed by a SoftMax layer for classification. This approach

allows us to extract rich features from multiple modalities and harness

the power of NNs to classify complex data effectively.

3.1 | Input features quantification

This phase of the framework includes a few processing units for refin-

ing and performing the initial decomposition of the data collected

from multiple biological domains. We execute a fully automated spa-

tially constrained group ICA (GICA) using the Group ICA of fMRI

F IGURE 1 Our proposed multimodal framework with spatio-modality temporal attention. These models incorporate three major processing
steps: Imaging-genomics preprocessing and dimensionality reduction, neural subnetworks for learning latent space embedding, and the predictor.
We run group ICA on sMRI and fMRI data. We generate static functional network connectivity (sFNC) among the ICNs extracted from fMRI
decomposition. We select the ICA loading parameter as the input feature for sMRI modality. The GWAS-based genetic variable selection is
carried out for genetic modality. The subnetworks are deep neural networks for learning the modality-wise representation. Subnetwork 1 is an
autoencoder (AE) for learning sFNC, subnetwork 2 is a multilayered perceptron (MLP) for sMRI loadings, and subnetwork 3 is a bi-directional long
short-term memory (LSTM) unit with attention for learning SNPs. The combined embedding is attended in spatial and modality direction and sent
through an MLP followed by a SoftMax layer for the classification. The architecture is jointly trained using an Adam optimizer.
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Toolbox (GIFT) available at this link: (http://trendscenter.org/

software/gift) (Iraji et al., 2021) and the NeuroMark (Adhikari

et al., 2019) template on the combined subjects from three datasets,

which include FBIRN (Keator et al., 2016), COBRE (Aine et al., 2017),

and MPRC (Adhikari et al., 2019). The selection of intrinsic component

networks (ICNs) in this study is based on the NeuroMark template. We

selected 53 pairs of ICNs and arranged them into seven functional net-

works based on prior anatomical and functional knowledge fields (Fu,

Iraji, et al., 2021; Iraji et al., 2022). The total number of connectivity net-

works extracted was 53, covering the whole brain. These ICNs were

distributed into seven functional domains (Fu, Iraji, et al., 2021; Fu, Sui,

et al., 2021): sub-cortical (SC), auditory, SM, visual (VS), cognitive-

control (CC), default-mode, and cerebellar domain. After estimating

subject-specific networks, we compute the subject-wise static func-

tional network connectivity (sFNC). The square matrix (53 � 53) repre-

sents the Pearson correlation between the time course of ICNs. We

vectorize the sFNC matrix using the upper diagonal entries to ease the

encoder's training process. A similar approach was used for structural

MRI source-based morphometry (ICA on gray matter maps) (Gupta

et al., 2019; Saha et al., 2022), resulting in 30 structural components

along with their loading values. The provided ICA priors are estimated

from the 6500 subjects used in the referred study (Abrol et al., 2017).

The ICA on sMRI yields individual-level structural networks and corre-

sponding loadings. For the sMRI modality, we used the loadings of the

structural networks as the structural features. The third modality

includes the set of SNPs selected from genomic data based on GWAS-

significant SZ risk SNPs identified by the large PGC study.

3.2 | Deep neural networks

We employ distinct deep neural networks (DNNs) for extracting

modality-wise features. The design choices are explained in the

following subsections, and their efficacy is tested on the dataset. We

use an autoencoder (AE) (Goodfellow et al., 2016) to learn the repre-

sentation of sFNC. It follows an encoder and decoder architecture, with

each submodule consisting of five linear layers. The encoder com-

presses the input and generates a compressed embedding. The decoder

reconstructs the input from the encoded features map. The loss func-

tion computes the reconstruction loss as the mean square error (MSE).

