
No rights reserved. This work was authored as part of the Contributor’s official 
duties as an Employee of the United States Government and is therefore a work 
of the United States Government. In accordance with 17 U.S.C. 105, no copyright 
protection is available for such works under U.S. Law.

Imaging Neuroscience, Volume 2, 2024 
https://doi.org/10.1162/imag_a_00347

Software Toolbox

1.  INTRODUCTION

FMRI processing is complicated. It relies on many dispa-
rate types of computational procedures, including align-
ment, “data cleaning” (such as despiking and censoring), 
time series analysis, and statistical modeling. Research-
ers perform many different types of studies, each with a 
particular acquisition and modeling design: task-based, 
resting-state (Biswal et al., 1995), and naturalistic (Hasson 
et  al., 2010) datasets have distinct considerations. For 
example, task-based paradigms might require consider-
ation of response times or modulation, as well as careful 
choice of hemodynamic response modeling assumptions 
(Bellgowan et al., 2003; Chen et al., 2023; Lindquist et al., 
2009; Prince et al., 2022). Furthermore, EPI data may be 

acquired with either a “traditional” single echo or with 
multiple echoes (Posse et  al., 1999), with the latter 
becoming increasingly popular and requiring a choice of 
echo combination methods. Data can be acquired across 
human age ranges (infant, pediatric, adult, aging popula-
tions) and across different species (macaque, rat, mouse, 
fetal pig, etc.), with each scenario requiring special con-
siderations and particular assumptions. Finally, analyses 
can take place in either volumetric or surface-based 
topologies, and include one or more runs to process 
simultaneously.

Here, we describe afni_proc.py, a program available 
within the open source, publicly available AFNI toolbox 
(Cox, 1996), to create full processing pipelines across  
this wide FMRI landscape. Briefly, afni_proc.py allows a 

Processing, evaluating, and understanding FMRI data with afni_proc.py
Richard C. Reynoldsa, Daniel R. Glena, Gang Chena, Ziad S. Saada, Robert W. Coxa, Paul A. Taylora

aScientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States

Corresponding Author: Richard C. Reynolds (reynoldr@mail.nih.gov)

ABSTRACT

FMRI data are noisy, complicated to acquire, and typically go through many steps of processing before they are used 
in a study or clinical practice. Being able to visualize and understand the data from the start through the completion of 
processing, while being confident that each intermediate step was successful, is challenging. AFNI’s afni_proc.py is a 
tool to create and run a processing pipeline for FMRI data. With its flexible features, afni_proc.py allows users to both 
control and evaluate their processing at a detailed level. It has been designed to keep users informed about all process-
ing steps: it does not just process the data, but also first outputs a fully commented processing script that the users 
can read, query, interpret, and refer back to. Having this full provenance is important for being able to understand each 
step of processing; it also promotes transparency and reproducibility by keeping the record of individual-level process-
ing and modeling specifics in a single, shareable place. Additionally, afni_proc.py creates pipelines that contain several 
automatic self-checks for potential problems during runtime. The output directory contains a dictionary of relevant 
quantities that can be programmatically queried for potential issues and a systematic, interactive quality control (QC) 
HTML. All of these features help users evaluate and understand their data and processing in detail. We describe these 
and other aspects of afni_proc.py here using a set of task-based and resting-state FMRI example commands.

Keywords: FMRI, processing, reproducibility, quality control, data visualization, software

Received: 1 June 2024  Revision: 22 August 2024  Accepted: 30 September 2024  Available Online: 16 October 2024

https://doi.org/10.1162/imag_a_00347
https://crossmark.crossref.org/dialog/?doi=10.1162/imag_a_00347&domain=pdf&date_stamp=2024-11-12
mailto:reynoldr@mail.nih.gov


2

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

researcher to set up a full (or partial) subject-level FMRI 
processing script, specifying a desired set of steps and 
options to manage reading in raw data through linear 
regression and quality control (QC). From its creation in 
2006, the program was designed to balance several 
important aspects of processing by having these features:

	 1.	� Being readable and understandable, both by the 
researcher using it and by those with whom it is 
shared.

	 2.	� Being flexible to accommodate the precise steps 
that a researcher wants for the given analysis.

	 3.	� Being easy to use, relative to the amount of pro-
vided control.

	 4.	� Facilitating reproducibility, just by sharing the 
command and code version number used.

	 5.	� Retaining the provenance (record) of all process-
ing that has been performed in a commented 
script, so no steps are hidden or require guessing.

	 6.	� Also retaining the intermediate datasets from each 
processing step, to facilitate quality control and to 
expedite investigations when the final results 
appear “unreasonable.”

	 7.	� Growing and adapting to new user needs.

These design choices have had added benefits that, as 
new acquisition methods have been developed (e.g., 
multiecho EPI), afni_proc.py has been able to incorporate 
new processing steps within a consistent framework.

This text is organized as follows. In the Section 2, we 
first describe the general usage and organization of afni_
proc.py, a program for specifying single-subject (ss) 
pipelines. While not all details and options can be dis-
cussed here, we highlight several important aspects. 
These include the convenience and rigor of afni_proc.py 
processing, such as directly providing alignment concat-
enation and integrated checks through regression mod-
eling, as well as how it provides detailed analysis 
provenance and inherent reproducibility. We then discuss 
how it facilitates quality control (QC) with its automati-
cally generated HTML report and summary dictionary. 
Then, we outline general pipeline management before 
describing the specific datasets and summary of pro-
cessing examples presented here. In the Section 3, we 
present practical examples of afni_proc.py commands 
for different analysis cases to guide the examination of 
major processing steps. We briefly describe different fea-
tures and possible adjustments that might apply in vari-
ous scenarios. Finally, in the Section  4, we summarize 
afni_proc.py’s design, development philosophy, and var-
ious validations. We outline some important consider-
ations for setting up pipelines, and present some notes 
on choosing a hemodynamic response function (HRF). 

Lastly we discuss future directions and integrations for 
the program.

2.  METHODS

2.1.  Setting up the pipeline: modular processing 
blocks with applicable options

AFNI’s afni_proc.py is a program to generate a full (or 
partial, if desired) FMRI processing pipeline for a single 
subject (covering what some researchers refer to as 
“first- and second-level” processing). First, a researcher 
specifies input datasets (such as an anatomical volume, 
one or more EPI time series, and tissue segmentations) 
and any accompanying files (stimulus timing files, physi-
ological regressors, precalculated warp datasets, etc.); 
then, the researcher specifies the necessary processing 
choices (Fig. 1A). In order to simplify pipeline specifica-
tion and conceptualization, afni_proc.py has a hierarchi-
cal and modular organization for defining an analysis. 
There is a top-level list of the major “processing blocks” 
to be performed (EPI-to-anatomical alignment, blurring, 
etc.), and then a set of any desirable option flags and 
values can be provided for each block (e.g., a particular 
cost function and blur radius). This layered framework 
allows the code to be readable, since the sequence of 
block names summarizes the processing and associated 
options have related prefixes. It also allows for flexibility 
to fit appropriately with a study design, since users can 
set up the blocks and tailor any number of options for 
each block (with the possibility for adding more at a 
researcher’s request, a frequent occurrence). Table 1 pro-
vides a list of the currently available processing blocks 
within afni_proc.py, with a brief description of each.

Within each processing block, there can be zero, one, 
or more control parameters to specify. Several blocks 
and useful options are described in the code examples 
below. We note that the presence of the “empty” block 
allows researchers further flexibility to directly insert their 
own steps. Historically, however, many steps have been 
directly added to the program itself.

An important note about the “mask” block is that it 
typically only involves calculating relevant masks from 
the EPI and anatomical volumes, which can later be 
used at the group level or for summary estimates. The 
masks are typically not applied during standard pro-
cessing, except for defining regions within which to esti-
mate summary statistics such as temporal signal-to-noise 
ratio (TSNR), so that modeling results from all voxels 
(even outside the brain) can be assessed. This allows 
one to more thoroughly check for the presence of arti-
facts (e.g., due to a bad coil), severe ghosting, misalign-
ment, or other features of the data, rather than to hide 



3

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 1.  Schematic features of afni_proc.py. (A) Primary data inputs and descriptors are highlighted in green. The 
processing is managed hierarchically: first the user selects and orders the desired blocks (or major stages), and then 
for each can specify zero, one, or more options. The array of hot colors highlights which options are associated with 
which block, by matching them: the “tshift” block label with the “-tshift_opts_ts” option, etc. Note that the start of the 
option name typically matches the block, as well. (B) The afni_proc.py command creates a fully commented processing 
pipeline (“proc script”), so that the user has detailed understanding and provenance of all the steps of the analysis. (C) An 
example workflow that uses afni_proc.py for a single-subject analysis, utilizing some preliminary programs beforehand and 
incorporating automatically generated data checks and quality control features at the end. This can simply be looped over 
all subjects in a data collection.



4

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

them away. Two examples of this are provided in  
Figure  2, which show TSNR after processing (in MNI 
space) using data from the FMRI Open QC project 
(Taylor, Glen, et  al., 2023) from processing as part of 
Reynolds et  al. (2023) contribution. In panel A, strong 
ghosting patterns are visible along the anterior–posterior 
axis, and understanding this helps explain some unex-
pected correlation patterns within the brain. In panel B, 
the full TSNR pattern reveals misalignment during initial 
processing that might otherwise be missed; this led to 

Table 1.  Current processing blocks in afni_proc.py, with 
brief descriptions.

Automatic blocks  
setup and initialization; not user specified, always used
setup: check args, set run list, make output  

directory, copy stim files
tcat: copy input datasets and remove unwanted 

initial TRs
Default blocks  
standard steps; user may skip, modify or rearrange
tshift: slice timing alignment on volumes
volreg: volume registration (for reduction of subject 

motion effects)
blur: blur each volume (default is 4 mm FWHM)
mask: create a “brain” mask from the EPI data
scale: scale each run mean to 100, for each voxel 

(max of 200)a

regress: regression analysis (stimulus model, filter, 
censor, etc.)

Optional blocks  
default is to not apply these blocks, but the user can add
align: align EPI and anatomy (linear affine)
combine: combine echoes into one
despike: truncate spikes in each voxel’s time series
empty: placeholder for some other user command
ricor: RETROICORb - removal of cardiac/ 

respiratory regressors
surf: project volumetric data into the surface 

domain (via SUMAc)
tlrc: warp anatomical volume to a standard 

space or template
Implicit blocks  
not user-specified, but performed when appropriate
blip: perform B0 distortion correction
outcount: temporal outlier detection
QC_review: generate QC review scripts and HTML 

report (APQC HTML)
anat_unif: anatomical uniformity correction

The automatic and implicit blocks are not specified by the user in 
the “-blocks” option list; the former will always be performed, and 
the user can still manage their behavior with options, such as “-tcat_
remove_first_trs” and more. The implicit blocks will be automatically 
added in an appropriate spot within the processing stream when 
the user adds a relevant option, such as “-blip_forward_dset” for 
the blip block. The users can see where and how these blocks are 
performed in detail within the created processing script.
aChen et al. (2017).
bGlover et al. (2000).
cSaad et al. (2004).

the discovery that anatomical skullstripping had been 
imprecise, which was missed due to low tissue contrast. 
By seeing data outside the brain, the problem was 
detected and reprocessing was applied to fix it—
otherwise, misalignment would likely have gone unno-
ticed in masked data and simply skewed final results.

The above is one example of how, in general, afni_
proc.py has been developed to allow the researcher to 
see and explore more in their data: more details about 
the processing code, more intermediate files to explore 
for verification, and more quality control images and 
quantitative warnings to help evaluate the processing. 
This facilitates understanding and improves confidence 
in both the data and the processing.

2.1.1.  Processing convenience and rigor

Many underlying steps are managed within the afni_
proc.py program itself when building the processing 
script, in ways to optimize mathematical benefits. For 
example, there are typically several volume registration 
or alignment steps within a given single-subject pipe-
line, such as various combinations of reverse-phase-
encoded EPI alignment for B0 distortion correction 
(implicit “blip” block); motion correction, possibly with 
multiple transformations (“volreg” block); EPI-to-
anatomical alignment (“align” block); and subject 
anatomical-to-template alignment (“tlrc” block). Creat-
ing new datasets at each block would introduce unnec-
essary smoothing in the final data, as each regridding 
process involves interpolation. Instead, it is preferable 
first to concatenate all the estimated transforms and 
then to apply them in a single step (Jo et al., 2013); afni_
proc.py performs this beneficial concatenation auto-
matically, simplifying the procedure for the user. 
Additional conveniences include performing any band-
passing, censoring, and regression as a single step, 
rather than as a mathematically inconsistent two-step 
process (Hallquist et al., 2013). This allows for a com-
plete evaluation of the degrees of freedom used in pro-
cessing and avoidance of mistakenly overusing them.

Having these programmatic conveniences occur auto-
matically “under the hood” has several benefits. It simpli-
fies the processing specification, reduces the chance of 
errors or subtle bugs occurring, and increases the under-
standability of the processing itself. It also makes it easier 
to alter or update a processing stream, because one 
merely needs to add an option or change a parameter, 
rather than to reorganize potentially complicated logic 
within a script. Finally, it also means that more consis-
tency checks can be performed automatically (e.g., 
keeping track of utilized degrees of freedom in the regres-
sion modeling appropriately).



5

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

2.1.2.  Provenance and reproducibility

Specifying a full FMRI pipeline with a set of options in an 
afni_proc.py command is convenient. However, it is also 
necessary to ensure that the researcher knows exactly 
what occurs during the processing—having the prove-
nance of the results—and afni_proc.py also provides this. 
When executed, the afni_proc.py command first produces 
a full processing script (Fig. 1B), which is organized by pro-
cessing block, automatically commented, and even con-
tains a copy of the generative afni_proc.py command. This 
“proc script” is then itself executed to process an individ-

ual’s data and saved for later reference. This two-stage 
approach—having the command generate a readable and 
commented script file, rather than simply carrying out the 
processing with no record—ensures that the researcher 
has all the details of the analysis at their fingertips. They 
are able to investigate the script to see the exact options 
used in each command at any time.

For example, a researcher might choose to smooth the 
EPI data during preprocessing by using the “blur” block, 
but not specify the blur radius explicitly and just use  
the program’s default (which is not necessarily set as a 

Fig. 2.  While an EPI brain mask is estimated during afni_proc.py processing, it is not applied to the data, so that 
results throughout the whole FOV can be viewed. This facilitates understanding the data better, as well as improving QC 
evaluation. Two examples of this are shown from data processed within the FMRI Open QC project, showing TSNR in the 
final MNI space after regression modeling. In (A), one can see strong ghosting outside the brain (cyan arrows), which helps 
explain some of the unexpected correlation patterns that are observed within the brain. In (B), one can see from the TSNR 
pattern that part of the final EPI data are not well aligned in standard space; this is due to initially impressive skullstripping, 
which could then be fixed. In both cases, masking would have hidden the reality of what was happening and contributed 
to potentially biased results.



6

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

recommendation for all types of data). Even so, it is still 
possible to directly see the actual value used within the 
generated processing script, so there is no ambiguity or 
guesswork. The proc script is cleanly and clearly orga-
nized with the same hierarchy as the afni_proc.py com-
mand itself and contains detailed comments. Thus, the 
proc script fulfills two roles: it is both an exact, searchable 
specification of analysis, and it is a learning tool. If there 
are any questions about any aspect of the procedure, one 
can verify each step directly. Furthermore, when using the 
“-execute” option, a log file of all terminal text is also 
saved, for later reference (users are also encouraged to 
create their own log files, if not using this option).

Additionally, AFNI itself has inherent provenance 
tracking within its programs on a file-by-file basis. When 
a dataset is output, the command used to create it is 
added to its header. Therefore, the data contain an accu-
mulating history of the commands used to produce it, 
including the AFNI code version and date+time of cre-
ation. This can be viewed with the full header information 
via AFNI’s 3dinfo program, and specifically queried by 
adding the “-history” option. This useful information is 
still included even in NIFTI files output by AFNI, via the 
AFNI extension, as well as NIML datasets such as sur-
face files.

The relatively compact afni_proc.py command (typi-
cally 20–50 lines, as vertically spaced and aligned in 
Fig. 1A) can readily be published in a paper’s Appendix or 
in an online repository (GitHub, OSF, etc.). The process-
ing can be reproduced by using the same command with 
the original code version or in a container. To simplify 
comparisons of different afni_proc.py commands, sev-
eral options within the program itself exist:

•	 “-compare_opts ..” compares a user’s command 
against a predefined afni_proc.py example from the 
help examples;

•	“-compare_example_pair ..” compares two sets of 
predefined commands;

•	“-compare_opts_vs_opts ..” compares two full 
commands;

•	and “-show_example ..” displays the full afni_proc.
py command from the help file, which includes 
many examples from publications (we include the 
relevant command at the start of each example 
description, below).

For example, users could add “-compare_opts ‘example 
6b’” to their afni_proc.py command to display a com-
parison with that help file-enumerated example, or 
“-compare_opts ‘AP publish 3b’” to compare against Ex. 
2’s processing command from this paper. To display the 
basic surface-based processing command used in AFNI 

Bootcamp courses, one could use “afni_proc.py -show_
example ‘AP class 3’.”

We note that the program has also developed with 
minimal external dependencies, to facilitate stability, 
compatibility, and reproducibility over time to the great-
est extent possible. See Appendix B for more discussion 
of development.

2.1.3.  Quality control and understanding data 
through processing

A primary goal of the afni_proc.py program (and of the 
entire AFNI platform) since its inception has been to help 
users “stay close to their data,” meaning that they under-
stand the dataset from its raw state through all stages of 
processing. As part of this, afni_proc.py creates a “*.
results” directory for each single-subject analysis, which 
contains copies of the original data, many of the interme-
diate datasets and the final outputs, so that all stages of 
the processing can be verified after running the script.

The afni_proc.py pipelines also generate several auto-
matic and helpful QC features to review many aspects of 
the single-subject (ss) processing; the recent FMRI Open 
QC Project illustrated the numerous benefits of integrating 
both qualitative and quantitative QC items with full prepro-
cessing, as demonstrated in both AFNI and several other 
neuroimaging software packages (see Taylor, Glen, et al., 
2023 and op cit.). During afni_proc.py’s FMRI processing, 
relevant “basic” quantities are calculated and reported to 
the researcher at the end, such as subject motion summa-
ries, degree of freedom (DF) counts, TSNR, and more; 
these are saved in a text file and can be displayed via the 
@ss_review_basic script in each results directory. Several 
potential pitfalls of analysis are also checked automatically, 
with results stored in “warning” files, such as not removing 
presteady-state volumes or having collinear regressors of 
interest (see Taylor et al., 2024 for a more complete list).

Since many processing steps either require or are 
greatly helped by visual verification, there is also a script 
created called @ss_review_driver, which will open view-
ing panels and the AFNI GUI to guide the user through 
visually verifying steps such as alignment, motion cen-
soring, and model fitting. Each step of this review is com-
mented with a pop-up GUI guide, as well. A script called 
@epi_review.${subj} (where ${subj} is replaced by the 
actual subject ID in the filename) is created, which opens 
up the AFNI GUI graph viewer and image panels, with 
time-scrolling on, to allow the user to assess the quality 
of the original EPI time series.

Finally, afni_proc.py generates a QC document that 
can be opened in a web browser to review important  
features from the pipeline in a single, navigable report: 
the APQC HTML (Taylor et  al., 2024). It incorporates  



7

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

systematic images, automated warning checks, and sev-
eral additional features, and in conjunction with a review 
of the “basic” quantities may be considered an efficient, 
minimal QC source for each single-subject analysis. The 
HTML can also now be run using a local Web server, so 
users can save QC ratings as they scroll through, saving 
comments and opening up the datasets themselves 
interactively. These features have all been shown to be 
useful in understanding the FMRI data and quality issues 
(Reynolds et al., 2023).

It is worth emphasizing the importance of afni_proc.
py’s quality control features and having them integrated 
with processing. FMRI data can have a wide array of 
issues, and many of these can be subtle. While the pri-
mary focus of processing is typically to make it more 
appropriate for later analysis (removing artifacts, aligning 
datasets, etc.), it allows for underlying properties to be 
probed in different ways. The QC procedures in AFNI 
generally and in afni_proc.py specifically have been 
developed with the goal of taking advantage of these 
intermediate stages to understand the data itself more 
completely (Reynolds et  al., 2023; Taylor, Glen, et  al., 
2023). This is also one reason why intermediate datasets 
are created and retained as part of afni_proc.py outputs, 
to allow for more detailed QC as needed. As such, quality 
control should not just be viewed as filtering out “bad” 
data, but as determining if one can have confidence in it, 
through its full range of properties.

2.1.4.  Pipeline management

The outputs of other programs can be directly input into 
afni_proc.py scripts. One typical case is using the anatom-
ical T1w-based results of FreeSurfer’s recon-all (Fischl 
et  al., 2002). Common usages include incorporating the 
volumetric segmentations for defining tissue-based regres-
sors in the “regress” block or the SUMA-standardized sur-
face meshes (Argall et al., 2006) for projecting EPI data in 
surface-based analysis via the “surf” block. Nonlinear 
warps between the subject anatomical and a reference 
template can also be estimated beforehand, with the results 
passed along to afni_proc.py to concatenate with other 
transforms. Those warps can be calculated, for example, 
using AFNI’s 3dQwarp (Cox & Glen, 2013), sswarper2 (a 
new, preferred method that incorporates 3dQwarp for 
performing both anatomical skullstripping and nonlinear 
warping simultaneously; see, e.g., Taylor et al., 2018), or  
@animal_warper (similar set of functionality as sswarper2 
but specifically designed for processing nonhuman data-
sets; see Jung et al., 2021). Physiological regressors can 
be included, after RETROICOR (Glover et al., 2000) time 
series estimation with programs such as RetroTS.py or the 
newer physio_calc.py (Lauren et al., 2023). A benefit of this 

modularity and separation is that, if the FMRI processing 
with afni_proc.py needs to be rerun for any reason, these 
precursor steps do not need to be redone; this can also 
save a lot of time and resources for computing intensive 
programs such as recon-all and sswarper2.

Some external programs with specific processing have 
been integrated within afni_proc.py. This has been the 
case for some workflows with the increasingly popular 
multiecho (ME) FMRI data, in which several (typically 3–5) 
T2* weighted volumes are acquired per time point. This 
information can be combined in various ways to boost 
signal-to-noise (SNR) in the analyzed BOLD signal. Such 
data can be processed in afni_proc.py, using the “com-
bine” block to specify processing choices. The command 
contains its own optimal combination (OC) formulation 
from Posse et al. (1999). Additionally, options can be pro-
vided so it calls one of the multiecho independent compo-
nent analysis (MEICA) routines from either the original 
Kundu et al. (2011) or the newer DuPre et al. (2021) tedana 
(TE-dependent analysis) codebases. The QC page of the 
latter is even integrated into afni_proc.py’s own APQC 
HTML. Note that tedana must be installed separately.