We use the sFNC matrix as an input from the fMRI modality and

employ an AE with rectified linear unit activation for learning the repre-

sentations. AE is effective for learning semantic meanings and com-

pressed abstraction of input data with successful applications in diverse

fields of study (Chen et al., 2017; Hong et al., 2015). We use Xavier ini-

tialization (Kumar, 2017) from Pytorch to set the initial values of the

layers in the network. We applied a dropout strategy with a probability

p of 0.2 to minimize overfitting. Overfitting refers to a situation where

a model performs well on the training data but fails to generalize to

unseen data. Dropout is a regularization technique that helps to miti-

gate this issue by randomly ignoring a subset of features during train-

ing, reducing the complexity of the model and promoting

generalization. For the sMRI subnetwork, we use the loading parame-

ters from GICA. The feature vector has a length of 30, where each

value represents the expression level of a subject on a group structural

independent component. In general, loadings are just betas/coefficients

of the variance mixture linear equations (Calhoun & Allen, 2013). The

loading value corresponds to how much variance a subject contributes

to a given group component. As the loadings are the vector of discrete

values, for simplicity, we deployed an MLP to efficiently learn the sMRI

features. An MLP is a type of artificial NN that consists of multiple

layers of nodes in a directed graph, with each layer FC to the next one.

It can model complex, nonlinear relationships between input and output

data, making it a suitable choice for feature extraction in this context.

Each layer of the MLP takes the output of the previous layer (or the

input data for the first layer), applies a set of weights (learned during

F IGURE 2 Our proposed spatio-modality attention module for multimodal fusion. The concatenated embeddings are sent through two
different branches. (i) The modality branch that learns the cross-modality interactions and mounts it into Tm attention mask and (ii) the spatial
branch (Ts) captures the relevant context from each biological site. These two masks are merged into a final attention mask Tf : The spatial branch
uses dilated convolution for learning the contextual understanding of the multimodal tensor and fully connected layer for modality attention.
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training), and then applies an activation function, producing the output

for that layer. By adjusting the weights during training, the MLP can

learn to extract salient features from the input data that are informative

for the task at hand, which in this case, is the classification of SZ. The

subnetwork is FC since the data dimension (30) is lower than the other

modalities. In the final layer of our network, we dilated the embeddings

to 100 to ensure consistency with the size of latent features derived

from different modalities. We implemented a bi-directional long short-

term memory (bi-LSTM) network with an attention mechanism

(Ashish, 2017) to extract features from SNPs. The use of a bi-LSTM

was informed by its anticipated ability to capture contextual informa-

tion from a sequence (Li et al., 2019; Melamud et al., 2016). We assume

that neighboring SNPs may show LD with one other, potentially form-

ing a neighborhood substructure. The bi-LSTM is designed to capture

the localized semantics of genomic data, which might help differentiate

between cases of the disorder and controls. In addition, the attention

scores signify contributing neighbors to the context, further enhancing

the DNN's discriminative power.

3.3 | Spatio-modality attention

We propose a fusion module that takes a multimodal joint embedding

and probes the concatenated tensor in both modality and spatial

dimensions. The architecture is demonstrated in Figure 2. The archi-

tecture is inspired by the BAM (Park et al., 2018), which has been

implemented for learning channels and spatial attention in classifica-

tion and prediction tasks (Tang et al., 2021; Woo et al., 2018; Yaseen

et al., 2022). We adapt the module for fusing different modalities. The

module is integrated with a mid/intermediate fusion (Boulahia

et al., 2021) in a multimodal learning framework. In mid-fusion, the

modality-specific DNNs generate compressed representations of

input streams (bottleneck layers) from each source. Our intuition is to

run two-dimensional attention on these bottleneck layers. Our mod-

ule uses two simultaneous attention branches that forage significant

bits from the fused tensor. These branches can be treated as two dis-

tinct scoring functions across modality and spatial dimensions. We

use FC linear layers in modality dimensions to learn the attention

weights per modality. FC layer, is a type of layer used in NNs where

all neurons in the previous layer are connected to the neurons in the

next layer. The FC operation is defined in the following Equation (2).

FC xð Þ¼WTxþb ð1Þ

where W �ℝN�1 and b�ℝN�1 are the weight matrix and bias, respec-

tively, and N is the input dimension. x is the input to the FC operation,

in the context of Equation (1), and b is the bias vector in the FC layer.

For another branch, the module employs dilated convolution layers

for extracting the relevant spatial patterns. The dilated convolutional fil-

ters arbitrate a large RF for collecting contextual information. In our

study, we are using only three modalities, so we skip the reduction.

However, the reduction ratio in modality direction could potentially

help in combining a large number of modalities in further studies.

3.3.1 | Modality attention scoring (Tm)

The modality attention branch assigns scores to the modality

dimension to signify the most informative and discriminative

source for the downstream task. The modality attentions mask

(Tm) gathers importance scores that characterize the contribution

of input modality to the classification of SZ. Figure 2 illustrates

the attention-weighting architecture. An FC linear layer (FC1) is

applied to the input tensor, XM (Lm� Ls) to reduce the dimension

to the number of modalities (Lm). Here, Ls is defined as the latent

embedding size consistent across the modalities. The compressed

data are then passed through another FC layer (FC2) to compute

the attention weights for each modality. We also use batch normal-

ization (BN) (Ioffe & Szegedy, 2015) to adjust the scale with the

spatial branch. Moreover, BN improves the speed, performance,

and stability of the NNs. Then, the tensor is expanded to the shape

of the input tensor Lm� Ls. We can formulate the operation as

follows:

Tm ¼BN FC2 FC1 XMð Þ Þð Þð ð2Þ

Here, Tm refers to the transformed tensor after the application of

BN and two FC layers.

3.3.2 | Spatial attention branch (Ts)

We opt for capturing the context from the aggregated multimodal

embedding tensor, which extracts contextual information in the

form of spatial patterns. For spatial attention, the submodule uses

a CNN. We use dilated convolution (Yu & Koltun, 2015) to create

a large RF that assists in apprehending the context. The dilated

convolution inflates the kernel by inserting holes between the

kernel elements (Yu & Koltun, 2015). An additional parameter,

dilation ratio (d), indicates the extent to which the kernel is wid-

ened. There are usually d-1 spaces inserted between kernel

entries. We use an empirically validated convolutional filter of

dimension 2 � 2 with a dilation ratio (d) = 2 on the combined ten-

sor. Figure 2 shows the dilated convolution for spatial signifi-

cance. The branch weighs the fused data for identifying salient

loci relevant to downstream tasks. The spatial attention mask is

also expanded to a shape of Lm � Ls. Equation 3 is the operation

for spatial attention and illustrates the overall processing in the

spatial branch.

Ts ¼BN d2�2 d2�2 XMð ÞÞ
� ��

ð3Þ

Here, Ts represents the spatial attention mask. The operation

helps to create a large RF that captures the context or spatial pattern

in the input data. We merge the spatial attention mask, Ts and the

modality attention mask, Tm to generate the final mask, Tf (see

Equations 4).
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Tf ¼ σ TsþTmð Þ ð4Þ

The operation in Equation (4) is an element-wise summation

between Ts and Tm to compute the final fused attention mask, Tf . We

apply a sigmoid function (σ) to bind the values of Tf between 0 and

1. The sigmoid function is commonly used in NNs to introduce nonli-

nearity and to map any input to a value between 0 and 1, making it

especially suitable for models where we have to predict probabilities.

Next, we use element-wise multiplication operation (�) to fuse

the attention mask Tf and the input tensor X (Equation 5).

X△ ¼X�Tf ð5Þ

This operation highlights the important features in the input ten-

sor according to the attention mask. The result is a new tensor matrix,

which emphasizes the regions of the input that are most informative

for the task at hand. We use X△ as the input to the MLP followed by

a SoftMax layer to classify the samples (Figure 1). Together, these

operations help to guide the model to focus on the most informative

features across different modalities and spatial locations when per-

forming the downstream task, such as classification or regression.

3.4 | Multimodal joint training

We split the dataset into two primary categories: 80% for training and

20% for evaluation. The evaluation data are then further divided

equally into testing and validation sets. We train the joint model for

450 training epochs and validate its performance on the validation set.