In the end, an example afni_proc.py workflow for 
single-subject analysis can look like that in Figure 1C. To 
incorporate this in a full group analysis, one can simply 
loop over a list of subjects, changing the input file names 
but keeping the remaining afni_proc.py blocks and 
options the same. This keeps the scripting simple if, for 
instance, subjects have different randomly generated 
stimulus timing files for a task-based FMRI analysis. Input 
volumes can be either NIFTI (Cox et al., 2004) or BRIK/
HEAD format, and afni_proc.py also works directly with 
BIDS-formatted collections (Gorgolewski et  al., 2016). 
Figure  3 shows a pseudocode example of running a 
group-level processing in this way: for each subject ID 
and session ID, do the afni_proc.py processing contained 
in a script. This framework runs efficiently on a BIDS data 
structure, as well as on any reasonably organized one. To 
use JSON sidecar information, AFNI’s abids_*.py pro-
grams can also be incorporated in the central script. In 
some cases, processing may need to be rerun on a sub-
group of subjects—for example, to fix imprecise EPI-
anatomical alignment—and afni_proc.py can easily be 
rerun for either a subgroup or entire group within a data 
collection.

The results directory created by afni_proc.py contains 
relevant outputs in a standardized structure and naming 
convention, including copies of the input data, several 
stages of intermediate files, a QC directory, and the final 
datasets. There is also a reference dictionary of key data-
sets and quantities (“out.ss_review_uvars.json”), which is 
both parsed by the QC generation programs and can 
serve as a useful reference of important outputs for the 



8

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

user (“uvars” stands for “user variables”; see Taylor et al., 
2024, for details). Some additional quantities relevant for 
group analysis can also be calculated by afni_proc.py 
output scripts, and then used later. This includes estimat-
ing smoothness of noise autocorrelation functions (ACF) 
for group-level clustering (Cox et al., 2017); see Example 
2, below. All of these estimated QC quantities might be 
compared or evaluated for data-dropping criteria with 
AFNI’s gen_ss_review_table.py (Reynolds et al., 2023).

The derived outputs can be used for further analysis 
within AFNI or any other software. The key quantities and 
datasets from processing are known from the keys 
defined for the “uvar” and “basic review” dictionaries. 
This output structure is inherently mappable to ones from 
analogous software tools in other packages or to BIDS-
Derivatives. We have recently added functionality to cre-
ate an additional output directory that follows the 
BIDS-Derivatives (v1.9.0) file structure and naming con-
vention for FMRI processing, for the subset of afni_proc.
py outputs that currently have definitions there. The user 
implements this by specifying “-bids_deriv yes.” An 
example of this is provided in the supplementary Ex. 9 
(see Appendix C).

2.1.5.  Description of example datasets used here

In the Results section, we present four examples of afni_
proc.py commands for various FMRI processing. The full 
processing scripts for the workflows described here 

(including physio_calc.py, sswarper2, FreeSurfer’s recon-
all, etc.) are publicly available,* including all of the supple-
mentary examples in Appendix C. We first briefly describe 
the MRI datasets, which are publicly available† and repre-
sentative of standard acquisitions. Each was collected at 
3T field strength.

Examples 1, 3, and 4 use the same set of resting-state 
FMRI data (“sub-005”), which has been acquired with 
ME-FMRI. Exs. 1 and 3 just use a single echo, while 
example Ex. 4 utilizes all the echos during processing. 
The acquisition and original application of this dataset 
are detailed in Gilmore et  al. (2019) and in Gotts et  al. 
(2020). Briefly, there is one ME-FMRI resting-state run 
with TR  =  2,200  ms; TE  =  12.5, 27.6, 42.7  ms; vox-
els = 3.2 x 3.2 x 3.5 mm3; matrix = 64 x 64 x 33; N = 220 
volumes; slice acceleration factor = 2 (ASSET). A short, 
single-echo (SE) reverse-encoded EPI set (N  =  10, 
TE = 27.6 ms) was acquired for B0-distortion correction. 
There is also a standard T1w anatomical volume (1 mm 
isotropic voxels), and both cardiac and respiratory data 
were collected. This subject’s unprocessed dataset is 
organized in a BIDS-ish manner: the NIFTI file naming 
and directory structure match BIDS v1.3.0, but there are 
minimal differences such as not having associated JSON 
sidecar files.

Example 2 presents processing for one subject of 
task-based FMRI (“sub-10506”), using the publicly 
available Paired Associates Memory Task-Encoding 
(PAMENC) data collection (Poldrack et al., 2016; https://
openneuro​.org​/datasets​/ds000030​/versions​/1​.0​.0). The 
stimulus paradigm during scanning was a two-part mem-
ory task involving pairs of words and their pictures. For 
the “task” trials, participants were shown pairs of words 
for 1 s and then additional corresponding images were 
also shown for 3 s more; one image was drawn in a single 
color and the other was in black-and-white, and they 
were instructed to press Button 1 or 2 when the color 
image was on the left or right, respectively. For the “con-
trol” trials, pairs of scrambled stimuli were shown, again 
one in a single color and one in black-and-white, and 
users were to similarly indicate the side of the color image 
with a button push. At the same time, they were instructed 
to try to remember word pairs, as they would later be 
asked about how sure they were that two particular 
words were presented together. Briefly, there is one 
single-echo EPI run with TR  =  2,000  ms; TE  =  30  ms; 

Fig. 3.  Pseudocode for running single-subject processing 
at a group level, looping over a list of subject IDs and one 
or more sessions for each. At the heart of the second loop 
is the action to do the subject processing: here, to run a 
theoretical shell script (“do_ap_cmd.tcsh”) that contains 
an afni_proc.py command and just needs the subject 
and session ID values provided as arguments. This runs 
easily on a BIDS-formatted data collection (though some 
BIDS trees do not contain a session-level ID or directory 
structure, and so the second loop would be omitted).

*  https://github​.com​/afni​/apaper​_afni​_proc
†  The input datasets are available here: https://afni​.nimh​.nih​.gov​/pub​/dist​
/tgz​/demo​_apaper​_afni​_proc​_rest​.tgz, https://afni​.nimh​.nih​.gov​/pub​/dist​/tgz​
/demo​_apaper​_afni​_proc​_task​.tgz

The packaged outputs of each example run of afni_proc.py (including proc 
script, terminal log, and results directory) are available here: https://osf​.io​
/gn7b5/.

https://openneuro.org/datasets/ds000030/versions/1.0.0
https://openneuro.org/datasets/ds000030/versions/1.0.0
https://github.com/afni/apaper_afni_proc
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_rest.tgz
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_rest.tgz
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_task.tgz
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_task.tgz
https://osf.io/gn7b5/
https://osf.io/gn7b5/


9

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

voxels  = 3.0  x  3.0  x  4.0  mm3; matrix  =  64  x  64  x  34; 
N = 242 volumes. There were two FMRI stimulus classes, 
40 trials of “task” and 24 trials of “control.” A standard 
T1w anatomical volume (1 mm isotropic voxels) was also 
acquired. This subject’s unprocessed dataset is orga-
nized in a complete BIDS v1.3.0 structure.

2.1.6.  Overview of processing examples

Ex. 1 presents a special use case of afni_proc.py, that of 
only performing the spatial transformation steps of pro-
cessing. This subset of steps might be used to test 
options in setting up alignment, or to investigate only 
specifically spatial properties of the data. The remaining 
Examples 2–4 all demonstrate full single-subject pro-
cessing, through regression. Each is aimed at standard 
voxelwise analysis, as each includes blurring (spatial 
smoothing) during processing. Further examples or vari-
ations are provided in Appendix C.

Most voxelwise studies include blurring with the goal of 
increasing TSNR locally and to likely increase group over-
lap in the face of imperfect alignment and significant struc-
tural variability (particularly in the human cortex). Blurring 
can be applied in different ways, and we highlight some of 
these below. To use these examples as starting points for 
ROI-based analysis, one could simply remove the “blur” 
processing block and associated “-blur_*” options. Blur-
ring should generally not be included when analyses will 
include averaging within ROIs, because it will spread sig-
nals across the region boundaries, artificially boosting 
local correlations and likely weakening distant ones. More-
over, the time series averaging within ROIs later on will still 
play the role of boosting local TSNR.

In these examples, some separate programs were run 
prior to afni_proc.py. This is sometimes done to derive 
useful information from supplementary datasets, like tis-
sue maps from the anatomical volume, or physiological 
based regressors when cardiac and respiratory traces 
have been acquired during scan time, etc. The results of 
these steps are then included as additional inputs to afni_
proc.py. We note these briefly here for each example, as 
well as in each table that shows an example command:

•	Example 1: AFNI’s sswarper2 was run on the ana-
tomical T1w volume to simultaneously skullstrip (SS) 
it and estimate its nonlinear warp to standard space. 
Examples of its useful brainmask identification and 
alignment to standard space are shown in Figure 4.

•	Example 2: AFNI’s sswarper2 was run on the T1w 
volume for skullstripping and nonlinear warp esti-
mation; AFNI’s timing_tool.py was used to create 
stimulus timing files from the provided events  
TSV files.

•	Example 3: FreeSurfer’s recon-all was run on the 
anatomical T1w volume to estimate CSF and ven-
tricle maps, for estimating local tissue-based 
regressors with ANATICOR (Jo et al., 2010), as well 
as ROI parcellations; AFNI’s physio_calc.py (Lauren 
et  al., 2023) was run on cardiac and respiratory 
traces, for creating physiological-based regressors 
with RETROICOR (C. Chang & Glover, 2009); AFNI’s 
sswarper2 was run on the T1w volume for skull-
stripping and nonlinear warp estimation.

•	Example 4: FreeSurfer’s recon-all was run on the 
T1w volume to estimate the anatomical surface, as 
well as ventricle maps; AFNI’s @SUMA_Make_
Spec_FS was run on the FreeSurfer meshes to con-
vert them to GIFTI format and to create standard 
meshes (Argall et al., 2006).

When processing included aligned datasets to a volu-
metric standard space template (i.e., when a script con-
tained the tlrc processing block and a “${template}” 
dataset‡), the MNI-2009c-Asym space (Fonov et  al., 
2011) was used. Specifically, AFNI’s MNI152_2009_tem-
plate_SSW.nii.gz version of the template was used, which 
has multiple subvolumes of information utilized by 
sswarper2 (and its predecessor, @SSwarper). Note that 
processing does not require use of a template space: 
final volumetric results could be native subject space; 
surface-based results typically end up on the mesh esti-
mated from the subject’s own anatomical (but if using 
one of SUMA’s standard meshes, these could be equiva-
lently displayed on any surface mesh).

3.  RESULTS

We present four afni_proc.py example commands and 
their results, describing the processing choices made in 
these examples, as well as other ones that could be 
used. It is impossible to provide a comprehensive set of 
examples,§ and the ones presented here have been cho-
sen to highlight various features. The order of options 
within the command does not matter (NB: the order of 
blocks specified within the “-blocks ..” option does 
matter), but is typically chosen for grouping of relevant 
options and for clarity of purpose. Several of the images 

‡  The script can include the path to the chosen template, or if it is located in 
a directory where the AFNI program @FindAfniDsetPath can locate it, then 
just the name is enough to specify it.
§  The afni_proc.py program help file contains over 30 examples at present. 
AFNI’s online documentation also contains the AFNI Codex, a set of code 
examples related to publications, and many of these contain afni_proc.py: 
https://afni​.nimh​.nih​.gov​/pub​/dist​/doc​/htmldoc​/codex​/main​_toc​.html

The Codex pages contain descriptions, as well as links to the papers and 
commented scripts and/or repositories. Appendix B describes additional 
demos.

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/codex/main_toc.html


10

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

shown below come directly from the systematic views 
provided within the APQC HTML created by the given 
processing. These were run with AFNI version 24.2.02.**

3.1.  Ex. 1: Partial processing, warping-only case: 
Spatial transformations

In addition to building complete processing pipelines, 
afni_proc.py can be used to perform subsets of process-
ing. This can be simpler than writing a separate script to 
carry out the task, because afni_proc.py includes several 
convenience features. In this example, we focus on the 

Fig. 4.  QC images generated by AFNI’s sswarper2, as it both skullstrips an anatomical volume (panel A) and calculates 
its nonlinear warp to template space (panel B). Both brainmasking and alignment with the template appear to be generally 
strong throughout the brain. The outputs of this program (or analogous ones, such as AFNI’s @animal_warper) can be 
used directly in afni_proc.py. Here and in axial/coronal images below, image left is subject left.

**  Interested users can use build_afni.py to locally build a specific code ver-
sion, as well as use the associated, tagged Docker image, available here: 
https://hub​.docker​.com​/r​/afni​/afni​_dev​_base​/tags

https://hub.docker.com/r/afni/afni_dev_base/tags


11

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

subset of alignment-related features in standard FMRI 
processing. Note that the “regress” block is merely 
included so that the APQC HTML is created; no regres-
sion options are used here, and those will be discussed 
in subsequent examples along with other nonalignment 
considerations.

In the Ex. 1 command (Fig.  5, or run: afni_proc.py 
-show_example “AP publish 3a”), we use afni_proc.py to 
perform four alignment processes:

•	EPI with forward phase to EPI with reverse phase 
alignment (“blip” block, which is implicitly included 
when the “-blip_*_dset ..” options are present), 
which is estimated using a restricted nonlinear 
alignment using AFNI’s “3dQwarp -plusminus ..”;

•	EPI-to-anatomical alignment (“align” block), which 
is estimated with a linear affine transform;

•	anatomical-to-template alignment (“tlrc” block), 
which has been estimated nonlinearly here using 
AFNI’s sswarper2 so that anatomical skullstripping 
is also included;

•	EPI-to-EPI volumetric motion estimation and correc-
tion (“volreg” block), which is estimated with rigid-
body alignment across the input FMRI dataset.

From the short command provided in Figure 5, the cre-
ated proc script will first estimate each of the alignments 
individually. It will then conveniently concatenate the 
transformations into one comprehensive warp and apply 
that as a single transformation to the raw, input EPI data-
set (Fig. 6A). This concatenation minimizes the blurring 
necessarily incurred by regridding and interpolation, 
while simultaneously motion correcting and warping the 
FMRI time series to the template space. The afni_proc.py 
command is an extremely compact way to perform this 
procedure (the produced “proc” script is over 450 lines 
long, including comments), and the programmatic details 
of concatenation can all be checked for educational or 
verification purposes within the output proc script.

We note some additional points on the input EPI and 
anatomical data (which are provided with “-dsets ..” and 
“-copy_anat ..,” respectively). Firstly, these datasets can 
be in either NIFTI or BRIK/HEAD format, since AFNI 
reads and writes both. By default, the input anatomical 
volume would be skullstripped with a simple method. 
But when that procedure has already been performed, 
the user can deactivate that by including “-anat_has_
skull no,” as has been done here. Multiple single-echo 
EPI datasets can be input after the single “-dsets ..” 

Fig. 5.  The afni_proc.py command for Ex. 1 (warping-only, single-echo FMRI). The options and any arguments are 
vertically spaced for readability. Here and throughout, items starting with “$” are variable names, which are typically 
file names or control options. ${sub} = the subject ID; ${anat_cp} = the input anatomical dataset (here, that has been 
skullstripped by sswarper2); ${anat_skull} = a version of the input anatomical dataset that still has its skull, for reference 
during processing; ${dset_epi} = the input EPI dataset (which is a single echo, here the second one from the ME-FMRI 
acquisition); ${epi_forward} = an EPI volume with phase encoding in the same direction as the main input FMRI datasets, 
to be used in alignment-based B0-inhomogeneity correction; ${epi_reverse} = an EPI volume with phase encoding in the 
opposite direction as ${epi_forward}, for B0-inhomogeneity correction; ${template} = name of reference volume for final 
space (here, the MNI template). Running this command produces a commented script of >450 lines, encoding the detailed 
provenance of all processing.



12

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

option, such as when there are multiple runs per session 
to be analyzed simultaneously. The final output from pro-
cessing will be derived from one concatenated dataset, 
and one would typically then include an option for “per 
run regressors” within the regress block, to appropriately 
handle the breaks in the time series during regression 
(see Exs. 2–4, below). Finally, we note that it is possible 
to remove initial time points from the input EPI datasets 
as they are copied at the start of processing, using the 
“-tcat_remove_first_trs ..” option; this is often done if 
presteady-state volumes remain in the data, as shown 
here to remove the first four time points. The afni_proc.
py script also contains an automatic check for potential 
presteady-state volumes, which is included in the 
“warns” section of the APQC HTML.

In addition to the main EPI time series data, reverse-
phase-encoded EPI datasets, which are also known as 
“blip up/blip down” datasets, are input in this example 
via “-blip_forward_dset ..” and “-blip_reverse_dset …” 

The “blip” processing block†† is, therefore, implicitly 
included in the processing block list, as noted in Table 1; 
here, it occurs just prior to the “align” block in the gen-
erated processing script. This pair of blip datasets will 
be mutually aligned and produce a warp that “meets in 
the middle,” which reduces the geometric effects of B0 
inhomogeneity (Andersson et  al., 2003; H. Chang & 
Fitzpatrick, 1992; Holland et  al., 2010). This has been 
shown to improve the matching of structures between 
subject EPI and anatomical data (e.g., Hong et al., 2015; 
Hutton et al., 2002; Irfanoglu et al., 2019; Roopchansingh 
et al., 2020). In Figure 7, one can see the reduced geo-
metric distortion for the EPI volume, particularly by 
comparing sagittal slice views in “A” (e.g., slice 17.03R) 

Fig. 6.  Schematics of the various alignment steps within each example’s afni_proc.py command. Details are shown for the 
first time a particular step is presented. Alignment is calculated separately for each step, but then concatenated within the 
afni_proc.py script before applying to the EPI data. This tends to minimize extra blurring that would be incurred by multiple 
regridding and interpolation processes, if the stages were applied separately. In C (Ex. 4), after the concatenated warp is 
applied, the EPI data are projected onto a standardized surface mesh with 3dVol2Surf. Case D displays a variation of how to 
handle motion estimation when multiple runs are input, particularly if one might expect more differences between runs.

††  Instead of using reverse phase-encoded datasets, one could estimate 
warp from a phase map dataset, such as using AFNI’s epi_b0_correct.py. The 
resulting warp could be included in afni_proc.py via “-blip_warp_dset”, and 
would similarly populate the implicit blip processing block, etc.



13

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

with the postalignment EPIs underlaying the anatomical 
edges in “B” (e.g., slice 19R): the stretching of the for-
mer along the AP axis is greatly reduced in the latter. 
Note that some bright CSF can still be observed outside 
the anatomical edges.

In the anatomical-to-template block (“tlrc”), nonlinear 
alignment is switched on with “-tlrc_NL_warp,” here spec-
ifying an MNI template as a reference base (“-tlrc_base ..”). 
By default, this transform would be calculated using AFNI’s 
auto_warp.py, which calls 3dQwarp (Cox & Glen, 2013). 
However, in this example we have already run AFNI’s 
sswarper2 program to both skullstrip the anatomical and 
generate the nonlinear warp to template space prior to 
running afni_proc.py. This is a useful approach for running 
and evaluating a computationally expensive procedure 
before follow-on processing. If we end up running the afni_
proc.py processing more than once or in a parallel pro-
cessing stream, the warp estimation for this particular T1w 
dataset need not be recalculated. Figure 7C shows the QC 
images for the anatomical-to-template alignment in the 
APQC HTML, which in this case match those of sswarper2 
(Fig. 4B). The precalculated warps have been passed to 
afni_proc.py with “-tlrc_NL_warped_dsets …” For non
human primate (NHP) and other animal processing, the  
@animal_warper program for skull removal and nonlinear 
warp estimation (Jung et  al., 2021) can be integrated in 
exactly the same way.

In the volume registration block (“volreg”), each EPI 
time point is aligned to a reference using rigid-body 
alignment with 3dvolreg. The resulting motion parameter 
time series will be concatenated with the other trans-
forms later in the processing. In the full processing 
examples below, we describe how it can also be used for 
both motion censoring criteria and in the regression 
modeling. The “-volreg_align_to ..” option allows the 
user to specify which EPI time point should be used as a 
reference volume. There are many considerations for 
this, but in general one would like to ensure that the ref-
erence volume itself is not corrupted by motion. To 
accomplish this in a general fashion, we recommend 
using the “MIN_OUTLIER” keyword with this option, so 
that the time point selected is that which has the fewest 
outliers in the input EPI time series; that choice seems to 
be the most generally reliable, with minimal risk of being 
corrupted in a given subject. The same volume selected 
for motion correction reference is also used for EPI-to-
anatomical alignment. If the user would like to use a ref-
erence volume from a dataset other than the input EPI 
(e.g., using a separate, presteady-state volume with 
higher tissue contrast), then the “-volreg_base_dset ..” 
option could be used instead. Finally, we note that the 
output spatial resolution for the processed data can be 
specified here, with the “-volreg_warp_dxyz ..” option. If 

this option is not used, the data will be output at an iso-
tropic spatial resolution slightly higher than the input 
EPI’s minimal voxel dimension.‡‡

In the EPI-to-anatomical alignment block (“align”), lin-
ear affine registration with 12 degrees of freedom is per-
formed between the anatomical dataset and the same 
EPI reference volume used in motion correction. These 
volumes typically have differing/opposite tissue contrast, 
so an appropriate cost function must be selected to drive 
the alignment optimization. AFNI’s local Pearson correla-
tion (lpc) cost function, specified here with “-align_opts_
aea ..” has been shown to generally provide excellent 
alignment for these cases (Saad et al., 2009); the “+ZZ” 
provides extra stability, since EPIs can be variously noisy, 
inhomogeneous, and distorted. In some protocols, 
applied contrast agents such as MION can alter the EPI 
tissue contrast so that it matches that of the T1w volume. 
In such cases of matching contrast, the related “lpa” or 
“lpa+ZZ” cost function would be recommended. In some 
scenarios where the EPI volume has minimal tissue con-
trast, the “nmi” cost function may be a useful alternative. 
For other specialized scenarios, there are other cost 
functions that can be tried.

In addition to distortions, EPI volumes can have other 
nonideal properties that affect alignment. Recently, 3dLo-
calUnifize was developed and added to AFNI, to help 
deal with EPI volumes that have notable brightness 
inhomogeneity patterns that effectively change or greatly 
reduce tissue contrast. This program creates a brightness-
homogenized version of a dataset while still preserving 
structural patterns, creating an intermediate dataset that 
is used for the alignment only. It is invoked within afni_
proc.py by “-align_unifize_epi local,” as used here. We 
find that this option provides general stability and typi-
cally improves coregistration for human datasets even if 
they are noninhomogeneous; for nonhuman datasets, it 
is not currently recommended, as they tend to be more 
significant nonbrain features present in the FOV with 
which this functionality interacts. The “-giant_move” sub-
option opens the parameter search space for alignment 
parameters, which is useful when the EPI and anatomical 
do not have a strong initial overlap (even though in this 
case, the datasets overlay well). The “-check_flip” sub-
option is implemented to check for instances when the 
EPI and anatomical might be relatively left–right flipped to 
each other; while this sounds like an odd concern, this 
functionality has found such orientation errors in datasets 
contained in major public repositories such as FCON-1000, 

‡‡  In general we would not recommend upsampling to a much smaller grid 
size. It might make the final results appear smoother or to have finer features, 
but one cannot create new information for more detailed features by decreas-
ing voxel size for a subject. It also incurs a large cost of computing resources.



14

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 7.  A selection of QC images generated by afni_proc.py for Ex. 1, which focuses on alignment-related steps of 
preprocessing. Panel A shows one EPI volume in original view (specifically, the one used as a reference for motion 
correction and EPI-anatomical alignment) to check coverage, tissue contrast, etc. Panel B shows the underlaid EPI and 
overlaid edges of the anatomical volumes after affine alignment. Here, after blip up/down correction, the EPI shows greatly 
reduced B0 inhomogeneity distortion along the AP axis (cf. the sagittal views; some of the bright regions are CSF), and 
the general matching of the sulcal and gyral features and other tissue boundaries is strong. Panel C shows the anatomical 
(underlaid) and reference template (overlaid, edges) volumes after nonlinear alignment. There can be local structural 
differences expected (particularly in situations where there are differing numbers of sulci and gyri), but again the general 
matching of structural features is quite high.



15

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

ABIDE, and OpenfMRI/OpenNeuro (Glen et  al., 2020; 
Reynolds et al., 2023).

3.2.  Ex. 2: Full task-based FMRI processing, with 
amplitude modulation

In this example, we demonstrate the full subject-level 
processing of a task-based FMRI dataset—that is, 

through the regression modeling block—with afni_proc.
py (Fig.  8, or run: afni_proc.py -show_example “AP 
publish 3b”). The processing here would apply to a 
standard voxelwise analysis, given the presence of the 
“blur” block. The main facets of the “volreg,” “align,” 
and “tlrc” block were described above in Ex. 1, and 
apply equivalently here. As in Ex. 1, sswarper2 was run 
prior to afni_proc.py, and both its skullstripping and 

Fig. 8.  The afni_proc.py command for Ex. 2 (task-based, single-echo FMRI, full processing). Options with gray 
background have already been described earlier in Ex. 1 here, and any variables described in the captions of Figure 5. 
${blur_size} is the FWHM size of applied blur, in mm; ${sdir_timing} is the directory containing stimulus timing files. 
Running this command produces a commented script of >640 lines, encoding the detailed provenance of all processing.



16

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 9.  QC images generated by afni_proc.py for Ex. 2, showing: (A) the raw EPI volume in native space; and (B) the 
unmasked TSNR after the volreg processing block, prior to regression modeling. The unmasked TSNR image shows 
evidence for ghosting artifact overlapping into the brain (cyan arrows); as described in Figure 2, this shows the benefits of 
not masking data during processing to understand it better and more reliably evaluate it. The fact that the EPI has been 
acquired with such a tight FOV (see panel A) likely contributes to the presence of ghosting. The TSNR map also shows the 
presence of EPI distortion (the anterior TSNR pattern extends beyond the anatomical boundaries, even though structural 
alignment is good).

warping results are imported. An alignment-based dif-
ference from Ex. 1 is that this dataset does not have a 
pair of opposite phase encoding datasets for “blip” block 
geometric adjustment (though it could, if such were 
available for this subject).

Since this example will focus more on time series 
modeling, the “-volreg_compute_tsnr yes” option has 
been added to include an image of the TSNR immedi-
ately after motion correction has been applied to the EPI 
time series, prior to regression modeling; the TSNR after 
the GLM is already included by default. An example of 
the utility of this can be seen in Figure 9B, where ghost-
ing in the dataset is apparent. This means that one must 
be particularly cautious interpreting statistical results in 

the frontal regions where signal overlaps onto the brain. 
As noted above, just masking data would hide this cir-
cumstance and potentially lead to erroneous conclu-
sions from just viewing GLM outputs. Panel A of the 
same figure shows raw EPI data, which indeed shows 
an extremely tight FOV for the acquisition; typically 
more empty space around the brain will help prevent 
such issues.

This afni_proc.py command includes some additional 
QC-specific options, and these will add or modify fea-
tures in the output APQC HTML. For example, “-radial_
correlate_blocks ..” specifies a list of blocks for which 
images will be created of local radial correlation (via 
AFNI’s @radial_correlate). That is, a dataset will be cal-



17

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

culated where each voxel’s time series will be correlated 
with the Gaussian-weighted average of surrounding vox-
els’ times series over a large radius (20 mm half width at 
half max, by default); such a dataset has been shown to 
be useful in revealing scanner- or motion-related artifacts 
(Taylor et  al., 2024). The “-html_review_style” option 
allows the user whether to use an older, simple program 
for line plots within the HTML (“basic” style), or a more 
modern version that contains extra information but 
requires having Python’s Matplotlib library installed 
(“pythonic” style). At present, the program will check 
Python dependencies to be able to run the latter style, to 
provide more informative plots by default.

When slice timing information is available in the EPI 
data, it can be applied to shift the input time series data-
sets appropriately by including the “tshift” block, as in 
this example. The user can supply various options to the 
3dTshift command that will be used in the proc script via 
“-tshift_opts_ts …” In this case, the timing pattern is 
specified. With other “-tshift_* ..” options, users can con-
trol the interpolation method or the part of the TR to 
which shifted times should be aligned.

The “mask” block leads to the estimation of a whole 
brain mask, or as close to one as the data allow. Impor-
tantly, the mask is not applied directly to the FMRI data 
(zeroing out much of the field of view, FOV), but instead is 
reserved for use with various calculations. While most 
studies focus their investigations within the brain only, it 
is quite helpful to see EPI data across the whole FOV in 
order to be aware of possible distortions, noise values, 
and other properties within the data (see, e.g., Taylor, 
Reynolds, et al., 2023). One might calculate mean quan-
tities within the mask, such as average TSNR to report, 
as well as combine it with similar masks across all sub-
jects to create a group-level mask. The “-mask_epi_anat 
yes” option added here tightens the EPI mask by inter-
secting it with the anatomical mask, which is typically 
done to improve specificity.

The “blur” block is also included in the processing, 
which is standard for FMRI data that will be analyzed 
voxelwise, in order to boost local SNR though at the cost 
of spatial specificity. While the selected amount of blur 
can vary based on application (including not blurring, in 
the case of ROI-based analysis), a general guideline for 
single-echo FMRI inputs might be to use a “-blur_size ..” 
that is about 1.5–2 times the minimum voxel dimension. 
The present EPI voxels are 3 x 3 x 4 mm3, and, therefore, 
the selected blur has 6 mm FWHM. For multiecho FMRI 
data, one might prefer minimal blurring, because the 
TSNR after combining echos tends to be much higher. 
There are many different styles of blurring that can be 
applied (see Ex. 4 below for surface-based smoothing, 

and supplementary Ex. 6 in Appendix C for blurring data 
to an average amount).

Including the “scale” block leads to an important time 
series feature: the coefficients (or effect estimates) from 
the regressors of interest will then have meaningful units 
of BOLD percent signal change based on per-voxel base-
line scaling. This method of voxelwise scaling has been 
shown to be useful in interpreting results and for promot-
ing more detailed comparisons across studies (Chen 
et al., 2017). Note that other software may provide other 
formulations for scaling, which will have different inter-
pretations and properties. We typically recommend 
including the scale block, particularly in task-based FMRI 
studies. This is in line with both the aforementioned paper 
and Chen et al. (2022), who further argued that doing so 
provides results with more valuable information both for 
quality control (QC) and analysis.

The “regress” block contains a number of important 
processing options related to the subject-level general lin-
ear model (GLM). This block typically contains the largest 
number of detailed specifications for the processing, as it 
produces the main outputs at the single-subject level. In 
the current block, there are two criteria set for censoring 
time points during regression—that is, removing specific 
time points from influencing the model (which is referred 
to as “scrubbing” in some software). First, an outlier-
based criterion is used via “-regress_censor_outliers 
0.05,” so that volumes whose brain masks contain more 
than 5% temporal outliers from the input time series will 
be censored. Additionally, a motion censoring criterion is 
based on the Euclidean norm (Enorm) of the first differ-
ence of the EPI motion parameter time series, in this case 
where the magnitude of change in Enorm > 0.3, which has 
approximate units of mm (“-regress_censor_motion 0.3”). 
Since this motion criterion is based on the difference of 
parameters, the volumes at both flagged time points are 
censored for suprathreshold estimates. The Enorm is the 
square root of the sum of squares (or L2-norm) of the 
motion parameter differences, similar to how standard 
distance metrics are formulated, making it more sensitive 
to a large change in any single component than an L1-
norm, such as the framewise displacement (FD) parame-
ter. Figure 10A shows the Enorm and outlier plots from the 
APQC HTML, as well as part of the individual motion 
parameter plots; censor thresholds (cyan lines) and supra-
threshold locations (red fields) are both displayed on 
those plots and on subsequent line plots within the HTML.

In the present task paradigm, the modeling of the mem-
ory and button response includes duration modulation 
(DM), to allow for stimulus events of varying duration, 
whose values are also encoded in the stimulus timing files. 
There are two stimulus classes here, with the timing files 



18

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 10.  QC images generated by afni_proc.py for Ex. 2 focused on the motion and regression model setup when 
processing task-based FMRI. Panel A shows the Enorm and outlier fraction plots across time, which are used for time 
point censoring. The dashed lines show the thresholds for each quantity, and the red bands highlight the location of any 
volumes to be censored (here, only three volumes are censored). The “BC” and “AC” boxplots show distributions of each 
plotted parameter before and after censoring, respectively. The lower two panels show the “ideal” stimulus response 
based on the timing and chosen hemodynamic response function (HRF): B shows the sum of responses, and C shows 
each individual stimulus class. The red band of censoring is also displayed here, to reveal any cases of stimulus-correlated 
motion (which is also checked automatically in the “warns” section of the APQC HTML).



19

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

and labels provided, respectively, by “-regress_stim_times 
..” and “-regress_stim_labels …” Each event duration here 
is convolved as a boxcar with the BOLD impulse response 
function to create event responses of varying shape and 
magnitude within the idealized hemodynamic response 
function (HRF). Amplitude modulation (AM; also referred to 
as “parametric modulation” in some software) might be an 
alternative choice. The duration modulation function has 
two specifications§§: its shape, which here is “BLOCK”; 
and its length scale, which for the present task is 1 s (the 
negative sign is a syntax convention, see the online 
description in the footnote); by convolution, a stimulus of 
1 s duration would then have unit magnitude in the units of 
the scaled regressor, and longer responses would have a 
larger magnitude, up to the limits of the basis function. The 
“idealized” response curve for each stimulus from the 
APQC HTML is shown in Figure 10C, along with the loca-
tion of any censoring (see next paragraph). Note that each 
stimulus class can have its own basis function (which is 
what the “multi” in the “-regress_basis_multi ..” option 
refers to). There are many choices for how to model events, 
such as whether to use a fixed HRF or to fit the shape from 
the data, and these can greatly affect results; this is 
described more in the Section 4.

Beyond just modeling the events, one can also evalu-
ate hypotheses about their effects as general linear tests, 
using “-regress_opts_3dD” to specify the desired tests 
for 3dDeconvolve to run. In this analysis, the two general 
linear tests evaluated are a basic “Task - Control” con-
trast and the mean “0.5 (Task + Control)” response, given 
the labels “T-C” and “meanTC,” respectively. We note 
that the topic of HRF modeling itself is quite large, and it 
depends heavily on the study and task details. More 
basis function considerations and options are presented 
in the Section 4. Figure 11 shows the regression model-
ing results as displayed in the APQC HTML. Statistical 
maps are used as threshold datasets, and where possi-
ble, effect estimates are used as the overlay (color) data-
set. To retain useful information while thresholding and to 
better perform QC, transparent thresholding is applied to 
highlight regions of high significance while still showing 
results throughout the full field of view, even outside the 
brain (Allen et al., 2012; Taylor, Reynolds, et al., 2023).

Finally, there are three other points to note about the 
regress block options. Even though there is only one time 
series in this dataset, we include the “-regress_motion_
per_run” flag to highlight that in cases of concatenating 
multiple runs one can better account for motion-
correlation variance. This option has no particular effect 

when there is only one input time series, but we typically 
leave it in as a practical default to not forget it in other 
scenarios. Secondly, 3dREMLfit is used to account for 
serial correlation in the time series residuals, using a gen-
eralized least squares estimation of temporal autocor-
relation (“-regress_reml_exec”). This generalizes the 
default estimation functionality of 3dDeconvolve, allow-
ing simultaneous estimation of the beta coefficients in the 
model with estimating temporal correlation and variance. 
Finally, “-regress_est_blur_errts” flags the processing 
script to estimate smoothness of the residual time series 
(the “errts*” dataset) with 3dFWHMx, which can be useful 
for QC considerations as well as for some group analyses 
that use clustering.

3.3.  Ex. 3: Full resting-state FMRI: Volumetric, 
voxelwise analysis

We now show an example of full resting-state processing 
with single-echo FMRI data, for voxelwise analysis 
(Fig. 12, or run: afni_proc.py -show_example “AP publish 
3c”). Again, both the skullstripping and nonlinear warping 
from sswarper2 have been integrated. Unlike previous 
examples, this command includes local regressors that 
were estimated from separately measured physiological 
time series, as described below. It also imports results 
from FreeSurfer’s recon-all on the subject’s anatomical 
T1w dataset. The reverse phase encoding datasets from 
Ex. 1 could easily be applied here with the same “-blip_*” 
options, as well. We leave the blip correction out in this 
case and users can view the difference between applying 
the B0 distortion correction and not doing so; note that 
the amount of difference including versus ignoring this 
step will have for a dataset will depend strongly on the 
scanner and acquisition details being used.

There are several situations where it can be useful to 
add precalculated masks or ROI atlas maps into the pro-
cessing stream, each of which ends up in the final space 
(here, MNI) on either the EPI or anatomical grid, as spec-
ified. Here, the “-anat_follower_ROI ..” option is used to 
bring anatomical parcellation datasets FreeSurfer’s 
recon-all into the processing stream. For each imported 
dataset, the user assigns a brief label for working with the 
dataset within the code and also designates the final grid. 
Here, we are bringing in the gray matter (GM) map from 
FreeSurfer’s “2009” parcellation (Destrieux et al., 2010), 
which is used twice: one copy will have “epi” grid spac-
ing (label = “aegm09”) and one will have “anat” grid spac-
ing (label = “aagm09”). These could be imported as part 
of processing for an ROI-based analysis, for example (in 
which case we would remove the blur block in the afni_
proc.py command), but in the present case, they will be 
used only for QC-related purposes.

§§  More details on the DM block choices and the dmUBLOCK() function are 
provided in AFNI’s online documentation here: https://afni​.nimh​.nih​.gov​/pub​
/dist​/doc​/htmldoc​/statistics​/deconvolve​_block​.html

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/statistics/deconvolve_block.html
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/statistics/deconvolve_block.html


20

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 11.  QC images generated by afni_proc.py for Ex. 2, focused on evaluating the task-based regression modeling 
results. In each panel, the statistic value is used for thresholding in a translucent fashion: suprathreshold locations are 
opaque and outlined, and subthreshold locations are increasingly translucent. The overlay color is the accompanying 
effect estimate coefficient where available (panels B and C). Panel A exhibits the full F-stat, which shows the relative 
quality of model fit. Panels B and C show the two contrasts specified in the afni_proc.py command. In all cases, modeling 
results outside the brain are shown, for more complete evaluation and understanding of the processing results (Taylor, 
Reynolds, et al., 2023).



21

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

The “ricor” block is used to include regressors that have 
been estimated from physiological time series, which were 
measured during the FMRI acquisition. These typically 
include slicewise RETROICOR regressors (C. Chang & 
Glover, 2009; Glover et  al., 2000), as well as volumetric 
respiration volume per time (RVT; Birn et al., 2006) regres-
sors. In the present case, both cardiac and respiratory 

traces were acquired, so that eight slicewise regressors 
were calculated along with five volumetric ones (shifted 
copies of RVT). These sets of regressors were calculated 
with AFNI’s physio_calc.py prior to running afni_proc.py. 
Figure 13A displays the QC image of peak and trough esti-
mation of a respiratory time series during that processing. 
Panel B in the same figure shows the eight cardiac and 

Fig. 12.  The afni_proc.py command for Ex. 3 (resting-state, single-echo FMRI, full processing). Options with gray 
background have already been described in earlier examples here, and any variables described in the captions of 
Figures 5 and 8. ${sdir_timing} is the directory containing stimulus timing files. Running this command produces a 
commented script of >740 lines, encoding the detailed provenance of all processing. Two additional atlases are imported 
here, for extracting ROIs for checking TSNR and shape properties: “BrodPijn” is the Brodmann atlas (1909) digitized by 
Pijnenburg et al. (2021); and “SchYeo7N” is the refined version of the 7-network, 400 parcellation Schaefer-Yeo atlas (Glen 
et al., 2021; Schaefer et al., 2018).



22

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 13.  Aspects of processing related to having respiratory and cardiac time series data included in FMRI processing 
in Ex. 3. The AFNI program physio_calc.py was run on these physiological time series, for which peak and/or trough 
detection is a first key step, shown in panel A for the respiratory data. The QC image shows the estimated peak and 
trough locations with triangles (which can be edited in the program’s interactive mode, if necessary); the blue and red 
bands reflect the relative intervals between pairs of each, which can help highlight potential algorithm problems. Panel 
B shows the final RETROICOR regressors estimated by physio_calc.py. These are included in a slicewise manner within 
early afni_proc.py processing, along with five RVT regressors from the same program (not shown). Finally, panel C shows a 
map of the fractional variance explained using the 13 physiological regressors, with highest values around the subcortical 
and inferior regions.



23

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

respiratory regressors based on RETROICOR that get 
applied to the FMRI data (five RVT regressors, not shown, 
are also included). Because RETROICOR contains slice-
wise information, its regressors are applied to the unwarped 
data, so “ricor” is typically one of the earliest processing 
blocks. Additionally, users can specify whether the regres-
sors should be applied “per run” or “across runs” (the for-
mer is selected here), which applies when multiple EPI 
datasets are present. The relative variance of the com-
bined physiological regressors is shown in Figure  13C, 
where the largest amounts are in the subcortical/inferior 
regions, as expected.

It is worth noting that the way the physiological regres-
sors are implemented relies on the ability of AFNI’s 
3dREMLfit to work with voxelwise regressors. Most FMRI 
regression modeling uses a single set of regressors 
across the whole volume, but inherently the RETROICOR 
regressors are calculated per slice. This and other fea-
tures such as the voxelwise regressors of ANATICOR (Jo 
et al., 2010), which are described in Appendix C, rely on 
this extended functionality.

This example includes both outlier- and motion-
based censoring, similar to Ex. 2. In this case, a slightly 
stricter motion criterion (Enorm > 0.2) is utilized, since 
resting-state FMRI tends to be more susceptible to 
motion-based artifacts than task-based data (as long as 
the motion is not strongly stimulus correlated). Fig-
ure  14A displays the Enorm and outlier fraction esti-
mates for this subject, for which there were only two 
time points that reached threshold values for censoring. 
As is common for resting-state FMRI, we also include 
both the estimated motion profiles and their derivatives 
in the regression model (“-regress_apply_mot_types 
demean deriv”), spending slightly more degrees of free-
dom (DFs) to try to reduce motion effects. The degree of 
freedom bookkeeping for this regression model is dis-
played in Figure 14B, organized by category. It is worth 
noting that these EPI data display very little motion, and, 
therefore, censoring uses up very few degrees of free-
dom (<1%). However, in many cases censoring can use 
up a sizable fraction of degrees of freedom, and one 
must take care in overall model design to not use up too 
many degrees of freedom. The APQC HTML includes 
automatic checks for this.

It is worth highlighting that this processing example 
does not include bandpassing, even though doing so to 
restrict the analyzed time series to “low frequency fluctu-
ations” (LFFs) has historically been a widely implemented 
choice in resting-state FMRI. The LFF band is typically 
0.001–0.1 Hz or 0.01–0.1 Hz. It is certainly possible for 
afni_proc.py to include this within the regression model, 
using a single option to specify the interval of the fre-
quency band to keep (e.g., “-regress_bandpass 0.01 

0.1,” in units of Hz). In fact, one can specify multiple 
bands to keep, simply by specifying multiple pairs of 
boundaries. But there are several caveats that should be 
noted about the typical bandpassing to the LFF range. 
Many of them deal with counting degrees of freedom 
(DFs) while processing, which is something that is unfor-
tunately often overlooked in the field, along with how 
software must take care with how bandpassing is per-
formed within the processing; see Appendix A and 
Caballero-Gaudes and Reynolds (2017).

The fractional loss of degrees of freedom for FMRI 
bandpassing can be approximated by either of the fol-
lowing simple formulas:

	 DFloss = 1− 2 ∗∗ TR ∗∗ ftop − fbot( ), 	 (1a)

	 DFloss ≈ 1− 2∗∗ TR ∗∗ ftop, 	 (1b)

where TR is the acquired EPI data’s repetition time (in 
seconds), and ftop and fbot are, respectively, the cho-
sen upper and lower bounds of the band (in Hz); when 
fbot is much smaller than ftop, as would be common for 
standard LFF bands, then the simpler form in Equa-
tion 1b applies. In most resting-state papers that band-
pass to LFFs, ftop = 0.1 Hz, so that for TR = 2 s one 
loses 60% of the degrees of freedom of the input data 
solely from the bandpass regressors. For FMRI with 
faster temporal sampling, the amount of loss grows: for 
TR = 1 s, one loses 80% of the DFs from the standard 
bandpassing alone. These are huge fractions of the time 
series DFs to remove, even before considering the fur-
ther removal of DFs via motion, baseline, and censoring 
regressors. We note that afni_proc.py’s processing 
applies bandpassing in a mathematically consistent 
way within the regression model. It also tabulates these 
features and reports them so that users are aware, with 
various warning levels. If such accounting is not done, 
users might not be aware of the severe loss of DFs, even 
using up more than 100% of them, which is often a risk 
due to subject motion.