For the training phase, we use the Adam optimizer from Pytorch with a

learning rate of 10�4 and a batch size of 32. The loss terms include

MSE for the AE subnetwork reconstruction loss and binary cross-

entropy for the model's classification loss. We implement early stopping

to balance the training and validation loss, which eventually regularizes

the model. Our training scheme optimizes for accuracy and saves the

best-performing model. For the validation phase, we used the k-fold

cross-validation (Bengio & Grandvalet, 2003) technique for k = 10. The

cross-validation method randomly divides the datasets into 10 equal

partitions and uses 9 of them to train the model and the remaining one

for testing the performance. The technique interchanges the training

and testing set and repeats the process 10 times. In the testing phase,

we utilize the best-performing model saved from the validation phase

and apply it to the testing samples. Our performance metrics, which

include accuracy, precision, recall, and F1 score, are computed in this

phase. We report the final performance on the held-out test dataset.

To empirically validate the results and other architectural specifications,

we run the model 50 times and report average results across these rep-

etitions with corresponding standard deviations. We also introduced

multiple random initializations (Thimm & Fiesler, 1995) of the NN to

ensure the agnosticism of the model to different initial conditions. The

resulting metrics in Table 1 are summarized across distinct initializa-

tions. The joint training of all three modalities allows the sources to

interact and helps modality-specific subnetworks to optimally converge

by leveraging learning from the other subnetworks. Moreover, we

implement a multimodal regularization technique for the completeness

of the experiments. This technique aims to eliminate bias by maximizing

the functional entropies (Gat et al., 2020). We designed our implemen-

tation based on the existing regularizer and utilities.

4 | EXPERIMENTAL RESULTS &
DISCUSSION

We analyzed three datasets, COBRE (Mayer et al., 2013), fBIRN

(Keator et al., 2016), and MPRC (Adhikari et al., 2019). The merged

dataset consists of 437 subjects, with 275 healthy controls (HCs) and

TABLE 1 Performance comparison of our proposed model with several baselines (unimodal, bi-modal, and tri-modal) and the state-of-the-art
models for a similar task.

Models Modalities Data Accuracy Precision Recall F1 score

Autoencoder Unimodal fMRI 0.811 ± 0.15 0.587 ± 0.11 0.451 ± 0.05 0.510 ± 0.11

Multilayer perceptron sMRI 0.782 ± 0.13 0.439 ± 0.12 0.477 ± 0.04 0.443 ± 0.09

bi-LSTM with attention SNPs 0.673 ± 0.15 0.338 ± 0.13 0.498 ± 0.04 0.403 ± 0.08

Mid fusion Bi-modal sMRI + fMRI 0.835 ± 0.14 0.577 ± 0.09 0.478 ± 0.03 0.523 ± 0.01

Mid fusion SNPs + sMRI 0.784 ± 0.18 0.397 ± 0.08 0.455 ± 0.03 0.424 ± 0.15

Mid fusion SNPs + fMRI 0.813 ± 0.14 0.501 ± 0.05 0.443 ± 0.03 0.470 ± 0.01

Early fusion Multimodal sMRI + fMRI + SNPs 0.701 ± 0.11 0.575 ± 0.12 0.460 ± 0.03 0.511 ± 0.02

Late fusion sMRI + fMRI + SNPs 0.781 ± 0.08 0.615 ± 0.12 0.400 ± 0.04 0.485 ± 0.03

Mid-fusion (Rahaman et al., 2021) sMRI + fMRI + SNPs 0.876 ± 0.06 0.640 ± 0.07 0.501 ± 0.04 0.562 ± 0.04

Mid-fusion with attention (Rahaman

et al., 2023)

sMRI + fMRI + SNPs 0.921 ± 0.02 0.798 ± 0.07 0.522 ± 0.04 0.631 ± 0.05

Mid-fusion with mBAM (Rahaman et al., 2022) sMRI + fMRI + SNPs 0.932 ± 0.04 0.903 ± 0.06 0.561 ± 0.05 0.692 ± 0.04

Spatio-modality mid fusion sMRI + fMRI + SNPs 0.941 ± 0.05 0.829 ± 0.06 0.601 ± 0.06 0.697 ± 0.05