For resting-state and naturalistic FMRI, the main out-
put of interest is the residual or “error” time series (errts) 
from the regression model. This is a notable difference 
from task-based data, where the effect estimates and 
statistics from the regressors of interest are the main out-
put. In that case, the residuals should mostly contain the 
“noise” and other nonmodeled parts of the data, and they 
are typically just used to help judge the quality of data fit. 
In resting-state processing, evaluating the modeling job 
is more difficult because the conceptual separation of 
“signal” and “noise” does not materialize in the outputs. 
To help evaluate the final time series, the afni_proc.py QC 
HTML displays seed-based correlation maps of several 



24

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 14.  QC images generated by afni_proc.py related to motion effects and regression modeling in Ex. 3 processing. 
Panel A shows the primary quantities that are used to assess subject motion and its effects: Enorm (Euclidean norm), 
which is approximately the amount of subject motion between time points, in mm; and outlier fraction. Users typically set 
thresholds for these quantities (horizontal blue lines) to determine which time points should be censored (highlighted in 
red). Panel B shows the degree of freedom bookkeeping for the regression model, organized by category of regressor. 
During modeling, data analysts must balance the removal of motion and other non-neuronal effects with the reduction of 
the statistical DF count. This example did not include bandpassing in processing, but Panel C shows the DF count if it had 
been included (see supplementary Ex. 5 in Appendix C). Note that bandpassing itself reduces the DF count by 60% of the 
original amount. Bandpassing can be problematic, particularly in cases of more subject motion.



25

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

major resting-state networks*** (Taylor et al., 2024): default 
mode network (DMN), visual and auditory networks 
(Fig. 15A), when the template space is known. These can 
reveal the presence of artifacts, signal dropout, problems 
with motion or regressors, and more. As above, transpar-
ent thresholding is applied. Additionally, effects of B0 
inhomogeneity distortion are visible in the anterior regions 
(axial slices at Z = 5 S and 27 S), which may be reduced 
by including distortion correct via fieldmaps or reverse-
phase encoding-derived warps (see Ex. 1, above).

Additionally, viewing the temporal SNR (TSNR) of the 
time series can be useful for judging the regions of the 
brain with reasonable coverage for analysis (see Fig. 15D). 
Even within the acquired field of view, distortions and 
dropout can occur that greatly reduce the measured sig-
nal, and this can affect the ability of the researcher to 
investigate particular regions. For example, medial frontal 
and subcortical regions can be particularly affected by 
dropout, and differentially across subjects depending on 
brain-to-slice angle, reducing the ability to accurately 
study specific locations within the brain. We note that 
Figure 7 of Reynolds et al. (2023) contains an illustrative 
set of TSNR maps of varied degrees of quality, which are 
discussed in detail in the text.

Studies have various paradigms, designs, and areas 
of interest, while also having unique scanner properties, 
sequence protocols, subject populations, and more. To 
help users judge the appropriateness of the data at hand 
for their study, afni_proc.py lets users provide one or 
more sets of ROIs to evaluate for signal strength and spa-
tial sampling. A table of TSNR and ROI shape properties 
for those regions is then added to the “warns” block of 
the APQC HTML, following the format of the report’s 
automatically generated table of regions in known tem-
plate spaces (Taylor et  al., 2024). In this example, two 
“-ROI_import ..” options are used to load a pair of atlases: 
“BrodPijn” is the Brodmann atlas (1909) digitized by 
Pijnenburg et al. (2021); and “SchYeo7N” is the refined 
version of the 7-network, 400 parcellation Schaefer–Yeo 
atlas (Glen et  al., 2021; Schaefer et  al., 2018). Then, a 
corresponding pair of “-regress_compute_tsnr_stats ..” 
options are used to provide a specific subset of regions 
of interest for each. Note that one can all use a keyword 
“ALL_LT” to select all regions in a labeled atlas dataset. 
Figure 16A shows the table and locations of the Brod-
mann atlas and B shows the same for the refined 
Schaefer–Yeo atlas. A detailed table description is pro-

vided in section 2.3.7 and figure 15 of Taylor et al. (2024). 
Briefly, warning levels reflect ROIs with empty voxels or 
very narrow shapes (that are susceptible to partial volum-
ing or misalignment), as well as TSNR values that are 
either generally low or unstably changing across the ROI. 
In the Brodmann set, two ROIs have particularly low 
TSNR (in frontal/inferior regions, which often have signal 
strength challenges), as well as one whose maximum 
depth is only one voxel.

Finally, we note that the regress option “-regress_
make_corr_vols aegm09” makes use of the anatomical 
follower ROI dataset information that was added earlier in 
the command. Specifically, afni_proc.py will generate a 
whole brain correlation map using the average time series 
of all nonzero regions of the referenced dataset. In this 
case, “aegm09” is the anatomical gray matter parcella-
tion on the final EPI grid. We note that this option can 
take several arguments, so multiple correlation maps 
from anatomical followers can be made in parallel.

3.4.  Ex. 4: Full multiecho FMRI resting state: 
Surface-based processing and analysis

This example presents another case of resting-state pro-
cessing for the same sub-005 participant as in Exs. 1 and 
3. However, here we use all echos in the ME-FMRI acqui-
sition and also include surface-based processing (Fig. 17, 
or run: afni_proc.py -show_example “AP publish 3 d”). As 
in Ex. 1, a pair of reverse-blip EPI datasets is also utilized 
for B0-inhomogeneity distortion correction. The “ricor” 
block could be added in the same form demonstrated in 
Ex. 3, if desired. Several of the other processing options 
have been discussed in previous examples, as well (high-
lighted in Fig. 17).

The primary reason for acquiring multiple echos is to 
combine their information in some manner to boost EPI 
SNR, which is a major benefit. ME-FMRI can typically be 
acquired without increasing standard TR times, though 
some combination of multiband and slice acceleration is 
typically required. As long as using the acquisition setup 
does not lead to artifacts (which should be checked as 
part of the piloting and quality control), this style of acqui-
sition may be widely considered as beneficial. In the 
present case, a single run of three echos was acquired 
with TR = 2.2 s. The set of echos for a given EPI run are 
input with “-dsets_me_run ..” and a corresponding set of 
echo times with “-echo_times …” It is possible to input 
and process multiple ME, simply adding a “-dsets_me_
run ..” option for each additional run; all runs must have 
the same set of echo times, so the option providing those 
values needs only be provided once.

Because we are processing ME-FMRI data here, we 
can add two options to try to minimize temporal and spa-

***  Seed locations for DMN, visual and auditory networks for several recog-
nized template spaces, including MNI, Talairch–Tournoux, India Brain Tem-
plates (Holla et  al., 2020), Haskins Pediatric (Molfese et  al., 2020), and a 
number of nonhuman ones. This list is growing, and users can help to inte-
grate others, as well.



26

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 15.  QC images of statistical output for resting-state time series, for which the residuals are the time series of interest 
(Ex. 3). Panels A–C show axial maps the three seed-based correlation maps shown in the APQC HTML when the final 
space is a known template: for the default mode network (DMN), the visual network, and the auditory network. These 
allow for checks for artifacts and other potential problems from processing. Panel D displays the TSNR for these data, 
which can help distinguish regions of strong signal coverage from those with dropout or artifact.



27

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Fig. 16.  QC tables of ROI shape and TSNR properties of user-defined regions of interest (Ex. 3). The regions in panel A 
are defined in the Brodmann Atlas digitized by Pijnenburg et al. (2021), and those in panel B are from the refined version 
of the 7-network, 400 parcellation Schaefer–Yeo atlas (Glen et al., 2021; Schaefer et al., 2018). See Taylor et al. (2024) for 
details on the columns and warning levels, such as for narrow ROIs and low/unstable TSNR. Briefly: ROI = integer value 
of the region in the dataset; Nvox = total number of voxels in the ROI; Nzer = number of zero-valued voxels in the region 
(e.g., due to masking or limited FOV); Dvox = maximum depth, counted in voxels; Tmin, T25%, Tmed, T75%, Tmax = the 
minimum, lower quartile, median, upper quartile and maximum TSNR values in the ROI; X,Y,Z = RAI coordinates of 
maximum-depth location; ROI_name = string label of ROI.



28

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

tial blurring during processing to a maximal degree that 
was not used in earlier examples. In both cases, the 
choice is to specify a sinc-function kernel for interpola-
tion, since mathematically this kind of interpolation kernel 
preserves edges (high-frequency features) to the greatest 
degree possible, from signal processing theory. First, 
“-tshift_interp -wsinc9” specifies using a high-order sinc 
function (instead of the default quintic spline) during the 
early step of time shifting slices to the same temporal 
origin. Similarly, “-volreg_warp_final_interp wsinc5” 
specifies using a sinc (instead of the default cubic spline) 
for spatial interpolation when applying the concatenated 
spatial transform to the input EPI datasets. The cost to be 
paid for these relatively minor reductions in blurring is 
slightly increased computing time and the introduction of 

ringing to the interpolated domain (an unavoidable 
tradeoff with sinc functions). In theory, the spatial sinc 
kernel could introduce some GM-like correlations artifi-
cially into non-GM in some cases, which should be 
checked. Since single-echo EPI is typically blurred more 
notably as part of processing (as noted before, ME-FMRI 
will tend to have inherently higher TSNR from combining 
echos), we generally do not include these options due to 
their diminished impact. But for ME-FMRI, their benefits 
may be more noticeable in processing.

The “combine” block controls the details for the ME-
FMRI processing. There are several potential formula-
tions of echo combination, and a large number can be 
specified via afni_proc.py with “-combine_method …” 
The most commonly applied ones include:

Fig. 17.  The afni_proc.py command for Ex. 4 (resting-state, multiecho FMRI with surface analysis, full processing). 
Options with gray background have already been described in earlier examples here, and any variables described in the 
captions of Figures 5, 8, and 12. ${sv_suma} is the surface volume dataset; ${suma_specs} are the surface specification 
files in the SUMA directory; ${dsets_epi_me} is a set of a single run of EPI datasets with different echo times. This 
example’s “-radial_correlate_blocks …” option does not include “regress,” because that stage of processing occurs on 
the surface and radial correlation QC has not yet been implemented there (but it will be added in the future). Running this 
afni_proc.py command produces a commented script of >650 lines, encoding the detailed provenance of all processing.



29

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

•	“OC,” to use the straightforward optimal combina-
tion method of Posse et al. (1999), which is imple-
mented within AFNI.

•	“m_tedana,” to use the open source tedana pack-
age version of MEICA (DuPre et al., 2021), which is 
selected in this example.

•	“tedana,” to use the earlier version of MEICA from 
Kundu et al. (2011), which is distributed in AFNI (but 
is no longer updated).

There are further variations and combinations of these 
methods, which can be chosen with separate keywords 
and controlled with other “-combine_*” options, which 
the afni_proc.py help file describes in detail. Each 
method has its own requirements, assumptions, and 
potential benefits. For example, OC is the simplest: for 
each voxel, a weighted average is calculated to opti-
mize BOLD contrast, and this provides a straightfor-
ward boost to local SNR. MEICA requires more 
processing and algorithmic choice, but aims to remove 
noise components from the dataset, potentially provid-
ing “clean up” as well as SNR boost. We note that the 
“mask” block is specifically placed before “combine” in 
this example, because the selected tedana MEICA cur-
rently requires a brainmask for processing (with OC, it 
would not be included, so more of the FOV results 
could be seen for artifact checks; see supplementary 
Ex. 8 in Appendix C).

Inclusion of the “surf” block leads to the EPI data 
being projected onto the subject’s anatomical surface 
mesh dataset, which was initially calculated by Free-
Surfer’s recon-all here. After running AFNI’s @SUMA_
Make_Spec_FS on the FreeSurfer results for format 
conversion and some additional processing, the final 
meshes are standardized in the sense that nodal corre-
spondence exists among subjects (Argall et al., 2006), 
to the degree the mesh creation was accurate. @SUMA_
Make_Spec_FS creates two different sized meshes: the 
“std.141.*” datasets have 198812 nodes, and the 
“std.60.*” ones have 36002 nodes. The higher resolu-
tion mesh corresponds to approximately 1 mm spacing 
between nodes (analogous to a standard T1w spatial 
resolution at 3T), while the lower resolution mesh corre-
sponds to approximately 3 mm spacing (analogous to a 
typical EPI resolution at 3T). Users may choose which-
ever mesh is most appropriate for their analyses. These 
meshes are input to afni_proc.py by providing the name 
of the corresponding “specification” file(s), such as 
std.141.${subj}_lh.spec and std.141.${subj}_rh.spec. 
Additionally, one inputs the reference anatomical for 
volume-to-surface coordinate mapping via “-surf_anat 
…” Using these datasets, the EPI values are mapped to 
the surface using the average value along the line seg-

ments connecting corresponding nodes of the smooth 
white matter and the pial surfaces.

Importantly, “surf” precedes the “blur” block, because 
one primary benefit of surface-based processing is that 
blurring can be constrained to locally relevant GM (as 
opposed to the more indiscriminate volumetric blurring, 
which can blur in WM or GM from other gyri). The same 
“-blur_size ..” option specifies the size of blurring to 
apply, but it will be applied along the surface mesh here. 
Since this is a multiecho FMRI data, which should have 
inherently better TSNR than a corresponding single-echo 
acquisition, blurring should likely be kept smaller than 
what would be applied for single-echo EPI data. It 
remains useful to still have some small blurring applied, 
with the primary purpose being to accommodate ana-
tomical variability remaining after surface-based tem-
plate registration; humans in particular have relatively 
high variability of sulcal/gyral patterns.

Essentially the same “regress” block modeling is per-
formed here as in Ex. 3. Again, LFF bandpassing is not 
included, but the mean and derivative of motion parame-
ters are. Figure 18A–C shows the seed-based correlation 
maps for the same networks shown in Figure 15A for Ex. 
3’s volumetric processing. In each case, the seed location 
was projected onto the nearest mesh node using AFNI’s 
Surf2VolCoord, and then 3dTcorr1D was applied to esti-
mate the correlation map. Figure  18D shows the TSNR 
after final regression (cf. volumetric case in Fig. 15B).

3.5.  Computation notes

For the present work, afni_proc.py was run on a comput-
ing cluster (the NIH’s Biowulf), which currently uses a 
Linux Rocky 8 operating system. While not necessary for 
this small set of examples, we offer this demonstration of 
“swarming” the processing (here via a slurm workload 
manager) for those analyzing a larger collection of data. 
The GitHub repository for this work contains both the 
HPC scripts (in the “scripts_*_biowulf/” directories) and 
the desktop versions (in “scripts_*_desktop/”).

For each Biowulf example, we requested 8 CPUs and 
10 GB RAM. More resources could be used as desired: 
several AFNI programs—particularly the alignment 
ones—have inherent parallelization with OpenMP to 
make use of multiple CPUs. We chose to run with 
resource levels that might mirror a reasonable desktop or 
laptop for processing. The runtimes for each command, 
with final results directory disk space usage, were:

•	Ex. 1: 0.8 GB, 23 min
•	Ex. 2: 1.4 GB, 36 min
•	Ex. 3: 1.1 GB, 19 min
•	Ex. 4: 2.8 GB, 20 min



30

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Ex. 4’s disk space is the largest because of the multiple 
echo datasets that exist through several of the initial 
processing stages. This resource usage seems widely 
applicable. Note that processing time and disk space 
will vary depending on the dataset properties, such as 
voxel size, number of time points and/or runs, etc.

Some of the preliminary programs took more time: 
FreeSurfer’s recon-all took 3 h 38 min (using 1 CPU, since 
using “-parallel” did not always succeed), and sswarper2 
took 1 h 25 min (using 16 CPUs).

4.  DISCUSSION

FMRI studies are complex, with many fundamental 
decisions to make, each of which can strongly affect the 

outcome. What field strength of scanner should be 
used? How many echoes should the EPIs have, and 
with what flip angle and voxel size? How many subjects 
should be scanned, and how many sample trials should 
be acquired during each run, or how many time points? 
The processing is also complex, with many specifica-
tions tied in with study design: what blur size to use, 
whether to process on the surface or volume, and how 
strict to be with motion censoring. In the end, no FMRI 
study can be made without careful design and lots of 
choices made at all stages.

The purpose of pipeline-generation tools is well 
known: they aim to allow the user to perform analysis 
by specifying just input data and a set of options, 
rather than doing their own scripting and code-level 

Fig. 18.  Some results generated by afni_proc.py for Ex. 4, which uses surface-based processing for resting-state ME-
FMRI data. Images are displayed using SUMA (Saad et al., 2004). Panels A–C show seed-based correlation maps for the 
same seed locations used in the standard APQC HTML reports when purely volumetric processing is used (cf. Fig. 15A–C, 
showing QC images for Ex. 3). Panel D shows the TSNR across the cortical surface, for ME-FMRI data which have been 
processed using MEICA-estimated regressors. Some empty patches in the TSNR maps reflect the fact that the utilized 
MEICA requires brainmasking and occurs before surface projection.



31

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

interaction. This should generally reduce difficulty for 
the user, as well as the chance of errors leaking into 
the analysis stream, as individual pipelines can be 
widely tested. The specification of the pipeline com-
mand itself serves as a condensed and readable sum-
mary of important processing choices, which can be 
shared and interpreted more easily than a full process-
ing script. Each of these aspects should improve sta-
bility, reproducibility, applicability, shareability, and 
extensibility (i.e., expanding the processing to include 
more runs) of the analysis.

AFNI’s afni_proc.py was designed to have the above 
features, as well as a particular emphasis to allow users 
to have detailed control over their processing and a close 
understanding of each step. To facilitate this, the pipeline 
script is readable and commented, and outputs facilitate 
visualization and checks. The researchers should be able 
to design the analysis that they feel is appropriate for 
their study, within bounds of mathematical/algorithmic 
correctness; to help verify the latter, the created pipelines 
include several checks and warnings during processing.

It is true that with greater flexibility, complexity also 
increases. To balance this, the afni_proc.py specification 
is organized modularly and hierarchically, so the users 
can first organize their main processing steps (the blocks), 
and then provide details for each with option names that 
typically begin with that block name, for readability. To 
assist with constructing a pipeline, one can use one of 
the many starter or published examples, and one can 
also programmatically compare options between two 
provided commands and/or predefined examples. 
Because afni_proc.py creates a commented script of all 
processing steps, one can be sure of exactly how each 
choice is implemented, which is data provenance at the 
level of code specificity. Importantly, this helps the 
researcher deeply understand their processing choices 
and see them in action. Being aware of the details may 
require more work, but it can also greatly improve the 
consistency and interpretation of the results.

4.1.  Learning more about FMRI processing and 
using afni_proc.py

As noted above, FMRI data and its processing are com-
plicated. Users must be sure of their study goals, and 
then have the ability to carry them out as successfully as 
possible during their analysis; successful processing 
helps to validate (or to uncover issues) in both. While 
there are many educational resources available for FMRI, 
we present some here that the present authors have con-
tributed to (and the authors note that they continue to 
learn and improve their own understanding over time, as 

well). These cover both general FMRI processing princi-
ples and more specific afni_proc.py usage.

The afni_proc.py program help contains a large set of 
commented examples, as well as descriptions of each 
option and several comments on topics (e.g., bandpass-
ing considerations in resting state). This can be viewed 
from the terminal (“-help”), in a text editor (“-hview”) or in 
a chapter-formatted online version (https://afni​.nimh​.nih​
.gov​/pub​/dist​/doc​/htmldoc​/programs​/alpha​/afni​_proc​.py​
_sphx​.html​#ahelp​-afni​-proc​-py).

Several other processing examples with afni_proc.py 
and other AFNI programs are provided in the Code Exam-
ples (Codex) portion of the online documentation (https://
afni​.nimh​.nih​.gov​/pub​/dist​/doc​/htmldoc​/codex​/main​_toc​
.html). These provide examples and descriptions of pro-
cessing, links to the related paper, and either the scripts 
or pointers to the associated repositories. Codes here 
tend to be commented, in order to provide descriptions 
of processing choices. We strongly encourage all users 
to provide the afni_proc.py and other processing com-
mands in supplementary files and/or associated code 
repositories, to benefit both their colleagues and train-
ees, and even likely themselves in future studies.

AFNI contains several demos that comprise both exe-
cutable code and data. For example, we provide a full 
demo implementing several variations of processing and 
echo combination for resting-state FMRI via afni_proc.py. 
This can be installed with @Install_APMULTI_Demo1_rest 
(Taylor et al., 2022).

The present paper provides a combination of afni_
proc.py code examples and option description, as well 
as general FMRI processing comments (above, and see 
below in the Section 4). It also contains an associated 
GitHub repository of scripts and downloadable data. 
Taylor et  al. (2018) provided an earlier description of 
afni_proc.py processing options and considerations. 
For examples of code development and validation of 
several steps used within afni_proc.py, see the next 
section as well as the larger online list of AFNI methods 
and data resources (https://afni​.nimh​.nih​.gov​/pub​/dist​
/doc​/htmldoc​/published​/citations​.html).

Nonhuman imaging has been increasing over time, 
along with the availability of public datasets such as through 
PRIMatE Resource Exchange (PRIME-RE; Messinger et al., 
2021) and combined data and resource exchange (PRIME-
DRE; Milham et al., 2022). As part of these public resources, 
we created processing demos, with data and full process-
ing pipelines combining AFNI’s @animal_warper and afni_
proc.py programs, for both task and resting-state 
processing using the NIMH Macque Template and CHARM 
atlases (Jung et  al., 2021). These can be, respectively, 
downloaded and installed with: @Install_MACAQUE_
DEMO and @Install_MACAQUE_DEMO_REST.

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/alpha/afni_proc.py_sphx.html#ahelp-afni-proc-py
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/alpha/afni_proc.py_sphx.html#ahelp-afni-proc-py
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/alpha/afni_proc.py_sphx.html#ahelp-afni-proc-py
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/codex/main_toc.html
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/codex/main_toc.html
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/codex/main_toc.html
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/published/citations.html
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/published/citations.html


32

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

For over 20  years, the AFNI Bootcamp is a long-
running educational course that focuses on both theory 
and hands-on practice, from initial data checks through 
group analysis and results reporting. This course is 
taught without charge both at NIH and host institutions 
around the globe. Recorded lectures from some of these 
workshops are available online (https://afni​.nimh​.nih​.gov​
/pub​/dist​/doc​/htmldoc​/educational​/main​_toc​.html), 
along with the associated demo data. More recently, an 
expanded (and still growing) set of lectures has been 
created on the AFNI Academy YouTube Channel (https://
www​.youtube​.com​/c​/afnibootcamp), which is also freely 
available.

Finally, the developers maintain active discussions 
about a wide range of data processing topics on the AFNI 
Message Board (https://discuss​.afni​.nimh​.nih​.gov/). 
These often involve discussing code, such as actively 
commenting on and developing afni_proc.py commands. 
This can also involve suggestions or queries that become 
new afni_proc.py functionality.

4.2.  Method development and validation

There are several layers to afni_proc.py, which are dis-
cussed in more detail in Appendix B. Briefly, we note that 
the Python program “afni_proc.py” was started in 2006 
by R. Reynolds, who has been its primary designer and 
developer since then. The program’s scripts make use of 
the “afnipy” Python library as well as the larger AFNI code 
base itself, and its functionality has grown as new tools 
have been developed. It also integrates with several 
external software projects, such as FreeSurfer, tedana’s 
MEICA, and NiiVue, and has benefited from input, bug 
fixes, and suggestions by the wider neuroimaging com-
munity. Throughout its development, its testing infra-
structure has also grown, so that it is currently tested 
using more than 200 executions across 135 scripts.

Because afni_proc.py is part of an actively developed 
software package, many new features have been added 
over time (see Appendix B for a summary timeline). These 
additions variously arise from user requests, to adapt to 
new acquisition techniques, or simply as developer-
based ideas to improve processing. Several of these fea-
tures have been tested and validated within their own 
substudies. For example, the “lpc” cost function used to 
align EPI and T1w anatomicals was developed specifi-
cally to improve alignment between images with differing 
contrast while also focusing on local features (Saad et al., 
2009), and the local EPI brightness unifizing was recently 
added as an additional improvement when EPIs are 
strongly inhomogeneous. The quality of nonlinear  
warping results using 3dQwarp (which also underlies  
@SSwarper, sswarper2, auto_warp.py and @animal_

warper) was demonstrated using both structural ROIs 
and FMRI data (Cox & Glen, 2013). The benefits of reduc-
ing EPI distortion using either AFNI’s reverse phase 
encoding with 3dQwarp or phase map unwarping with 
epi_b0_correct.py were demonstrated in Roopchansingh 
et al. (2020). To address Eklund et al.’s (2016) observation 
that the field-wide assumption of Gaussian spatial 
smoothness was not very accurate, Cox et  al. (2017) 
developed and validated a new, non-Gaussian “mixed” 
ACF that 3dFWHMx uses. As some concerns had been 
raised about voxel resampling instabilities in other soft-
ware packages, Cox and Taylor (2017) validated and 
demonstrated the stability of AFNI’s existing resampling 
methods for preserving smoothness. The left–right flip 
check was added to the quality control to guard against 
DICOM conversion and other data errors, and has proved 
useful in warning of problems in a surprising number of 
public datasets (Glen et al., 2020).

The benefits of afni_proc.py’s built-in quality control 
features, particularly the APQC HTML, have been demon-
strated in detail on a large number of public datasets by 
Reynolds et al. (2023), Birn (2023), Lepping et al. (2023), 
and Teves et  al. (2023), as part of the FMRI Open QC 
Project (Taylor, Glen, et al., 2023). These showed a variety 
of useful features for combining quantitative and qualita-
tive QC checks, which applied to a large number of 
observed features in real data. These included FOV 
issues, upside down brains, mismatched datasets, 
motion-related issues, variance-line artifacts, nonphysio-
logical spatiotemporal patterns observed with InstaCorr, 
and more. Several new features were subsequently inte-
grated into the APQC HTML, for user interaction and 
faster evaluation of in-depth exploration, as described in 
Taylor et al. (2024).

Independent groups have performed validations of 
various features across software packages. Temporal 
autocorrelation modeling methods were compared 
across major software packages, and AFNI’s 3dREMLfit, 
which is used by afni_proc.py, was found to perform the 
best (Olszowy et  al., 2019). The recapitulation of the 
importance of including bandpassing as a single step 
within the linear regression model (as done in afni_proc.
py) as opposed to being done separately††† was given by 
Hallquist et al. (2013). Among motion estimation tools of 
major packages, AFNI’s 3dvolreg was found to be tied for 
most accurate motion parameters, while having the addi-
tional benefit of introducing the least smoothing and 
being the fastest of those tested (Oakes et al., 2005).

†††  Technically, it is possible to perform the GLM after bandpassing, as long as 
all of the regressors have been bandpassed prior to modeling. However, one 
must still include the lost number of DFs in the regression model count, so that 
one is not actually performing an invalid model, which can easily happen.

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/main_toc.html
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/educational/main_toc.html
https://www.youtube.com/c/afnibootcamp
https://www.youtube.com/c/afnibootcamp
https://discuss.afni.nimh.nih.gov/


33

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

4.3.  Flexibility of HRF modeling and timing  
file formats

Research designs and questions can vary greatly in both 
their setup and assumptions. How best to model the cou-
pling between observed BOLD and underlying neuronal 
firing remains an open but important question. Utilizing an 
appropriate HRF is an important part of FMRI processing, 
and there are many options for modeling the hemody-
namic response function in afni_proc.py, primarily based 
on the functionality offered by AFNI’s 3dDeconvolve.

Researchers can choose among fixed-shape basis 
functions (such as GAM, BLOCK, SPMG1, TWOGAM, 
WAV, and MION), fully variably shaped basis functions 
(such as TENT and CSPLIN), intermediate functions 
(such as SPMG2 and SPMG3), and many more. Most of 
the fixed-shape functions even offer detailed control over 
the parameters used, such as GAM, TWOGAM, and WAV. 
EXPR allows one to specify an arbitrary linear expression 
in entirety. One can also provide externally generated 
regressors, akin to those based on motion parameters.

Additionally, one can control aspects such as event 
duration (for those basis functions that allow duration 
convolution) and amplitude modulation, where the 
expected magnitude of individual events varies based on 
external parameters. Event durations can be fixed for a 
stimulus class or be allowed to vary per event, which we 
refer to as duration modulation and is most commonly 
applied via dmUBLOCK(-value). Amplitude modulation 
can be applied with one or more modulators for each 
stimulus class, and amplitude and duration modulation 
can be applied together. There is also an individual mod-
ulation option (IM), which allows each event to generate a 
single regressor (or a single set of them). IM allows the 
regression to generate a time series of beta weights, 
measured across events. 3dDeconvolve’s program help 
contains further details.

These aspects are specified in afni_proc.py by provid-
ing the input timing file (usually via “-regress_stim_times”), 
a basis function for each stimulus class (“-regress_basis” 
or “-regress_basis_multi”) and the type of stimulus timing 
to apply (“-regress_stim_types”). The latter can be “time” 
for simple times, “AM1” or “AM2” for fixed or estimated 
amplitude modulation, as well as duration modulation, 
“IM” for individual modulation, or “file” for a simple 
regressor file. Single or multirow contrasts can be speci-
fied in the format directly readable by 3dDeconvolve.

As noted above, regression modeling is generally set 
up by 3dDeconvolve, formulating the global linear regres-
sion matrix. After that, the actual regression is done by 
either 3dDeconvolve, the more commonly used 3dREM-
Lfit, or even 3dTproject, for a simple projection of nui-
sance regressors. In cases of slicewise or voxelwise 

regressors (e.g., for RETROICOR or ANATICOR), 3dREM-
Lfit must be used. To explicitly use 3dREMLfit, afni_proc.
py provides the “-regress_reml_exec” option.

Finally, we note that there are a large number of timing 
file formats used by various recording tools and software 
packages across the field. While afni_proc.py is set up to 
handle AFNI-style stimulus timing files, timing_tool.py 
can be used to convert FSL-formatted files (tables of 
onset, duration, modulator) or BIDS-style TSV files (with 
column headers such as “onset,” “duration,” “stim_
class,” or others) into AFNI timing format.

4.4.  “Simple” afni_proc.py commands and quick 
quality control

Full single-subject FMRI processing for a study requires 
the choice of many parameters, such as blur size, motion 
censoring thresholds, a list of regressors to include, and 
more. Many of these are tailored carefully to fit appropri-
ately with the study design, aims, and data collection 
cohort. For example, motion thresholds might differ 
between studies of healthy adults and adolescent partic-
ipants with ADHD; blur values might differ based on voxel 
size; and stimulus response models will likely vary widely 
by task design. When preparing for a careful analysis, 
these choices can have strong effects on outcomes.

However, there are other times where a quick analysis 
without detailed attention to many of those choices is 
appropriate. For example, many meaningful QC features 
of the data and processing can be checked without these 
considerations, such as EPI FOV, TSNR, variance line 
artifacts, signal saturation, subject motion, and alignment 
success. For this reason, two “simple” wrappers for afni_
proc.py that require essentially no options except for the 
names of data files have been developed: ap_run_sim-
ple_rest.tcsh and ap_run_simple_rest_me.tcsh, for sin-
gle- and multiecho FMRI analysis, respectively.

These commands are designed to be general enough 
to be integrated into general data acquisition protocols, 
so that APQC HTMLs and further quantitative information 
can be automatically available soon after scans (e.g., as 
part of an XNAT or similar platform). This facilitates mak-
ing regular QC checks as soon as possible after acquiring 
data, greatly reducing the chance for data waste due to 
the undetected presence of scanner artifacts or acciden-
tal protocol changes for a large number of subjects. 
These could even be run while participants are still pres-
ent at the scanner, so that they could be rescanned if QC 
evaluations deem their data unreliable, rather than simply 
losing their data later.

Figure 19 shows examples of running these commands 
for the single- and multiecho FMRI data included here. 
When a template name is provided (“-template …”), quick 



34

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

affine alignment with the subject anatomical is performed, 
so that approximate but still systematic seed-based net-
work maps are output in the APQC HTML. If no template 
is input, two seed locations for correlation maps are still 
chosen, in central but left–right offset locations. The option 
to remove initial time points (“-nt_rm …”) exists to remove 
presteady-state time points from the EPI, if necessary 
(default: remove the first two time points). The single-echo 
version can now also be run as a BIDS App.‡‡‡

These quick QC evaluations can also be integrated 
with complementary programs of more purely quantita-
tive data checks. AFNI’s gen_ss_review_table.py can 
quickly sort through the basic review quantities stored by 
afni_proc.py during processing. Moreover, gtkyd_check 
(“getting to know your data” check) both creates its own 
quantitative summaries of raw, unprocessed datasets 
and wraps around gen_ss_review_table.py to compare 
datasets for consistency. These are described in more 
detail in Taylor et al. (2024) and Reynolds et al. (2023), 
with examples. They provide systematic and scriptable 
tools for evaluating data properties and appropriateness.

4.5.  Variety of pipeline tools

At present, there are many available pipeline tools for 
FMRI processing across the field, in addition to afni_

proc.py, which was created in 2006. These include the 
Conn Toolbox (Whitfield-Gabrieli & Nieto-Castanon, 
2012), C-PAC (Craddock et  al., 2013), DPARSF/DPABI 
(Yan & Zang, 2010; Yan et al., 2016), ENIGMA’s HALF-
pipe (Waller et al., 2022), fMRIPrep (Esteban et al., 2019), 
FSL FEAT, FsFast from FreeSurfer (Fischl & Dale, 2000), 
SPM12 (Ashburner, 2012), and others. These tools have 
the same general goals, but differing underlying meth-
ods, packages, languages, philosophies, and even end 
points. For example, some do not include regression 
modeling at the subject level, while others do; some 
offer flexibility of options, while others prefer less variety 
of choice; some perform analogous steps in notably dif-
ferent ways (such as local vs. grand mean or other scal-
ing); some are built for minimal (pre)processing (no 
smoothing, regression, …), while others aim to be more 
comprehensive. Some pipelines overlap in the specific 
programs used (particularly for tools that are wrappers of 
existing software packages; many of the above use AFNI 
programs), and some can optionally substitute in pro-
grams across various packages.

It is not practicable to perform a comprehensive com-
parison across all software and all varieties of analyses. 
Some forms of comparisons do exist in the literature. For 
example, Bowring et al. (2022) compared similarly struc-
tured AFNI, FSL, and SPM pipelines with fMRIPrep in 
various combinations for three different data collections; 
most results showed notable overlaps, and they found 
that fMRIPrep’s pipeline results were most similar to 
AFNI’s (set up with afni_proc.py). For one collection, the 

Fig. 19.  Examples of “simple” afni_proc.py commands, using wrapper programs in AFNI for both single- and multiecho 
EPI input. Each performs a quick, volumetric analysis of the provided input data, treating the input like resting-state FMRI 
with essentially no detailed options required. This convenient processing still produces useful outputs for informative QC 
evaluations of data. These commands are general enough to be applied as part of a standard data acquisition, so APQC 
HTMLs could be created and checked automatically and even while a subject is still present. Some simple processing 
options that might be useful are “-nt_rm …,” to provide the number of initial time points to remove; or “-template …,” to 
specify a reference template for quick, approximate (affine) alignment.

‡‡‡  Created in collaboration with Y. Halchenko: https://github​.com​/afni​/afni​
_proc​_simple​_bids​_app/. D. Nielson also led an earlier project that created a 
more general BIDS App for afni_proc.py: https://github​.com​/bids​-apps​/afni​
_proc

https://github.com/afni/afni_proc_simple_bids_app/
https://github.com/afni/afni_proc_simple_bids_app/
https://github.com/bids-apps/afni_proc
https://github.com/bids-apps/afni_proc


35

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

largest difference was observed due to how different 
packages formulated their signal model (choices related 
to the task regressor hemodynamic response and/or 
parametric modulations), and in another collection the 
largest difference was due to differences in the noise 
modeling of temporal autocorrelation structure.

One must also be careful how comparisons are made, 
in order to not bias results. In the NARPS study 
(Botvinik-Nezer et al., 2020), different teams analyzed a 
single task FMRI data collection with any software 
(including AFNI, fMRIPrep, FSL, SPM, and/or other pack-
ages) and processing settings of choice to answer nine 
region-specific hypotheses. While the abstract men-
tioned “sizeable variation” in results, the degree of differ-
ence/similarity depended strongly on the manner of 
comparison performed, so that it might be viewable as a 
stronger comment on meta-analysis variability than on 
processing variability per se (Taylor, Reynolds, et  al., 
2023). Applying thresholding to statistics volumes before 
comparisons led to relatively notable apparent variability. 
However, when thresholding was not injected before 
comparisons, there was a much greater similarity—see 
the predominantly high similarity matrix values of figure 2 
of Botvinik-Nezer et al. (2020), as well as those of their 
Extended Data Figure 2. Taylor, Reynolds, et al., (2023) 
explored the comparisons further, and showed how the 
kind of variability observed in the results was predomi-
nantly that of varied strength of agreement, rather than 
disagreement, across the set of tools and analysis set-
ups. Only looking at thresholded data creates a bias 
toward disagreement and perceived variability, as dichot-
omization bifurcated results. Using more complete data 
in comparisons, as well as in visualizations, provides a 
better basis for more informative meta-analysis.

Furthermore, more than the software choice itself, vari-
ations tend to arise more from purposeful decisions made 
by the researchers. For example, choosing whether or not 
to orthogonalize regressors, or the method of doing so, or 
implementing amplitude modulation, can understandably 
lead to differing effect estimates and statistics, especially 
in relative magnitude. While software packages overlap in 
many processing steps, some may be unique to one or 
another, hence leading users to choose a toolbox that is 
most appropriate for their experimental design of choice. 
Another practical factor of difference is a combination of 
familiarity with software and flexibility of options: when 
some step along the pipeline fails or has improvable 
results, the ability of the researcher to enact improvement 
depends on both of these attributes.

Similarly, the choice of smoothing (or blurring) radius 
during processing will certainly affect results, though 
choices like this tend to be software independent. While 
some obviously inappropriate values for parameters can 

be recognized (e.g., a blur radius of 100 mm for human 
FMRI data), many have what might be termed a “semi-
arbitrary” interval: there exists a range of reasonable 
values without any obviously optimal one. For example, 
blurring an EPI dataset that has 3 mm isotropic voxels 
by anywhere within a range of 4–6 mm seems reason-
able; in some cases not blurring at all is reasonable. 
Importantly, the degree of difference this kind of pro-
cessing choice makes can only be accurately assessed 
without inserting an artificial dichotomization step by 
thresholding results before comparison, since doing so 
heavily biases results toward disagreement (Chen et al., 
2022; Taylor, Reynolds, et al., 2023).

4.6.  Design choices in afni_proc.py

Since its inception, the primary goal of afni_proc.py is to 
allow the user to perform the FMRI analysis that is most 
appropriate for their study design and research goals. 
There are a large number of study design configurations 
and paradigms, and, therefore, there are a large number 
of options available and very few default settings. This 
flexibility has allowed afni_proc.py to be readily adapted 
to nonhuman primate and other animal imaging studies, 
such as rodents. It also means that single- and multiecho 
analyses, or volume- or surface-based, or voxelwise or 
ROI-based analysis can all be accomplished with a basic 
framework and by the adjustment of a small number of 
options. By specifying more options and relying less on 
default options (that might change over time with design 
or dependencies), both reproducibility and clarity are also 
enhanced.

While this can produce a relatively large learning curve 
to start analysis, we have tried to reduce this by having 
several “vanilla” processing examples described within 
the afni_proc.py help. There are also various download-
able demos and online repositories with published papers 
(e.g., the AFNI Codex, mentioned above), which provide 
useful references as possible starting points for many 
analyses. The newer run_ap_simple*.tcsh programs also 
require almost no options to run, but they still generate a 
full set of outputs to examine (including the APQC HTML), 
as well as full afni_proc.py commands to learn from or to 
further adapt. Appendix B provides a more detailed list of 
demos and available example commands.

Another benefit of the flexibility is to allow users to 
update and adapt their analyses easily. FMRI data are 
known to be noisy and susceptible to various distortions, 
and differences in scanner, sequence, pre-/postscanner 
software update, voxel size, acceleration factor, popula-
tion age, study design, and more can affect data proper-
ties significantly. One may want to adapt a pipeline to 
process new datasets that use contrast agents such as 



36

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

MION (e.g., in animal imaging). Within a data collection, 
some subjects may require tweaks to the cost function or 
alignment parameters to overcome poor initial overlap or 
brightness inhomogeneities. afni_proc.py can easily be 
run over subsets of datasets that need to be reprocessed. 
Public data from different sites can vary greatly in proper-
ties, requiring variations of processing. Having a single 
framework for all this makes comparing different meth-
odologies or approaches easier (e.g., the effect of 
smoothing on data), as well as adapting to new data 
(such as going from single to multiecho).

Moreover, afni_proc.py has a strong focus on the user 
understanding all stages of the analysis as well as being 
able to verify the success (or otherwise) of them. To that 
end, the results directory contains many intermediate 
datasets. This does create a relatively large footprint of 
disk space,§§§ but these have continually proved useful to 
answer questions that arise when checking back about 
the data (and these can be removed when the user is 
assured of their processing). The user has access to the 
provenance of all processing steps in multiple levels of 
detail: first, through the afni_proc.py options themselves; 
then through the complete, commented processing 
script that is created; and finally through the accumulated 
command history contained within the header of each 
processed dataset.

While great flexibility is allowed in processing, afni_
proc.py also contains automated checks for mathemat-
ical and other practical problems. Examples of these 
include checks for collinearity in model regressors (e.g., 
due to accidentally providing same file for two different 
stimulus classes, or to poor study design); left–right 
flipping between EPI and anatomical (discussed above, 
possibly due to DICOM conversion error); presteady-
state volumes left in the EPI (due to inexact data knowl-
edge); high censor fraction overall or within a stimulus 
class (subject motion issues, possibly related to task 
design); high usage of degrees of freedom (through 
either processing choices like bandpassing, or subject 
motion, or both); through-plane lines of high variance 
(scanner artifacts); and more. Additionally, users can 
query a dictionary of other quantitative outputs auto-
matically after afni_proc.py using gen_ss_review_table.
py, further facilitating automated evaluations of the 
datasets.

Even with those quantitative checks in place, data 
visualization remains a major part of processing, assess-

ment, and understanding. Indeed, afni_proc.py includes 
the systematic APQC HTML with interactive features 
directly with the view that quality control and evaluation 
of intermediate procedures are not separate from data 
processing but indeed part of it (see Reynolds et  al., 
2023; Taylor, Glen, et al., 2023). Some derived datasets in 
the results directory and QC HTML have been developed 
over time to troubleshoot scanner coil issues and other 
potential artifacts, such as the radial correlation and the 
corr_brain (correlation map of global brain average sig-
nal). All time series in the FOV are analyzed, not just 
within the brain mask, to help illuminate possible arti-
facts. Transparent highlighting is used in the APQC HTML 
to be able to highlight the regions of greatest magnitude, 
while still allowing features that may be subthreshold to 
be seen, since those often contain useful information for 
understanding the data more completely (Allen et  al., 
2012; Taylor, Reynolds, et al., 2023).

How do these features facilitate understanding and 
evaluating their FMRI data? Much of this comes from the 
intermediate datasets that are calculated and useful 
checks throughout (unsurprisingly, many of these are 
also integrated into the APQC HTML and summary dic-
tionary). The intermediate EPI time series help provide an 
understanding of each of those main steps, particularly 
when viewed in linked afni GUI controllers as “before and 
after pictures,” such as done in the AFNI Bootcamp 
course (see the AFNI Academy videos). TSNR maps can 
show scanner artifacts, signal dropout, or reasonable 
coverage; they might help explain low test–retest vari-
ability. For task FMRI, seeing images of both the full 
F-statistic and individual stimulus modeling results helps 
a researcher judge whether the data are appropriate for a 
study, including aspects of reasonable subject perfor-
mance. In the Bootcamp course, there is an example of 
using motion plots with censoring to reveal likely task-
correlated motion that, in turn, helps explain odd statisti-
cal results. For resting-state FMRI, GCOR is a useful 
parameter for gauging data quality, but it is the combina-
tion of seed-based correlation, corr_brain and radcor 
images that provide helpful interpretations of why the 
value is what it is, because it shows the underlying spa-
tiotemporal relationships in the data. These can reveal 
aspects of motion or scanner artifacts lurking in data, as 
can the interactive InstaCorr feature of the APQC HTML. 
Showing original data can reveal anatomical variability 
that may affect alignment, suggest geometric distortions 
due to B0 inhomogeneity or other sources, or disambig-
uate alignment questions that bright CSF can cause. 
Many of these have been discussed above and in associ-
ated quality control papers (Reynolds et al., 2023; Taylor 
et al., 2024), as well as in the educational sources listed 
previously.

§§§  There is the “-remove_preproc_files” option flag to remove a large frac-
tion of intermediate datasets when the processing completes, to save disk 
space. However, using this can make full evaluation of processing more diffi-
cult. Users could instead remove the intermediate datasets after checking 
results fully.