Note: The performance metrics are presented as (mean ± standard deviation) across 50 repetitive runs.
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162 subjects with SZ. The performance of our proposed model is

benchmarked against several other models, including unimodal and

multimodal baselines using imaging-genetics datasets. The perfor-

mance comparison is detailed in Table 1. In early fusion, input data

from all modalities are merged at the first step, and the resultant vec-

tor is then processed through an NN. For late fusion, we use different

networks for distinct modalities. Each network classifies a sample

based on the data it receives, and a max voting scheme (Morvant

et al., 2014) is used to determine the final label for each instance. Our

proposed spatio-modality attentive fusion model outperforms the

comparing methods (Table 1), achieving an accuracy of 94.1% in dif-

ferentiating SZ. Other performance metrics are either superior or

comparable to the benchmark models. Since our dataset is slightly

imbalanced, we used the harmonic mean of precision and recall given

by the F1 score (Goutte & Gaussier, 2005) for the classification per-

formance evaluation. Our proposed model achieves an F1 of 0.697

with a reasonable balance between precision and recalls expected in a

biological population. Substantial performance improvements are

achieved when the BAM is used for fusion (as shown in the last two

rows of Table 1), highlighting the utility of BAM in multimodal fusion.

The performance of the model using only genetic data is consistently

low. This suggests that genomic data is solely an insufficient descrip-

tor of phenomena, that is, discriminating SZ. However, the notewor-

thy observation is the ability of the genomic data to complement

other modalities in multimodal settings, especially when spatio-

modality fusion is employed. This underscores the capacity of the

fusion module to leverage the contributions from various modalities

with greater precision. Our model can suppress the features from less

informative sources while prioritizing those from more informative

ones, a desirable characteristic to effectively learn the multimodal rep-

resentation of input data.

4.1 | Reproducibility and reliability of the results

Reproducibility is a fundamental aspect that speaks to the reliability

and validity of the computational findings (Adali & Calhoun, 2022;

Klapwijk et al., 2021). The crucial medical research domain such as

neuroimaging signifies the utility of replication most. It allows for the

independent verification of results across analytical frameworks,

enhancing the adaptability of vital neurobiological outcomes. In this

study, we evaluate the reproducibility of the model's performance on

the neuroimaging population by employing cross-validation strategies

to assess the generalizability and stability of the results across differ-

ent subsets of the data. We combine three datasets in this study

COBRE, fBIRN, and MPRC, and preprocess them under the same

imaging protocols. Rationally, we create three parts of the combined

dataset and we check the reproducibility of each subpopulation sepa-

rately. For recording performance on each dataset, we train the model

on two other datasets. For instance, COBRE performance is computed

using the COBRE sample as held-out test data, and the model is

trained on only samples from fBIRN and MPRC. Additionally, these

experiments aid in eradicating the acquisition bias and explore the

model's efficacy on a smaller population. Furthermore, we generate

two random splits of the data for the completeness of the experi-

ments. It utilizes randomization training/validation and testing cohort

selection. In the first random split (RDS 1), we select 40% of held-out

data for testing and the remaining for training and validation. In the

second one (RDS 2), we randomly select another 30% for the held-out

and the remaining for training and validation. Table 2 shows the

model performance on these diverse randomizations of the dataset to

provide a comprehensive understanding of the efficiency of such a

framework in disease prediction. We observe the performances are

reasonably reproducible from different settings of input data. Three

parts of the combined dataset yield comparable results with the final

performance of the proposed framework. Two random splits also

exhibit proportionate metrics validating the reliability of the model in

the downstream task, which is classification in our case. However,

with more data for training (RSD 2 in Table 2), the model achieves

slightly better performance—standard in data-driven approaches. We

also validate the extracted salient attributes of the data contributing

to the SZ characterization across these splits. The spatio-modality

attention-based feature analysis in the following subsection is carried

out on the summarized set of features stable through independent

segments of the dataset. To evaluate the impact of dilation on contex-

tual learning, we conducted experiments using distinct dilatation

d values. These also contribute to the verification of the model's

robustness on specific choice configurations. Figure 3 presents the

results for three performance metrics: accuracy, precision, and

F1-score. The bar graph showing the evaluation metrics also includes

the confidence interval. It indicates a lower and upper bound of the

data that describes a range or a corridor in which 95% of the predic-

tions would fall given the actual true value. We employed dilated con-

volution to extract contextual information. The dilation rate d = 1

TABLE 2 Reproducible performance of the proposed method for diverse subsets of the data.