37

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

4.7.  Considerations when setting up FMRI pipelines

There are a large number of factors to consider when set-
ting up an FMRI processing pipeline. One has to make 
sure that processing details are consistent with both the 
theoretical and practical aims of the study design. That is, 
many analysis choices are closely linked with the acquired 
data’s properties, and, therefore, some of the most import-
ant “processing” decisions that researchers make are 
actually ones about the acquisition itself. These choices 
should be integrated into pilot data acquisitions and test 
evaluations. We list some (but by no means all) important 
questions that researchers should ask themselves when 
designing an acquisition and processing pipeline.

The afni_proc.py help file contains a concise list of 
important choices to consider when starting an analy-
sis.**** These form a kind of checklist of items to consider 
and choices to make. For example, what is the type of 
analysis: task or resting/naturalistic? Also, what is the 
domain of analysis: volume or surface, and will it be ROI 
based? Please see the help file for the full set, which will 
likely grow over time, along with brief notes about each 
point. Below, we note additional factors, many of which 
also connect study design planning and the analysis 
implementation.

4.7.1.  What are the main regions of interest?

This will help determine appropriate acquisition settings 
and voxel sizes. Whether performing voxelwise or ROI-
based analysis, one will have a primary set of locations 
of interest to study. It is key to make sure that the FMRI 
signal there is acquired stably and reliably. This can be 
done by including follower ROIs (via “-anat_follower_
ROI,” “-ROI_import,” and “-mask_segment_anat” 
options) and checking their shape and TSNR properties, 
making sure that both the EPI spatial resolution is fine 
enough to capture the region well and that the TSNR 
distribution is stable. The APQC HTML table (calculated 
via AFNI’s compute_ROI_stats.tcsh) greatly assists this. 
Inferior frontal and subcortical regions, as well as the 
temporal lobe, may require special acquisition parame-
ters to avoid sinus-driven signal dropout and distortion. 
Studying ROIs that are small and/or contain narrow fea-
tures might require high-resolution EPI. If acquiring 
one’s own data, one can verify that the current sequence 
is adequate for the study. If using already acquired data, 
voxel size and TSNR coverage might constrain the areas 
of the brain that can be reliably studied and the parcel-
lation regions that can be used. If the data do contain 

notable distortions, one can check the degree to which 
they affect the regions of interest and whether the data-
set is still suitable.

4.7.2.  Should I use single- or multiecho FMRI?

ME-FMRI can provide useful TSNR increases, just from 
averaging the multiple echoes via optimal combination 
(OC). MEICA methods may further remove nonphysiolog-
ical features, also boosting TSNR. These processing 
techniques can be used directly within afni_proc.py via 
the “combine” block (using either AFNI or the tedana ver-
sion of MEICA, respectively). ME-FMRI acquisitions typi-
cally require using some multiband or slice acceleration 
to preserve TR of around 2  s, but often one can keep 
these acquisition factors low to help reduce artifacts. As 
long as ME-FMRI sequences do not introduce artifactual 
features such as cross-slice correlations (which the 
APQC HTML’s InstaCorr buttons can help check; Song 
et al., 2017; Taylor, Glen, et al., 2023), then this may be a 
useful way to increase signal strength. For a practical 
comparison of single- and multiecho FMRI results in a 
naturalistic study, see Gilmore et al. (2022).

4.7.3.  How can I reduce EPI distortion?

Among other acquisition adjustments, using phase 
images (field maps) or acquiring an opposite phase-
encoded EPI are two common ways, and these can be 
integrated directly into processing with afni_proc.py. 
Neither can make the data appear exactly as it would if 
it were acquired without any distortion, but each does 
help and add negligible time to a typical scan session. In 
practice, using opposite phase-encoded EPI may have 
slight advantages in most software (see, e.g., 
Roopchansingh et  al., 2020). Acquiring 5–10 reverse-
encoded volumes is recommended, to reduce the odds 
of subject motion ruining the complete set, and this still 
only takes 10–20 s total in most cases. One can then 
add the forward- and reverse-encoded pair to the afni_
proc.py command easily with “-blip_forward_dset” and 
“-blip_reverse_dset.”

4.7.4.  Should I blur/smooth the FMRI data?

When processing data for voxelwise studies, it is com-
mon to do some blurring (in afni_proc.py, via the “blur” 
block). For single-echo FMRI, one might blur 1.5–2 
times the minimum voxel size. For ME-FMRI, which has 
higher TSNR, one might blur just slightly above voxel 
dimension. Other options for special cases of blurring 
have been discussed above and in the appendices 
(e.g., “-blur_to_fwhm,” etc.). When performing ROI-

****  See https://afni​.nimh​.nih​.gov​/pub​/dist​/doc​/htmldoc​/programs​/alpha​/afni​
_proc​.py​_sphx​.html​#setting​-up​-an​-analysis

https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/alpha/afni_proc.py_sphx.html#setting-up-an-analysis
https://afni.nimh.nih.gov/pub/dist/doc/htmldoc/programs/alpha/afni_proc.py_sphx.html#setting-up-an-analysis


38

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

based studies, blurring should not be applied (and one 
should not include the “blur” block), so that ROI aver-
ages used for correlations are not corrupted from out-
side the ROIs.

4.7.5.  What should the final space be?

If there is a particular atlas of interest, that will often imply 
a final template space. Otherwise, there are many rea-
sonable options to use within a pipeline, depending on 
study assumptions and design. When choosing between 
a volume or a surface, one must make sure that the latter 
includes all regions of interest (e.g., the subcortex or 
brainstem is not part of cortical meshes). Additionally, 
smoothing and any clustering are primary considerations: 
using a surface restricts both to local cortical gray matter 
as much as possible. (Visualization need not be a deter-
minant, because volumetric data can be projected onto a 
surface.) For group-level statistics, volumes or surfaces 
each offer “standard elements,” whether at the voxel/
node or ROI level, but users may have a preferred 
approach. If using a volumetric template, there is typi-
cally a choice to make; it is best to use a closely repre-
sentative template for the study cohort (e.g., age 
appropriate); and the choice of using a particular atlas 
can be a decisive factor, are the regions of interest well 
defined for the template space? One might choose each 
subject’s own anatomical dataset as a final space, which 
is common when using FreeSurfer parcellations that are 
defined from those volumes or in clinically focused scans. 
Finally, it is possible to use the subject’s own EPI, such as 
to minimize blurring from regridding, particularly in cases 
where subject movement is expected to be minimal and/
or at high spatial resolution.

4.7.6.  Should I use tissue-based regressors  
in the processing?

Non-GM, tissue-based regressors are often applied in 
FMRI processing to try to maximize the removal of non-
neuronal BOLD features from EPI time series, particularly 
when processing resting-state or naturalistic data. These 
approaches are applied on the assumption that non-GM 
signals contain only non-neuronal effects, and, therefore, 
they are useful proxies of motion or other nonsignal effects. 
These approaches include making regressors of no inter-
est from time series averages, principal components, or 
local components from WM and ventricles (e.g., via 
“-regress_fast_anaticor,” “-regress_ROI_PC,” “-regress_
ROI_PC_per run”). When considering these methods, 
such as with the goal of removing motion artifacts, one 
must be sure that the non-GM tissue maps do not inter-
sect with actual GM; this is one reason applied tissue 

maps for these options in afni_proc.py are eroded during 
or before processing, due to the potential of partial volum-
ing. This can be particularly tricky in the presence of EPI 
distortion or other artifacts that spread signals around. 
Furthermore, recent work looking in detail at BOLD signals 
in non-GM tissue has suggested that assumptions of non-
GM-BOLD-like signal might not be obvious: Gore et  al. 
(2019) provide a review of early work for WM, and see also 
Wang et  al. (2022); Gonzalez-Castillo et  al. (2022) have 
shown that signals in ventricles can correlate strongly with 
physiological measures and even GM. Chen et al. (2023) 
used local HRF modeling to show that WM signals are typ-
ically not null and can carry useful information. Therefore, 
while using local tissue regressors can help reduce some 
artifacts (e.g., Jo et al., 2020), care should be taken with 
assumptions of non-GM signals, and likely more work in 
the field will be required for this topic.

4.7.7.  What steps should be done before running 
the FMRI pipeline?

This list can vary widely depending on study design and 
paradigm, but a few items:

•	 It is important to check the validity and consistency 
of initial properties of the data, what we have 
termed “getting to know your data” (GTKYD; see 
Reynolds et al., 2023). One can use AFNI’s gtkyd_
check to create systematic tables of dataset prop-
erties and compare them (Taylor et  al., 2024). 
Verifying the properties of non-FMRI data is also 
useful, such as stimulus timing files or physiological 
response regressors.

•	Obliquity in datasets (that is, a stored rotation of 
the FOV relative to scanner coordinates) can be 
handled in various ways by software. Both in pro-
cessing and particularly in visualization, one must 
decide to either apply or ignore it (with respective 
tradeoffs in apparent smoothness or location, 
respectively). We typically recommend removing 
obliquity from the anatomical datasets before pro-
cessing, especially if using multiple software 
packages (such as running FreeSurfer before afni_
proc.py). This can be done in a way to both pre-
serve coordinate origin and avoid interpolative 
smoothing, using AFNI’s adjunct_deob_around_
origin. However, obliquity can (and likely should) 
be left within the EPI data, to be navigated during 
processing. Using gtkyd_check, above, will inform 
about the presence of obliquity, as would simply 
running 3dinfo -obliquity.

•	Nonhuman datasets are often acquired in “sphinx” 
position. Therefore, they should be reoriented so 



39

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

that standard viewing planes (axial, sagittal, and 
coronal) are correct. This can be done with 3drefit 
or the new wrapper program desphinxify, but spe-
cial care must be taken to ensure that left and right 
are correct at the end of this step (other directional-
ity is easily visually verifiable). Using test data with 
clear left–right delineation, such as a vitamin E tab-
let, greatly helps this process.

•	Having reasonable coordinates so that the partici-
pant’s brain datasets have reasonable or relatively 
close overlap with the template space (and with 
each other) helps processing. In many nonhuman 
datasets, achieving this may require resetting the 
coordinate origin (x, y, z) = (0, 0, 0) to be relocated 
to be in the brain (e.g., center of mass or near the 
anterior commissure). Occasionally, this is required 
for human datasets. AFNI’s 3dCM and @Align_Cen-
ters programs facilitate shifting individual and/or 
groups of datasets to more useful coordinates.

•	 If performing final analyses in a standard space, we 
typically recommend estimating the nonlinear align-
ment of the anatomical dataset to the template 
before running afni_proc.py. That prevents needing 
to run the computationally expensive process more 
than once if analyzing multiple tasks or if (or when) 
reprocessing the FMRI data. Moreover, using either 
sswarper2 (for human data) or @animal_warper (for 
nonhuman data) accomplishes the further task of 
skullstripping the anatomical. The outputs of this 
processing are then simply provided to afni_proc.
py with options (e.g., “-tlrc_NL_warped_dsets,” 
“-copy_anat,” and “-anat_has_skull no”).

•	Other programs that might likely be run before afni_
proc.py, with the results passed along, include 
FreeSurfer’s recon-all. One might provide the ana-
tomical parcellations via “anat_follower_ROI,” or 
the surface datasets via the “surf” block with 
“-surf_spec” and “-surf_anat.” If using RETRO-
ICOR, the physiological time series can be turned 
into FMRI regressors using AFNI’s physio_calc.py.

4.8.  Future work

Over the past 18 years, this program has expanded to 
include new options and functionality. Improvements 
have been made to algorithms, as well as fixes added 
whenever necessary. These trends will surely continue. 
We plan to add further automated checks and warnings 
to the quality control. Furthermore, we plan to add a layer 
around afni_proc.py to facilitate running analyses across 
a group of subjects, as well as more easily facilitating QC 
checks across them. This process is made easier by the 
presence of BIDS-formatted inputs or any systematic 

structures; moreover, users will still be able to specify 
their analyses in detail through shared scripts. While a 
large amount of flexibility of HRF modeling exists within 
afni_proc.py, recent work has shown how much variabil-
ity there is across the brain (Chen et al., 2023) and poten-
tially across subjects and tasks; we will continue to 
explore new ways to integrate developments in this area 
of active research. Finally, in earlier times, there was a 
GUI interface to help manage and set up afni_proc.py 
commands. The underlying dependency that made that 
possible (the PyQt4 module) was dropped from some 
Python distributions, so it could no longer be supported; 
in the future, we plan to work on a replacement.

5.  CONCLUSIONS

We have described several aspects of AFNI’s main pro-
gram for creating a full FMRI processing pipeline, afni_
proc.py. The program is organized around specifying 
major processing blocks for a given subject’s data, and 
then adding desired processing details to those. We 
demonstrated some of the considerable flexibility of anal-
yses that can be run using it here. The user’s afni_proc.py 
command is easily and openly sharable, and the pipe-
lines have high reproducibility. More deeply, afni_proc.py 
allows users to control a large number of details about 
the processing, as well as to examine all the details of the 
processing provenance within the commented script that 
it generates. The goal of this integrated design is to facil-
itate understanding and remove surprises from the anal-
ysis stage since FMRI data and their processing are 
notably complicated. Details matter. For similar reasons, 
the program also facilitates efficiently verifying both inter-
mediate processing steps and final outcomes through 
the dictionary of diagnostic quantities and the APQC 
HTML it creates. This program has expanded and 
adapted to a variety of new needs over the many years it 
has existed, in large part due to input from users and col-
laborators across the neuroimaging community, sup-
ported by the modularity of its architecture. We expect it 
to keep doing so, to meet the continually growing needs 
and requirements of neuroscience researchers across 
the field.

DATA AND CODE AVAILABILITY

The input data are available here: https://afni​.nimh​.nih​
.gov​/pub​/dist​/tgz​/demo​_apaper​_afni​_proc​_rest​.tgz and 
https://afni​.nimh​.nih​.gov​/pub​/dist​/tgz​/demo​_apaper​_afni​
_proc​_task​.tgz. The output data are available on OSF 
(https://osf​.io​/gn7b5/). The processing commands and 
scripts are available on GitHub (https://github​.com​/afni​
/apaper​_afni​_proc).

https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_rest.tgz
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_rest.tgz
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_task.tgz
https://afni.nimh.nih.gov/pub/dist/tgz/demo_apaper_afni_proc_task.tgz
https://osf.io/gn7b5/
https://github.com/afni/apaper_afni_proc
https://github.com/afni/apaper_afni_proc


40

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

ETHICS

The datasets used in this study are publicly available and 
were not collected by the investigators.

AUTHOR CONTRIBUTIONS

R.C.R.: Conceptualization, formal analysis, methodology, 
software, visualization, writing—original draft prepara-
tion. D.R.G.: Methodology, software, visualization, 
writing—review and editing. G.C.: Methodology, soft-
ware, visualization, writing—review and editing. Z.S.S.: 
Methodology, software, visualization, writing—review 
and editing. R.W.C.: Methodology, software, visualiza-
tion, writing—review and editing. P.A.T.: Conceptualiza-
tion, formal analysis, methodology, software, visualization, 
writing—original draft preparation.

DECLARATION OF COMPETING INTEREST

The authors declare no competing financial interests.

CONSENT FOR PUBLICATION

All authors consent to publication.

ACKNOWLEDGMENTS

We would like to thank the myriad users across NIMH, 
NIH, and the globe who have made useful suggestions 
and provided helpful feedback, all of which has greatly 
contributed to afni_proc.py. The research and writing of 
the paper were supported by the NIMH Intramural 
Research Programs (ZICMH002888) of the NIH (HHS, 
United States). Z.S.S.’s contributions were made while 
employed at the NIMH/NIH through July, 2015. This work 
utilized the computational resources of the NIH HPC Bio-
wulf cluster (http://hpc​.nih​.gov).

REFERENCE

Allen, E. A., Erhardt, E. B., & Calhoun, V. D. (2012). Data 
visualization in the neurosciences: Overcoming the curse 
of dimensionality. Neuron, 74, 603–608. https://doi​.org​
/10​.1016​/j​.neuron​.2012​.05​.001

Andersson, J. L., Skare, S., & Ashburner, J. (2003). How 
to correct susceptibility distortions in spin-echo echo-
planar images: Application to diffusion tensor imaging. 
Neuroimage, 20(2), 870–888. https://doi​.org​/10​.1016​
/s1053​-8119(03)00336​-7

Argall, B. D., Saad, Z. S., & Beauchamp, M. S. (2006). 
Simplified intersubject averaging on the cortical surface 
using SUMA. Hum Brain Mapp, 27, 14–27. https://doi​.org​
/10​.1002​/hbm​.20158

Ashburner, J. (2012). SPM: A history. Neuroimage, 62(2), 
791–800. https://doi​.org​/10​.1016​/j​.neuroimage​.2011​ 
.10​.025

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A 
component based noise correction method (CompCor) 
for BOLD and perfusion based fMRI. Neuroimage, 37(1), 
90–101. https://doi​.org​/10​.1016​/j​.neuroimage​.2007​.04​.042

Bellgowan, P. S., Saad, Z. S., & Bandettini, P. A. (2003). 
Understanding neural system dynamics through task 
modulation and measurement of functional MRI amplitude, 
latency, and width. Proc Natl Acad Sci U S A, 100(3), 
1415–1419. https://doi​.org​/10​.1073​/pnas​.0337747100

Birn, R. M. (2023). Quality control procedures and metrics 
for resting-state functional MRI. Front Neurosci, 2, 
1072927. https://doi.org/10.3389/fnimg.2023.1072927

Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, 
P. A. (2006). Separating respiratory-variation-related 
fluctuations from neuronal-activity-related fluctuations in 
fMRI. Neuroimage, 31(4), 1536–1548. https://doi​.org​/10​
.1016​/j​.neuroimage​.2006​.02​.048

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). 
Functional connectivity in the motor cortex of resting 
human brain using echo-planar MRI. Magn Reson Med, 
34(4), 537–541. https://doi​.org​/10​.1002​/mrm​.1910340409

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, 
A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., 
Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski, 
B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., 
Bault, N., Beaton, D., Beitner, J., … Schonberg, T. 
(2020). Variability in the analysis of a single neuroimaging 
dataset by many teams. Nature, 582(7810), 84–88. 
https://doi​.org​/10​.1038​/s41586​-020​-2314​-9

Bowring, A., Nichols, T. E., & Maumet, C. (2022). Isolating 
the sources of pipeline-variability in group-level task-
fMRI results. Hum Brain Mapp, 43(3), 1112–1128. https://
doi​.org​/10​.1002​/hbm​.25713

Brodmann, K. (1909). Vergleichende Lokalisationslehre  
der Grosshirnrinde in Ihren Prinzipien dargestellt Auf  
Grund des Zellenbaues. https://books.google.com 
/books?hl=en&lr=&id=-PM3AQAAMAAJ&oi=fnd&pg=PR3
&ots=488bABOWpi&sig=KkiyfWS4y6MMLmW9XeUK9 
nxKPCo#v=onepage&q&f=false

Caballero-Gaudes, C., & Reynolds, R. C. (2017). Methods for 
cleaning the BOLD fMRI signal. Neuroimage, 154, 128–
149. https://doi​.org​/10​.1016​/j​.neuroimage​.2016​.12​.018

Chang, C., & Glover, G. H. (2009). Effects of model-based 
physiological noise correction on default mode network 
anti-correlations and correlations. Neuroimage, 47(4), 
1448–1459. https://doi​.org​/10​.1016​/j​.neuroimage​.2009​
.05​.012

Chang, H., & Fitzpatrick, J. M. (1992). A technique for 
accurate magnetic resonance imaging in the presence 
of field inhomogeneities. IEEE Trans Med Imaging, 11, 
319–329. https://doi​.org​/10​.1109​/42​.158935

Chen, G., Taylor, P. A., & Cox, R. W. (2017). Is the statistic 
value all we should care about in neuroimaging? 
Neuroimage, 147, 952–959. https://doi​.org​/10​.1016​/j​
.neuroimage​.2016​.09​.066

Chen, G., Taylor, P. A., Reynolds, R. C., Leibenluft, E., 
Pine, D. S., Brotmas, M. A., Pagliaccio, D., & Haller, S. P. 
(2023). BOLD response is more than just magnitude: 
Improving detection sensitivity through capturing 
hemodynamic profiles. Neuroimage, 277, 120224. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2023​.120224

Chen, G., Taylor, P. A., Stoddard, J., Cox, R. W., Bandettini, 
P. A., & Pessoa, L. (2022). Sources of information waste 
in neuroimaging: Mishandling structures, thinking 
dichotomously, and over-reducing data. Aperture Neuro, 
2, 1–22. https://doi​.org​/10​.52294​/ApertureNeuro​.2022​.2​
.ZRJI8542

Cox, R. W. (1996). AFNI: Software for analysis and 
visualization of functional magnetic resonance 

http://hpc.nih.gov
https://doi.org/10.1016/j.neuron.2012.05.001
https://doi.org/10.1016/j.neuron.2012.05.001
https://doi.org/10.1016/s1053-8119(03)00336-7
https://doi.org/10.1016/s1053-8119(03)00336-7
https://doi.org/10.1002/hbm.20158
https://doi.org/10.1002/hbm.20158
https://doi.org/10.1016/j.neuroimage.2011.10.025
https://doi.org/10.1016/j.neuroimage.2011.10.025
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1073/pnas.0337747100
https://doi.org/10.3389/fnimg.2023.1072927
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1016/j.neuroimage.2006.02.048
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1038/s41586-020-2314-9
https://doi.org/10.1002/hbm.25713
https://doi.org/10.1002/hbm.25713
https://books.google.com/books?hl=en&lr=&id=-PM3AQAAMAAJ&oi=fnd&pg=PR3&ots=488bABOWpi&sig=KkiyfWS4y6MMLmW9XeUK9nxKPCo#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=-PM3AQAAMAAJ&oi=fnd&pg=PR3&ots=488bABOWpi&sig=KkiyfWS4y6MMLmW9XeUK9nxKPCo#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=-PM3AQAAMAAJ&oi=fnd&pg=PR3&ots=488bABOWpi&sig=KkiyfWS4y6MMLmW9XeUK9nxKPCo#v=onepage&q&f=false
https://books.google.com/books?hl=en&lr=&id=-PM3AQAAMAAJ&oi=fnd&pg=PR3&ots=488bABOWpi&sig=KkiyfWS4y6MMLmW9XeUK9nxKPCo#v=onepage&q&f=false
https://doi.org/10.1016/j.neuroimage.2016.12.018
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1016/j.neuroimage.2009.05.012
https://doi.org/10.1109/42.158935
https://doi.org/10.1016/j.neuroimage.2016.09.066
https://doi.org/10.1016/j.neuroimage.2016.09.066
https://doi.org/10.1016/j.neuroimage.2023.120224
https://doi.org/10.52294/ApertureNeuro.2022.2.ZRJI8542
https://doi.org/10.52294/ApertureNeuro.2022.2.ZRJI8542


41

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

neuroimages. Comput Biomed Res, 29, 162–173. https://
doi​.org​/10​.1006​/cbmr​.1996​.0014

Cox, R. W., Ashburner, J., Breman, H., Fissell, K., 
Haselgrove, C., Holmes, C. J., Lancaster, J. L., Rex, 
D. E., Smith, S. M., Woodward, J. B., & Strother, S. C. 
(2004). A (sort of) new image data format standard: 
NiFTI-1. In Presented at the 10th Annual Meeting of the 
Organization for Human Brain Mapping. https://nifti.nimh 
.nih.gov/nifti-1/documentation/hbm_nifti_2004.pdf

Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, 
P. A. (2017). FMRI clustering in AFNI: False positive rates 
Redux. Brain Connect, 7 (3), 152–171. https://doi​.org​/10​
.1089​/brain​.2016​.0475

Cox, R. W., & Glen, D. R. (2013). Nonlinear warping in  
AFNI. In Poster presented at the 19th Annual Meeting  
of the Organization for Human Brain Mapping, Seattle,  
WA, USA. https://afni.nimh.nih.gov/pub/dist/HBM2013 
/Cox_Poster_HBM2013.pdf

Cox, R. W., & Taylor, P. A. (2017). Stability of spatial 
smoothness and cluster-size threshold estimates in FMRI 
using AFNI. arXiv:1709.07471. https://doi​.org​/10​.48550​
/arXiv​.1709​.07471

Craddock, C., Sikka, S., Cheung, B., Khanuja, R., Ghosh, 
S. S., Yan, C., Li, Q., Lurie, D., Vogelstein, J., Burns, 
R., Colcombe, S., Mennes, M., Kelly, C., Di Martino, 
A., Castellanos, F. X., & Milham, M. (2013). Towards 
automated analysis of connectomes: The configurable 
pipeline for the analysis of connectomes (C-PAC). Front 
Neuroinform Conference Abstract: Neuroinformatics, 
2013. https://doi​.org​/10​.3389​/conf​.fninf​.2013​.09​.00042

Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). 
Automatic parcellation of human cortical gyri and sulci 
using standard anatomical nomenclature. Neuroimage, 
53(1), 1–15. https://doi​.org​/10​.1016​/j​.neuroimage​ 
.2010​.06​.010

DuPre, E., Salo, T., Ahmed, Z., Bandettini, P. A., Bottenhorn, 
K. L., Caballero-Gaudes, C., Dowdle, L. T., Gonzalez-
Castillo, J., Heunis, S., Kundu, P., Laird, A. R., Markello, 
R., Markiewicz, C. J., Moia, S., Staden, I., Teves, 
J. B., Uruñuela, E., Vaziri-Pashkam, M., Whitaker, K., 
& Handwerker, D. A. (2021). TE-dependent analysis of 
multi-echo fMRI with tedana. J Open Source Softw, 
6(66), 3669. https://doi​.org​/10​.21105​/joss​.03669

Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster 
failure: Why fMRI inferences for spatial extent have 
inflated false-positive rates. Proc Natl Acad Sci U S A,  
113(28), 7900–7905. https://doi​.org​/10​.1073​/pnas​
.1602413113

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., 
Isik, A. I., Erramuzpe, A., Kent, J. D., Goncalves, M., 
DuPre, E., Snyder, M., Oya, H., Ghosh, S. S., Wright, J., 
Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. (2019). 
fMRIPrep: A robust preprocessing pipeline for functional 
MRI. Nat Methods, 16(1), 111–116. https://doi​.org​/10​
.1038​/s41592​-018​-0235​-4

Fischl, B., & Dale, A. M. (2000). Measuring the thickness 
of the human cerebral cortex from magnetic resonance 
images. Proc Natl Acad Sci U S A, 97(20), 11050–11055. 
https://doi.org/10.1073/pnas.200033797

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., 
Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, 
D., Klaveness, S., Montillo, A., Makris, N., Rosen, 
B., & Dale, A. M. (2002). Whole brain segmentation: 
Automated labeling of neuroanatomical structures in the 
human brain. Neuron, 33, 341–355. https://doi​.org​/10​
.1016​/s0896​-6273(02)00569​-x

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, 
R. C., Collins, D. L., & Brain Development Cooperative 
Group. (2011). Unbiased average age-appropriate 

atlases for pediatric studies. Neuroimage, 54, 313–327. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2010​.07​.033

Gilmore, A. W., Agron, A. M., González-Araya, E. I., Gotts, 
S. J., & Martin, A. (2022). A comparison of single- and 
multi-echo processing of functional MRI data during 
overt autobiographical recall. Front Neurosci, 16, 
854387. https://doi​.org​/10​.3389​/fnins​.2022​.854387

Gilmore, A. W., Kalinowski, S. E., Milleville, S. C., Gotts, 
S. J., & Martin, A. (2019). Identifying task-general effects 
of stimulus familiarity in the parietal memory network. 
Neuropsychologia, 124, 31–43. https://doi​.org​/10​.1016​/j​
.neuropsychologia​.2018​.12​.023

Glen, D. R., Reynolds, R. C., You, X., Kong, R., Xue, A., 
Yan, X., & Yeo, B., T. T. (2021). Schaefer-Yeo-AFNI-2021 
Atlases: Improved ROIs with AFNI+SUMA Processing. In 
Proceedings of OHBM-2021. https://afni.nimh.nih 
.gov/pub/dist/HBM2021/Schaefer-Yeo_AFNI_Atlas 
_OHBM2021_Poster.pdf

Glen, D. R., Taylor, P. A., Buchsbaum, B. R., Cox, R. W., & 
Reynolds, R. C. (2020). Beware (surprisingly common) 
left-right flips in your MRI data: An efficient and robust 
method to check MRI dataset consistency using AFNI. 
Front Neuroinform, 14, 18. https://doi​.org​/10​.3389​/fninf​
.2020​.00018

Glover, G. H., Li, T., & Ress, D. (2000). Image-based 
method for retrospective correction of physiological 
motion effects in fMRI: RETROICOR. Magn Reson 
Med, 44, 162–167. https://doi​.org​/10​.1002​/1522​
-2594(200007)44:1<162::aid​-mrm23>3​.3​.co;2​-5

Gohel, S. R., & Biswal, B. B. (2015). Functional integration 
between brain regions at rest occurs in multiple-
frequency bands. Brain Connect, 5(1), 23–34. https://doi​
.org​/10​.1089​/brain​.2013​.0210

Gonzalez-Castillo, J., Fernandez, I. S., Handwerker, D. A., 
& Bandettini, P. A. (2022). Ultra-slow fMRI fluctuations 
in the fourth ventricle as a marker of drowsiness. 
Neuroimage, 259, 119424. https://doi​.org​/10​.1016​/j​
.neuroimage​.2022​.119424

Gore, J. C., Li, M., Gao, Y., Wu, T. L., Schilling, K. G., 
Huang, Y., Mishra, A., Newton, A. T., Rogers, B. P., Chen, 
L. M., Anderson, A. W., & Ding, Z. (2019). Functional MRI 
and resting state connectivity in white matter—A mini-
review. Magn Reson Imaging, 63, 1–11. https://doi​.org​/10​
.1016​/j​.mri​.2019​.07​.017

Gorgolewski, K. J., Auer, T., Calhoun, V. D., Craddock, R. C., 
Das, S., Duff, E. P., Flandin, G., Ghosh, S. S., Glatard, 
T., Halchenko, Y. O., Handwerker, D. A., Hanke, M., 
Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B. N., 
Nichols, T. E., Pellman, J., … Poldrack, R. A. (2016). The 
brain imaging data structure, a format for organizing and 
describing outputs of neuroimaging experiments. Sci 
Data, 3, 160044. https://doi​.org​/10​.1038​/sdata​.2016​.44

Gotts, S. J., Gilmore, A. W., & Martin, A. (2020). Brain 
networks, dimensionality, and global signal averaging 
in resting-state fMRI: Hierarchical network structure 
results in low-dimensional spatiotemporal dynamics. 
Neuroimage, 205, 116289. https://doi​.org​/10​.1016​/j​
.neuroimage​.2019​.116289

Hallquist, M. N., Hwang, K., & Luna, B. (2013). 
The nuisance of nuisance regression: Spectral 
misspecification in a common approach to resting-state 
fMRI preprocessing reintroduces noise and obscures 
functional connectivity. Neuroimage, 82, 208–225. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2013​.05​.116

Hasson, U., Malach, R., & Heeder, D. J. (2010). Reliability of 
cortical activity during natural stimulation. Trends Cogn Sci, 
14(1), 40–48. https://doi​.org​/10​.1016​/j​.tics​.2009​.10​.011

Holla, B., Taylor, P. A., Glen, D. R., Lee, J. A., Vaidya, N., 
Mehta, U. M., Venkatasubramanian, G., Pal, P., Saini, J., 

https://doi.org/10.1006/cbmr.1996.0014
https://doi.org/10.1006/cbmr.1996.0014
https://nifti.nimh.nih.gov/nifti-1/documentation/hbm_nifti_2004.pdf
https://nifti.nimh.nih.gov/nifti-1/documentation/hbm_nifti_2004.pdf
https://doi.org/10.1089/brain.2016.0475
https://doi.org/10.1089/brain.2016.0475
https://afni.nimh.nih.gov/pub/dist/HBM2013/Cox_Poster_HBM2013.pdf
https://afni.nimh.nih.gov/pub/dist/HBM2013/Cox_Poster_HBM2013.pdf
https://doi.org/10.48550/arXiv.1709.07471
https://doi.org/10.48550/arXiv.1709.07471
https://doi.org/10.3389/conf.fninf.2013.09.00042
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.21105/joss.03669
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1073/pnas.1602413113
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.3389/fnins.2022.854387
https://doi.org/10.1016/j.neuropsychologia.2018.12.023
https://doi.org/10.1016/j.neuropsychologia.2018.12.023
https://afni.nimh.nih.gov/pub/dist/HBM2021/Schaefer-Yeo_AFNI_Atlas_OHBM2021_Poster.pdf
https://afni.nimh.nih.gov/pub/dist/HBM2021/Schaefer-Yeo_AFNI_Atlas_OHBM2021_Poster.pdf
https://afni.nimh.nih.gov/pub/dist/HBM2021/Schaefer-Yeo_AFNI_Atlas_OHBM2021_Poster.pdf
https://doi.org/10.3389/fninf.2020.00018
https://doi.org/10.3389/fninf.2020.00018
https://doi.org/10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.3.co;2-5
https://doi.org/10.1002/1522-2594(200007)44:1<162::aid-mrm23>3.3.co;2-5
https://doi.org/10.1089/brain.2013.0210
https://doi.org/10.1089/brain.2013.0210
https://doi.org/10.1016/j.neuroimage.2022.119424
https://doi.org/10.1016/j.neuroimage.2022.119424
https://doi.org/10.1016/j.mri.2019.07.017
https://doi.org/10.1016/j.mri.2019.07.017
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/j.neuroimage.2019.116289
https://doi.org/10.1016/j.neuroimage.2019.116289
https://doi.org/10.1016/j.neuroimage.2013.05.116
https://doi.org/10.1016/j.tics.2009.10.011


42

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

Rao, N. P., Ahuja, C., Kuriyan, R., Krishna, M., Basu, D., 
Kalyanram, K., Chakrabarti, A., Orfanos, D. P., Barker, 
G. J., Cox, R. W., … Benegal, V. (2020). A series of five 
population-specific Indian brain templates and atlases 
spanning ages 6 to 60 years. Hum Brain Mapp, 41(18), 
5164–5175. https://doi​.org​/10​.1002​/hbm​.25182

Holland, D., Kuperman, J. M., & Dale, A. M. (2010). Efficient 
correction of inhomogeneous static magnetic field-
induced distortion in Echo Planar Imaging. Neuroimage, 
50(1), 175–183. https://doi​.org​/10​.1016​/j​.neuroimage​
.2009​.11​.044

Hong, X., To, X. V., Teh, I., Soh, J. R., & Chuang, K. H. 
(2015). Evaluation of EPI distortion correction methods 
for quantitative MRI of the brain at high magnetic field. 
Magn Reson Imaging, 33(9), 1098–1105. https://doi​.org​
/10​.1016​/j​.mri​.2015​.06​.010

Hutton, C., Bork, A., Josephs, O., Deichmann, R., 
Ashburner, J., & Turner, R. (2002). Image distortion 
correction in fMRI: A quantitative evaluation. 
Neuroimage, 16(1), 217–240. https://doi​.org​/10​.1006​
/nimg​.2001​.1054

Irfanoglu, M. O., Sarlls, J., Nayak, A., & Pierpaoli, C. (2019). 
Evaluating corrections for Eddy-currents and other EPI 
distortions in diffusion MRI: Methodology and a dataset 
for benchmarking. Magn Reson Med, 81(4), 2774–2787. 
https://doi​.org​/10​.1002​/mrm​.27577

Jo, H. J., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., 
Martin, A., Cox, R. W., & Saad, Z. S. (2013). Effective 
preprocessing procedures virtually eliminate distance-
dependent motion artifacts in resting state FMRI. J Appl 
Math, 2013, 1–9. https://doi​.org​/10​.1155​/2013​/935154

Jo, H. J., Reynolds, R. C., Gotts, S. J., Handwerker, D. A., 
Balzekas, I., Martin, A., Cox, R. W., & Bandettini, P. A. 
(2020). Fast detection and reduction of local transient 
artifacts in resting-state fMRI. Comput Biol Med, 120, 
103742. https://doi​.org​/10​.1016​/j​.compbiomed​.2020​
.103742

Jo, H. J., Saad, Z. S., Simmons, W. K., Milbury, L. A., & 
Cox, R. W. (2010). Mapping sources of correlation in 
resting state FMRI, with artifact detection and removal. 
Neuroimage, 52(2), 571–582. https://doi​.org​/10​.1016​/j​
.neuroimage​.2010​.04​.246

Jung, B., Taylor, P. A., Seidlitz, P. A., Sponheim, C., Perkins, 
P., Ungerleider, L. G., Glen, D. R., & Messinger, A. 
(2021). A comprehensive macaque FMRI pipeline and 
hierarchical atlas. Neuroimage, 235, 117997. https://doi​
.org​/10​.1016​/j​.neuroimage​.2021​.117997

Kundu, P., Inati, S. J., Evans, J. W., Luh, W. M., & 
Bandettini, P. A. (2011). Differentiating BOLD and non-
BOLD signals in fMRI time series using multi-echo EPI. 
Neuroimage, 60(3), 1759–1770. https://doi​.org​/10​.1016​/j​
.neuroimage​.2011​.12​.028

Lauren, P. D., Glen, D. R., Reynolds, R. C., & Taylor, P. A. 
(2023). physio_calc.py: New program to model cardiac 
& respiratory contributions to BOLD signal in AFNI. In 
Presented at the 29th Annual Meeting of the Organization 
for Human Brain Mapping. https://afni.nimh.nih.gov/pub 
/dist/OHBM2023/ohbm_2023_PeterLauren.pdf

Lepping, R. J., Yeh, H. W., McPherson, B. C., Brucks,  
M. G., Sabati, M., Karcher, R. T., Brooks, W. M., Habiger, 
J. D., Papa, V. B., Martin, L. E. (2023). Quality control 
in resting-state fMRI: The benefits of visual inspection. 
Front Neurosci, 17, 1076824. https://doi.org/10.3389 
/fnins.2023.1076824

Lindquist, M. A., Meng Loh, J., Atlas, L. Y., & Wager, T. D. 
(2009). Modeling the hemodynamic response function 
in fMRI: Efficiency, bias and mis-modeling. Neuroimage, 
45(1 Suppl.), S187–S198. https://doi​.org​/10​.1016​/j​
.neuroimage​.2008​.10​.065

Messinger, A., Sirmpilatze, N., Heuer, K., Loh, K., Mars, 
R., Sein, J., Xu, T., Glen, D., Jung, B., Seidlitz, J., Taylor, 
P., Toro, R., Garza-Villareal, E., Sponheim, C., Wang, X., 
Benn, A., Cagna, B., Dadarwal, R., Evrard, H., … Klink, 
P. C. (2021). A collaborative resource platform for non-
human primate neuroimaging. Neuroimage, 226, 117519. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2020​.117519

Milham, M., Petkov, C., Belin, P., & PRIMatE Data and 
Resource Exchange (PRIME-DRE) Global Collaboration 
Workshop and Consortium. (2022). Toward next-generation 
primate neuroscience: A collaboration-based strategic 
plan for integrative neuroimaging. Neuron, 110(1), 16–20. 
https://doi​.org​/10​.1016​/j​.neuron​.2021​.10​.015

Molfese, P. J., Glen, D., Mesite, L., Cox, R. W., Hoeft, F., 
Frost, S. J., Mencl, W. E., Pugh, K. R., & Bandettini, 
P. A. (2020). The Haskins pediatric atlas: A magnetic-
resonance-imaging-based pediatric template and atlas. 
Pediatr Radiol, 51(4), 628–639. https://doi​.org​/10​.1007​
/s00247​-020​-04875​-y

Oakes, T. R., Johnstone, T., Ores Walsh, K. S., Greischar, 
L. L., Alexander, A. L., Fox, A. S., & Davidson, R. J. 
(2005). Comparison of fMRI motion correction software 
tools. Neuroimage, 28(3), 529–543. https://doi​.org​/10​
.1016​/j​.neuroimage​.2005​.05​.058

Olszowy, W., Aston, J., Rua, C., & Williams, G. B. (2019). 
Accurate autocorrelation modeling substantially 
improves fMRI reliability. Nat Commun, 10, 1220. https://
doi​.org​/10​.1038​/s41467​-019​-09230​-w

Pijnenburg, R., Scholtens, L. H., Ardesch, D. J., de Lange, 
S. C., Wei, Y., & van den Heuvel, M. P. (2021). Myelo- and 
cytoarchitectonic microstructural and functional human 
cortical atlases reconstructed in common MRI space. 
Neuroimage, 239, 118274. https://doi​.org​/10​.1016​/j​
.neuroimage​.2021​.118274

Poldrack, R., Congdon, E., Triplett, W., Gorgolewski, K. J., 
Karlsgodt, K. H., Mumford, J. A., Sabb, F. W., Freimer, 
N. B., London, E. D., Cannon, T. D., & Bilder, R. M. 
(2016). A phenome-wide examination of neural and 
cognitive function. Sci Data, 3, 160110. https://doi​.org​
/10​.1038​/sdata​.2016​.110

Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, C., 
Grosse-Ruyken, M., Elghahwagi, B., Richards, T., Dager, 
S., & Kiselev, V. (1999). Enhancement of BOLD-contrast 
sensitivity by single-shot multi-echo functional MR 
imaging. Magn Reson Med, 42, 87–97. https://doi​.org​/10​
.1002​/(sici)1522​-2594(199907)42:1<87::aid​-mrm13>3​.0​
.co;2​-o

Prince, J. S., Charest, I., Kurzawski, J. W., Pyles, J. A., Tarr, 
M. J., & Kay, K. N. (2022). Improving the accuracy of 
single-trial fMRI response estimates using GLMsingle. 
Elife, 11, e77599. https://doi​.org​/10​.7554​/elife​.77599

Reynolds, R. C., Taylor, P. A., & Glen, D. R. (2023). Quality 
control practices in FMRI analysis: Philosophy, methods 
and examples using AFNI. Front Neurosci, 16, 1073800. 
https://doi​.org​/10​.3389​/fnins​.2022​.1073800

Roopchansingh, V., French, J. J., Nielson, D., Reynolds, 
R., Glen, D., D’Souza, P., Taylor, P., Cox, R., & Thurm, 
A. (2020). EPI distortion correction is easy and useful, 
and you should use it: A case study with toddler data. 
bioRxiv, 2020.09.28.306787. https://doi​.org​/10​.1101​
/2020​.09​.28​.306787

Saad, Z. S., Glen, D. R., Chen, G., Beauchamp, M. S., 
Desai, R., & Cox, R. W. (2009). A new method for 
improving functional-to-structural MRI alignment using 
local Pearson correlation. Neuroimage, 44, 839–848. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2008​.09​.037

Saad, Z. S., Reynolds, R. C., Argall, B., Japee, S., & Cox, 
R. W. (2004). SUMA: An interface for surface-based intra- 
and inter-subject analysis with AFNI. In 2004 2nd IEEE 

https://doi.org/10.1002/hbm.25182
https://doi.org/10.1016/j.neuroimage.2009.11.044
https://doi.org/10.1016/j.neuroimage.2009.11.044
https://doi.org/10.1016/j.mri.2015.06.010
https://doi.org/10.1016/j.mri.2015.06.010
https://doi.org/10.1006/nimg.2001.1054
https://doi.org/10.1006/nimg.2001.1054
https://doi.org/10.1002/mrm.27577
https://doi.org/10.1155/2013/935154
https://doi.org/10.1016/j.compbiomed.2020.103742
https://doi.org/10.1016/j.compbiomed.2020.103742
https://doi.org/10.1016/j.neuroimage.2010.04.246
https://doi.org/10.1016/j.neuroimage.2010.04.246
https://doi.org/10.1016/j.neuroimage.2021.117997
https://doi.org/10.1016/j.neuroimage.2021.117997
https://doi.org/10.1016/j.neuroimage.2011.12.028
https://doi.org/10.1016/j.neuroimage.2011.12.028
https://afni.nimh.nih.gov/pub/dist/OHBM2023/ohbm_2023_PeterLauren.pdf
https://afni.nimh.nih.gov/pub/dist/OHBM2023/ohbm_2023_PeterLauren.pdf
https://doi.org/10.3389/fnins.2023.1076824
https://doi.org/10.3389/fnins.2023.1076824
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1016/j.neuroimage.2020.117519
https://doi.org/10.1016/j.neuron.2021.10.015
https://doi.org/10.1007/s00247-020-04875-y
https://doi.org/10.1007/s00247-020-04875-y
https://doi.org/10.1016/j.neuroimage.2005.05.058
https://doi.org/10.1016/j.neuroimage.2005.05.058
https://doi.org/10.1038/s41467-019-09230-w
https://doi.org/10.1038/s41467-019-09230-w
https://doi.org/10.1016/j.neuroimage.2021.118274
https://doi.org/10.1016/j.neuroimage.2021.118274
https://doi.org/10.1038/sdata.2016.110
https://doi.org/10.1038/sdata.2016.110
https://doi.org/10.1002/(sici)1522-2594(199907)42:1<87::aid-mrm13>3.0.co;2-o
https://doi.org/10.1002/(sici)1522-2594(199907)42:1<87::aid-mrm13>3.0.co;2-o
https://doi.org/10.1002/(sici)1522-2594(199907)42:1<87::aid-mrm13>3.0.co;2-o
https://doi.org/10.7554/elife.77599
https://doi.org/10.3389/fnins.2022.1073800
https://doi.org/10.1101/2020.09.28.306787
https://doi.org/10.1101/2020.09.28.306787
https://doi.org/10.1016/j.neuroimage.2008.09.037


43

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

APPENDIX A: CONSIDERATIONS FOR  
BANDPASSING (OR NOT) IN RESTING-STATE FMRI

Since the earliest days of resting-state FMRI (Biswal 
et  al., 1995), it has been quite common in the field to 
apply bandpassing in resting-state FMRI preprocessing, 
where “low-frequency fluctuations” (LFFs) within an inter-
val of approximately 0.01–0.1 Hz are kept in the EPI data 
and all frequencies outside that range are filtered out. 
Beyond historical precedent, additional reasons for such 
bandpassing typically include reduction of high-frequency 
noise or an attempt to reduce physiological components, 
though at least some of the latter get aliased down into 
the traditional LFF range. However, there are notable rea-
sons to not necessarily include bandpassing.