Dataset/Split Training and validation Held-out test data Accuracy Precision Recall F1-score

COBRE fBIRN + MPRC COBRE 0.920 ± 0.08 0.802 ± 0.07 0.575 ± 0.05 0.68 ± 0.06

fBIRN COBRE + MPRC fBIRN 0.931 ± 0.09 0.801 ± 0.06 0.586 ± 0.05 0.67 ± 0.05

MPRC COBRE + fBIRN MPRC 0.901 ± 0.12 0.787 ± 0.09 0.589 ± 0.07 0.674 ± 0.07

RDS 1 60% of total data 40% of total data 0.932 ± 0.08 0.801 ± 0.01 0.608 ± 0.05 0.691 ± 0.03

RDS 2 70% of total data 30% of total data 0.937 ± 0.07 0.854 ± 0.03 0.583 ± 0.04 0.693 ± 0.03

Note: The first three rows represent the performance on the independent dataset and the bottom two rows stand for random splits.
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represents the standard convolution, while d greater than 1 denotes

the dilated version. The model demonstrates superior performance

with a dilation value of 2 and experiences a performance drop for

higher values. These findings suggest that dilation helps in extracting

contextual information through a larger RF and is beneficial for accu-

rate prediction. Nevertheless, because our multimodal fused tensor

has limited dimensions, larger dilation might skip important transient

patterns in the data by adding more holes in the RF. Due to the lim-

ited dimensions of the concatenated tensor, we are unable to explore

the sensitivity beyond a dilation ratio of 3.

4.2 | Spatio-modality attention for features
attribution

In this experiment, we explore the feature's (from all modalities)

contribution toward the disease classification. The proposed spatio-

modality attention inscribes these significance scores. Thus, for fea-

ture attribution, we refine the attention values. However, to summa-

rize the scores, averaging over multiple dimensions might drastically

suppress the data, hence weakly depicting the tangible statistics.

Here, we compute spatio-modality attention scores on a trained

model by constraining multiple criteria. The values are summarized

across the subjects and input feature dimensions. Furthermore, we

compute scores feature-wise from all three modalities and determine

a threshold representing the global mean throughout all the attention

masks. We select the significant contributions by passing

attention scores greater than the threshold only. Then, we filter the

influential features by selecting significant contributions across at

least 10% of the total population. The attention from all the settings

mentioned in the reproducibility section is scrutinized to find a stable

set of features. Therefore, we determine a contributing feature by

their significant contribution toward classification across a reasonable

number of samples. We avoid the features that are highly contributing

to a few samples but are inconsistent across the population. As these

sources are unstable and spurious, they are not reliable for neurologi-

cal interpretation. Figure 4a shows the sMRI feature analysis based on

F IGURE 4 The spatio-modality attention-based sMRI features analysis. (a) Attention scores are computed on all sMRI components, and the
significant ones are visualized on a structural montage. The components are supplementary motor area (SMA), caudate, temporal pole, and insula.

(b) The ICA loadings for the most contributing components in HC and SZ groups. The error bars represent the standard deviation (SD). The
asterisk sign on component name stands for the statistical significance of the difference between HC and SZ. We run two-sample t-test to
validate the differences. We use p-value <.05 to mark the significant differences.

F IGURE 3 Model's performance for various dilation rates (d). The

error bars stand for the confidence interval for the metrics accuracy
(ACC), precision (Prec), and F1-score. The dilation rate indicates the
expansion of the convolution kernel. Optimal performance is achieved
at d = 2. The d = 1 represents the standard convolution. As the
dilation rate increases beyond 2, we can see the performance start to
decline.
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spatio-modality attention values. By thresholding the attention score,

we observe four components to be significantly contributing to differ-

entiating SZ. These components are the caudate, SMA, temporal pole,

and insula. These components are the caudate, SMA, temporal

pole, and insula. Moreover, we examine their ICA loadings on both

HC and SZ groups and visualize the group-level statistics in Figure 4b.

The HC loadings group mean is higher than the SZ mean, which indi-

cates that HC subjects have higher gray matter density in the SMA

region than SZ subjects. Alternatively, the SZ subjects are more

heavily expressed in the insula and caudate than the HC group. Of

note, the structural components differentiated through our method

are associated with SZ, for example, caudate (Crespo-Facorro

et al., 2007; Mueller et al., 2015) and temporal pole (John, 2009). Prior

research also reported that aberrant motor behavior in SZ is

associated with SMA volume (Schröder et al., 1995; Stegmayer

et al., 2014). Also, insula activation has been associated with the pro-

cessing of emotional facial expressions, which is deficient in individ-

uals with SZ (Sheffield et al., 2020; Wylie & Tregellas, 2010). The

differences in gray matter density patterns between these groups aid

in understanding the brain's structural alterations associated with

SZ. We also run the two-sample t-test on the loading values from

both subject groups (HC/SZ) to verify the statistical significance of

the group differences. We found three of the salient features

(Caudate, SMA, and Insula) show statistically substantial differences

between control and individuals with SZ at a level of p < .05. Further-

more, we analyze the attention computed from fMRI features. The

static functional connections are shown in the connectograms of

Figure 5. The connections are weighted by the attention scores in

F IGURE 5 The spatio-modality attention scores computed from fMRI features (static functional connectivity (sFNC)). (a) The sFNC
connections are weighted by their corresponding attention score. After thresholding, we show the connections that are effective for predicting
schizophrenia at all different configurations of the model executions. The warm-colored connections are the significant ones; highly contributing
to (a). We observe several contributing connections among sensorimotor (SM), cognitive control (CC), and subcortical (SC) regions. (b) The
connections are weighted with the mean connectivity across the subject group. (c) Connections are weighted by the mean connectivity strength
computed across the HC group. (d) SZ group's connectivity.
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Figure 5a. The connections among SM, CC, and SC are identified as

most salient for classification. We further analyze the static functional

connectivity of these edges between distinct brain components.

Figure 5b shows average connectivity strengths are mostly negative

(blue) and a few are positive (yellow). That demonstrates that most

components are inversely correlated. The HC connectograms in

Figure 5c show a connection with positive connectivity strength

between IC 3 of SC to IC 10 of SM, whereas a positive connection in

SZ dynamic is visible between IC 1 from SC to IC 30 of the CC

domain. The HC dynamics are more strongly connected in the SC and

SM regions than the dynamics of SZ subjects. The average functional

connectivity strength between the components of these two regions

is higher for HC subjects than for SZ. The visual (VS) domain also

shows connectedness with other domains in HC dynamics where the

SZ connections are comparatively weaker. The weaker connectivity in

SZ might create functional impairments and dysfunction (Kaufmann

et al., 2015; Koshiyama et al., 2018). Moreover, these connectivities

also symbolize the communication between different parts of the

brain for carrying out neural activities. Further study of these connec-

tions is required to assess their roles in overall cognition and informa-

tion processing within these subject groups.

4.3 | Biclustering using spatio-modality attention
scores

The spatio-modality attention masks provide the significance scores

for the features from all modalities. In this experiment, we run biclus-

tering of these scores across modalities to examine the subgrouping

of subjects and features based on their association with SZ. Another

rationale behind this experiment is to visualize the relation among dis-

tinct biological domains and their coregulation in diseased conditions.

To run the analysis, first, we concatenate the feature's attention from

sMRI, fMRI, and genomics modality, which is a two-dimensional

matrix of (subject � features). Then, we run the N-BiC biclustering

(Rahaman et al., 2020) for clustering the attention scores in both

dimensions. We choose N-BiC because it allows clustering without

specifying the expected number of biclusters and regulates the

overlap between clusters. For two-dimensional data, it requires a heu-

ristic to represent attributes from one variable as a function of attri-

butes from another variable. It then exhaustively searches for all

intrinsic subgroups and conditionally merges along the way. We sort

features based on their consistently significant contributions to the

classification. We select a subset of subjects for each feature where

the attention values are higher than the global mean – the average

attention across all the subjects and features. We choose features

that exhibit this higher value across at least 10% of the total subjects.

Initially, N-BiC yielded four biclusters then merged into two to regu-

late overlap. We repeat the run 10 times to stabilize the results. The

outcomes show one multimodal and one unimodal bicluster (Table 3).

The multimodal bicluster includes the following sMRI components:

the anterior cingulate cortex, the medial prefrontal cortex, the cau-

date, the temporal pole, and the Frontal. It groups three SNPs includ-

ing four genes CSMD1, ATK3, MOB4, HSPE1, and 26 static

functional connections among several brain regions. AKT3 provides

instructions for making a protein that is mostly active in the nervous

system. The gene creates learning and memory-related deficits, and

the SNP is identified as an associated genome-wide significant locus

for SZ (Howell et al., 2017; Howell & Law, 2020). CSMD1 is known as

a complement regulatory gene and has also been associated with SZ

(Athanasiu et al., 2017; Liu et al., 2019). Figure 6 visualizes the sFNC

connections through HC, SZ, and HC-SZ connectograms, respectively.

In general, HC and SZ connections appear homogenous and rational

since they are clustered into a single subgroup. However, one connec-

tion emerged with a strong HC-SZ difference between the CC (IC 28)

and SM network (IC 12) even with the maximized homogeneity. These

multimodal features analogously contributed to characterizing SZ;

therefore, it potentially provides a link among these physiologies for

disease-related deficits. These strong homogenous associations with

SZ suggest potential co-aberration of these physiologies (genomics

and brain) suggesting that further exploration of their coupling and

progression may help improve our understanding of the disorder. Fur-

ther analysis of these features would be productive to infer their joint

modulation in SZ conditions. Also, a tri-modal feature set can poten-

tially help explain the behavioral deficits from multiple biological

perspectives.

TABLE 3 The clusters extracted from biclustering on the attention values from all three modalities.

Bicluster

SZ

subjects

HC

subjects

sMRI features. (components

loadings)

fMRI features (sFNC

connections) Genomics features (SNPs)

1 30 21 ACC + mpFC, Caudate, Temporal

Pole, Frontal

# connections: 26 SNP IDs: rs10927041, rs10108628,

rs10931784

Associated genes: AKT3, CSMD1 MOB4,

HSPE1-MOB4

2 23 18 - # connections: 73 -

Note: The N-BiC primarily extracts four biclusters that are merged into two due to higher overlaps with the earlier ones. Bicluster 1 is multimodal and

bicluster 2 is unimodal consisting of 73 sFNC connections.

Abbreviation: ACC, anterior cingulate cortex.
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5 | CONCLUSION

Our proposed fusion model attentively probes the dimensions of the

fused latent space and provides a more rational synthesis of multiple

biological sources. The spatio-modality attention module boosts the

classification performance and achieves an accuracy of 94.1% with a

0.697 F1 score. The noteworthy performance of the classifier with

spatio-modality attentive fusion evidences the utility of such a tech-

nique in multimodal learning. Moreover, the spatio-modality attention

scores are potentially self-explaining for the feature attributions

toward the downstream task and provide an avenue for running fur-

ther experiments, for example, subgrouping, and illustrating group dif-

ferences. Our model learns spatial patterns through a large (dilated)

RF for a better representation. The usage of dilated convolution for

spatial scoring is potentially effective for foraging contextual informa-

tion. In multimodal settings, the dilation is shown to be providing a

comprehensive view of the available modes of data. The modality sub-

module signifies each source and generates modality-wise contribu-

tions. As such, the controlled scoring also interprets the model's

decision and offers insights into the neurobiological relevance. This

relevance can potentially explain the underlying substrate of the dis-

order under investigation, SZ. In all, the model seeks relevant patterns

in the brain's structural features, functional mechanisms, and genomic

pathways that lead to a coherent deciphering of SZ. Additionally, the

analysis of modality-specific contributions helps discriminate SZ-

affected physiologies with limited availability. The subgrouping of sub-

jects and multimodal features based on the attention scores can

potentially manifest the co-regulation of multiple biological domains

in diseased conditions. The proposed fusion module can discover reli-

able biomarkers for the disorder, and the preceding interpretation rec-

ommends features that can help explain the underlying mechanism of

the disease.
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