Firstly, there is still useful signal, not just noise, in 
BOLD data above 0.1 Hz (Gohel & Biswal, 2015; Shirer 
et al., 2015). Secondly, there is a tremendous statistical 
cost that is paid with bandpassing, removing a large 
number of degrees of freedom from the data. For each 
frequency removed from the original EPI time series 
spectrum, two degrees of freedom are used up. Simple 

relations for approximating loss of degrees of freedom 
are provided in Equations 1a and 1b. For typical data with 
TR = 2.0 s (such as in the resting-state data used above), 
standard LFF bandpassing to 0.01–0.1 Hz would use up 
over 60% of the degrees of freedom of the data, just from 
bandpassing, which would reduce the final DF count of 
approximately 90% in Figure  13B to just about 30% 
(Fig. 13C). For data with TR = 1.0 s, the same bandpass-
ing would use up over 80% of the DFs. Bandpassing has 
a very large statistical cost to pay.

Additionally, any processing pipeline must take care in 
how bandpassing is performed. There are multiple ways 
to perform bandpassing, of which one is the Fourier 
Transform, but it is mathematically incorrect to include it 
in preprocessing separate from the regression model 
(see Hallquist et al., 2013), unless the regression model 
was similarly bandpassed. One negative consequence of 
separating it can be to reintroduce frequencies that were 
supposed to be removed. But far more deleteriously, it 
can lead to using up all the degrees of freedom present in 
the original data, in a way that the analyst does not real-

International Symposium on Biomedical Imaging: Macro 
to Nano, Arlington, VA, USA (Vols. 1 and 2, pp. 1510–
1513). https://doi​.org​/10​.1109​/isbi​.2004​.1398837

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., 
Zuo, X. N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. 
(2018). Local-global parcellation of the human cerebral 
cortex from intrinsic functional connectivity MRI. Cereb 
Cortex, 28(9), 3095–3114. https://doi​.org​/10​.1093​
/cercor​/bhx179

Shirer, W. R., Jiang, H., Price, C. M., Ng, B., & Greicius, 
M. D. (2015). Optimization of rs-fMRI pre-processing for 
enhanced signal-noise separation, test-retest reliability, 
and group discrimination. Neuroimage, 117, 67–79. 
https://doi​.org​/10​.1016​/j​.neuroimage​.2015​.05​.015

Song, S., Bokkers, R. P. H., Edwardson, M. A., Brown, T., 
Shah, S., Cox, R. W., Saad, Z. S., Reynolds, R. C., Glen, 
D. R., Cohen, L. G., & Latour, L. L. (2017). Temporal 
similarity perfusion mapping: A standardized and model-
free method for detecting perfusion deficits in stroke. 
PLoS One, 12(10), e0185552. https://doi​.org​/10​.1371​
/journal​.pone​.0185552

Taylor, P. A., Chen, G., Cox, R. W., Glen, D. R., Rajendra, 
J. K., & Reynolds, R. C. (2018). FMRI processing with 
AFNI: Some comments and corrections on “Exploring 
the Impact of Analysis Software on Task fMRI Results.” 
bioRxiv. https://doi​.org​/10​.1101​/308643

Taylor, P. A., Glen, D. R., Chen, G., Cox, R. W., Hanayik, T., 
Rorden, C., Nielson, D. M., Rajendra, J. K., & Reynolds, 
R. C. (2024). A set of FMRI quality control tools in AFNI: 
Systematic, in-depth and interactive QC with afni_proc.
py and more. bioRxiv, 2024.03.27.586976. https://doi​.org​
/10​.1101​/2024​.03​.27​.586976

Taylor, P. A., Glen, D. R., Reynolds, R. C., Basavaraj, 
A., Moraczewski, D., & Etzel, J. A. (2023). Editorial: 
Demonstrating quality control (QC) procedures in fMRI. 
Front Neurosci, 17, 1205928. https://doi​.org​/10​.3389​
/fnins​.2023​.1205928

Taylor, P. A., Gotts, S. J., Gilmore, A. W., Teves, J., & 
Reynolds, R. C. (2022). A multi-echo FMRI processing 

demo including TEDANA in afni_proc.py pipelines. In 
Proceedings of OHBM-2022. https://afni.nimh.nih.gov 
/pub/dist/OHBM2022/OHBM2022_tayloretal_apmulti.pdf

Taylor, P. A., Reynolds, R. C., Calhoun, V., Gonzalez-
Castillo, J., Handwerker, D. A., Bandettini, P. A., Mejia, 
A. F., & Chen, G. (2023). Highlight results, don’t hide 
them: Enhance interpretation, reduce biases and improve 
reproducibility. Neuroimage, 274, 120138. https://doi​.org​
/10​.1016​/j​.neuroimage​.2023​.120138

Teves, J. B., Gonzalez-Castillo, J., Holness, M.,  
Spurney, M., Bandettini, P. A., Handwerker, D. A. 
(2023). The art and science of using quality control to 
understand and improve fMRI data. Front Neurosci, 17, 
1100544. https://doi.org/10.3389/fnins.2023.1100544

Waller, L., Erk, S., Pozzi, E., Toenders, Y. J., Haswell, C. C., 
Büttner, M., Thompson, P. M., Schmaal, L., Morey, R. A., 
Walter, H., & Veer, I. M. (2022). ENIGMA HALFpipe: 
Interactive, reproducible, and efficient analysis for 
resting-state and task-based fMRI data. Hum Brain 
Mapp, 43(9), 2727–2742. https://doi​.org​/10​.1002​/hbm​
.25829

Wang, P., Wang, J., Michael, A., Wang, Z., Klugah-Brown, 
B., Meng, C., & Biswal, B. B. (2022). White matter 
functional connectivity in resting-state fMRI: Robustness, 
reliability, and relationships to gray matter. Cereb 
Cortex, 32(8), 1547–1559. https://doi​.org​/10​.1093​/cercor​
/bhab181

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: 
A functional connectivity toolbox for correlated and 
anticorrelated brain networks. Brain Connect, 2(3), 
125–141. https://doi​.org​/10​.1089​/brain​.2012​.0073

Yan, C. G., Wang, X.-D., Zuo, X. N., & Zang, Y. F. (2016). 
DPABI: Data processing & analysis for (resting-state) 
brain imaging. Neuroinformatics, 14(3), 339–351. https://
doi​.org​/10​.1007​/s12021​-016​-9299​-4

Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB 
Toolbox for “pipeline” data analysis of resting-state fMRI. 
Front Syst Neurosci, 4, 13. https://doi​.org​/10​.3389​/fnsys​
.2010​.00013

https://doi.org/10.1109/isbi.2004.1398837
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.neuroimage.2015.05.015
https://doi.org/10.1371/journal.pone.0185552
https://doi.org/10.1371/journal.pone.0185552
https://doi.org/10.1101/308643
https://doi.org/10.1101/2024.03.27.586976
https://doi.org/10.1101/2024.03.27.586976
https://doi.org/10.3389/fnins.2023.1205928
https://doi.org/10.3389/fnins.2023.1205928
https://afni.nimh.nih.gov/pub/dist/OHBM2022/OHBM2022_tayloretal_apmulti.pdf
https://afni.nimh.nih.gov/pub/dist/OHBM2022/OHBM2022_tayloretal_apmulti.pdf
https://doi.org/10.1016/j.neuroimage.2023.120138
https://doi.org/10.1016/j.neuroimage.2023.120138
https://doi.org/10.3389/fnins.2023.1100544
https://doi.org/10.1002/hbm.25829
https://doi.org/10.1002/hbm.25829
https://doi.org/10.1093/cercor/bhab181
https://doi.org/10.1093/cercor/bhab181
https://doi.org/10.1089/brain.2012.0073
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.1007/s12021-016-9299-4
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.3389/fnsys.2010.00013


44

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

ize. As a result, the output of the regression model is 
purely noise and random fluctuations. In the present 
example, the censor fraction is quite low, but in practice 
for many time series (particularly for children and other 
motion-prone populations), it would be easy for motion 
and bandpassing to use up all available DFs. So, while 
one can implement bandpassing in the processing (and, 
again, it is implemented within the regression model to 
avoid mathematical inconsistency), one should consider 
whether it is worth the costs.

APPENDIX B: TIMELINE OF SELECTED AFNI_PROC.
PY FEATURES AND DEMO EXAMPLES

Over the past 16 years since afni_proc.py was first cre-
ated, many methodological and acquisition develop-
ments have occurred. The program has continued to 
grow, enabling a wider range of FMRI processing func-
tionality within its efficient pipeline-generating frame-
work. Some of these updates are noted for historical 
record and/or curiosity in Appendix Table B1.

There are multiple layers to what we simply refer to as 
“afni_proc.py.” Its history has been a combination of individ-
ual leadership, team development, and wider community 
contribution. The top layer is the actual Python language 
program itself, which parses the command line options and 
develops the analysis pipeline. R. Reynolds started the afni_
proc.py file and its primary library db_mod.py in 2006 and 
has been the primary developer of its growth since then. 
The next layer is the Python library “afnipy,” which is distrib-
uted within AFNI. It contains a range of functionality for han-
dling files, parsing text, calling the command line and 
performing a host of intermediate tasks in library files asso-
ciated with the large number of Python programs in AFNI. 
This has been largely developed over time by R. Reynolds, 
the other coauthors here and the members of the principal 
AFNI development group. The module has been designed 
to minimize external dependencies, for improved stability 
over time. The next layer is the larger AFNI code base itself. 
This was started by Robert Cox in 1994 and has been 
developed by the AFNI group and an extended set of con-
tributors since then. This contains a wide range of programs 

Appendix Table B1.  A brief history of afni_proc.py, though a selected list of major feature additions.

2006: start of afni_proc.py: FMRI preprocessing through regression modeling 
2008: include smoothness estimates (clustering) 
2009: enable use of 3dREMLfit (estimating temporal autocorrelation) 
2009: turn off masking of EPI results (better QC), though masks estimated 
2009: add ricor block (physio regressors) 
2009: add anat/EPI alignment via align_epi_anat.py with concatenatedtransformations 
2009: add censoring based on motion parameters 
2010: enable amplitude modulation in the linear regression model 
2011: auto-create review scripts for QC (basic quantities and driving GUI) 
2011: enable surface analysis (typically with SUMA-standardized meshes) 
2012: bandpassing (via mathematically correct, single-regression model) 
2012: enable tissue-based regression 
2013: ANATICOR for rest FMRI (local WM regressors that vary per voxel) 
2013: nonlinear align to template (from 3dQwarp; improve spatial specificity) 
2013: “MIN_OUTLIER” functionality for principled selection of volreg base 
2015: fast ANATICOR 
2015: ROI/PC regression 
2016: check left/right flip of EPI vs anat 
2016: enable reverse blip correction (reduce B0 distortion along phase axis) 
2017: Python 3 compatible (maintaining compatibility with Python 2) 
2018: enable multiecho FMRI data compatibility 
2018: auto-create QC HTML (built off basic/driver reviews, plus new features) 
2019: add more ME-FMRI combinations with tedana from MEICA group 
2020: option to compare afni_proc.py commands (help both users and developers) 
2021: ap_run_simple.tcsh wrapper: low-option afni_proc.py cmd for quick/scanner QC 
2022: local unifize option to help inhomogeneous EPI align to anatomical volumes 
2022: find_variance_lines.tcsh: detect high-variance I/S lines in EPI 
2023: run APQC HTML from local server, for interactive buttons and features 
2024: compute TSNR stats across automatic or provided ROIs 
2024: ap_run_simple_me.tcsh wrapper: multiecho FMRI version of ap_run_simple.tcsh 
2024: enable output of BIDS derivative tree 
2024: create BIDS App for ap_run_simple.tcsh processing 
2024: enable blip correction via phase map (e.g., processed by epi_b0_correct.py)



45

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

for handling data from fundamental processes through spe-
cialized tasks in various geometries and formats. The pro-
cessing script that afni_proc.py builds calls this layer of 
programs. Additionally, it also calls another layer of pro-
grams, which are those imported from external software 
that can be utilized, such as the tedana MEICA tool, sur-
face/parcellation results from FreeSurfer, and QC HTML 
visualization with NiiVue. Finally, we note that the contents 
and development of afni_proc.py have also benefited from 
its neuroimaging user base. Useful ideas have been sug-
gested by collaborators, either via Message Board posts, 
GitHub Issues, emails, or conversations.

The maintenance and testing of afni_proc.py also have 
multiple layers. There is a set of more than 100 tests run 
internally to evaluate and maintain its performance over 
time, running afni_proc.py more than 200 times and cur-
rently generating 135 processing scripts, all of which is 
compared against prior execution. The full AFNI release 
build will not proceed without the main class example of 
single-subject analysis succeeding. The AFNI GitHub page 
contains a set of continuation integration tests over pro-
grams run whenever the code base is updated. Users (par-
ticularly other developers) are able to make pull requests 
and raise issues via AFNI’s GitHub homepage. Any crashes, 
bug reports, questions, or suggestions can also be raised 
via the Message Board page. The regular use of afni_proc.
py in teaching examples also helps maintain its code.

As the list of afni_proc.py’s features has grown, so 
has its range of usage and applications. There are many 
examples of partial and full commands within the pro-
gram help, and this list will likely continue to increase. 
The AFNI Bootcamp data collection contains multiple 
examples of processing functionality along with input 
data, for ease of starting to practice with the program; 
there is also a large amount of educational material in 
the accompanying afni_handouts directory and AFNI 
Academy YouTube channel (https://www​.youtube​.com​
/c​/afnibootcamp), and other educational materials 
described in the main text.

In all cases, we note that FMRI techniques will adapt 
over time, as will the usage of various options in process-
ing. These examples and others that will be made in the 
future will provide useful guides and references for pro-
cessing choices, but users should always make their final 
processing choices based on their own study paradigm, 
goals, and data at hand. Progress in acquisition techniques 
may alter data properties; new options may be created to 
improve analyses; new understanding may shift thinking in 
processing strategies. Examples may be updated over 
time, or changed entirely. As noted in the main text, users 
can directly and usefully compare their own afni_proc.py 
pipeline commands against existing ones using “-compare_
opts ..” and “-compare_example_pair …”

APPENDIX C: SUPPLEMENTARY EXAMPLES OF 
RUNNING AFNI_PROC.PY

As noted in the main text, there are a vast array of study 
designs, technical assumptions, and processing options 
that researchers might adopt. In the main text, we pro-
vided four fundamental examples with comments on major 
processing steps (as well as two cases of running “simple” 
afni_proc.py commands for quick processing). Here we 
provide a small set of additional afni_proc.py examples, 
generally offering small variations or alternatives to the pri-
mary examples. Importantly, some of these might not be 
recommended choices, but we mention for contrast or for 
comparison; we highlight such cases clearly.

As with the examples in the main text, each of these 
supplementary afni_proc.py commands is freely avail-
able within this paper’s associated GitHub repository 
(https://github​.com​/afni​/apaper​_afni​_proc). Since each 
command here is directly based on one from the main 
text, we simply highlight the minor point-by-point 
changes in each case. A copy of the full extra example 
commands is given below in the text. In this case, the 
highlighting within the command reflects the option dif-
ferences from the referenced examples in the main text.

The first few supplementary examples are for resting-
state FMRI processing, based on main Ex. 3.

Ex. 5 differs by including bandpassing to the common 
low-frequency fluctuation (LFF) range of 0.01–0.1 Hz, by 
adding the regress block option “-regress_bandpass 
0.01 0.1.” While such bandpassing is widely used within 
resting-state processing, aimed at reducing the influence 
of breathing and heart rate in results, it also carries signif-
icant costs. The main text discusses the loss of degrees 
of freedom in modeling (see main Fig. 14), which might 
be prohibitive to processing in cases of medium-to-
severe motion, when accounted for. Appendix A contains 
further discussion in the literature about the implications 
and tradeoffs of including such bandpassing.

Ex. 6 starts from Ex. 3 and adds additional regressors 
based on non-GM tissue, using WM and CSF/ ventricle 
maps. The implementation in this example relies on add-
ing precalculated masks into the processing stream, 
each of which ends in the final space (here, MNI) on either 
the EPI or anatomical grid. Here, “-anat_follower_ROI …” 
is used to bring some results from running FreeSurfer’s 
recon-all on the subject’s T1w anatomical dataset. In 
each case, the user assigns a brief label for working with 
the dataset within the code and designates the final grid:

•	The ventricle map ${roi_FSvent} will have “epi” grid 
spacing (label = “FSvent”).

•	The WM map ${roi_FSWe} will have “epi” grid spac-
ing (label = “FSWe”).

https://www.youtube.com/c/afnibootcamp
https://www.youtube.com/c/afnibootcamp
https://github.com/afni/apaper_afni_proc


46

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

The partnered option “-anat_follower_erode FSvent FSWe” 
means that the ventricle and WM maps will each be 
eroded by one voxel on their input grid. This erosion is 
done to reduce the probability that they contain any GM 
information through partial voluming or imprecise estima-
tion, since they are used to generate tissue-based regres-
sors in the “regress” block, below. Larger erosion levels 
reduce the odds of including GM signal in the regressors, 
but quickly shrink the regions.

The first three principal components (PCs) from the 
(censored time series of the) eroded ventricles are utilized 
(“-regress_ROI_PC FSvent 3”), and these are included as 
per-run regressors (“-regress_ROI_PC_per_run FSvent”) 
in case multiple EPI datasets have been input to afni_
proc.py. This is quite similar to the CompCor approach 
(Behzadi et al., 2007). Secondly, fast ANATICOR (Jo et al., 
2013, 2020) is utilized (“-regress_anticor_fast”), by gener-
ating a local regressor for each voxel based on a distance-
weighted average over the eroded WM mask 
(“-regress_anaticor_label FSWe”). We note that the inclu-
sion of both ANATICOR and the earlier full RETROICOR 
depends on AFNI’s ability to include voxelwise regres-
sors, rather than being restricted to those that are con-
stant across the volume.

Additionally, Ex. 6 includes a different style of 
smoothing the data. Typical smoothing applies a con-
stant kernel size of blur through the entire FOV. EPI 
datasets have inhomogeneous spatial smoothness, and 
this variability remains after this process (though every-
where is smoother by a constant amount). In this exam-
ple, we have added “-blur_to_fwhm,” so that the blurring 
is applied in a nonconstant manner to create a final out-
put that has approximately homogeneous spatial 
smoothness. This option is particularly useful when 
combining data from different collections within a study, 
which is fairly common in resting-state studies, since 
each scanner or site will have different noise and spatial 
properties. Blurring the data to end up with the same 
target value is one way to reduce the inhomogeneity of 
the data. Adding this option changes the interpretation 
of the specified “-blur_size ..,” so that the given value no 
longer describes the amount of blurring added to the 
EPI time series, but instead the target amount of blur-
ring that the data should have at the end of the block. 
Note that at present, this option should only be used 
either after the “mask” block or with “-blur_in_auto-
mask,” as it is not appropriate to include nonbrain 
regions in the blur estimates.

Example 7 also starts from main Ex. 3, but it does not 
apply any blur (spatial smoothing). This is appropriate 
when preparing data for ROI-based analyses, to prevent 
signal mixing across ROI boundaries before analysis 
(which would artificially increase correlations). To make 

this processing change, “blur” is removed from the list of 
blocks, as is any option starting with “-blur_*.” Including 
the atlases or ROI maps of interest with “-anat_follower_
ROI ..” is particularly useful in this case, so that desired 
parcellations for later analysis are automatically mapped 
to the final EPI space.

It is worth noting that when blurring is not applied, the 
voxelwise TSNR will be notably decreased. In the final 
ROI-based analyses, this should not be a problem 
because the time series are averaged within the individ-
ual regions, boosting TSNR in that manner. However, 
when performing quality control (QC) checks, one has to 
take into consideration that seed-based correlation maps 
may look much sparser. Additionally, TSNR distributions 
within regions of interest will also be lower. One must 
account for this when evaluating or comparing results. It 
may be useful to check the data separately with blurring 
applied (e.g., using ap_run_simple*.tcsh), for a more 
standard view.

Example 8 is based on the surface-based, ME-FMRI 
processing in main Ex. 4. The only change in this supple-
mentary example is the choice of technique for combin-
ing the EPI’s multiple echos. Here, the straightforward 
optimal combination (OC) method of Posse et al. (1999) 
is used, by changing “-combine_method m_tedana” to 
“-combine_method OC.” This is a simple but useful 
weighted average across echos, which should purely 
boost local TSNR.

Example 9 is an extension of Ex. 3, using multiecho 
data and reverse phase-encoded distortion correction. 
Echo combination is performed using AFNI’s optimal 
combination (OC) method for weighting the echoes. The 
blur size is reduced from 5 to 4  mm due to the TSNR 
increase from combining multiple echoes. For simplicity, 
physiological noise correction and the “-anat_follower_
ROI” datasets were omitted, though they could easily be 
added back as a variation of this example, as the 
researcher prefers and the data allow.

Example 10 refers to the task-based FMRI processing 
in main Ex. 2. In this case, no processing option changes, 
but an additional output directory is created with a subset 
of standard afni_proc.py outputs in BIDS-Derivatives for-
mat, by adding the option “-bids_deriv yes.” In this case, 
the new directory will be placed in the afni_proc.py results 
directory and called “bids_deriv”; if desired, the user can 
change the “yes” argument to be a path to a new output 
location and name.

Additionally, the user can provide further information 
that might be used within the naming and structure of the 
BIDS-Derivative output via “-uvar ..” options. This option 
is used to provide a key+value pair that is passed along 
to the dictionary of user variables (“uvars”), described in 
the main text. For BIDS-Derivatives, one might add in a 



47

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024

session ID (if the input data were in a BIDS structure con-
taining that optional level) and/or a taskname, such as 
with “-uvar ses ses-01” and “-uvar taskname the.task.
name,” respectively.

Below is the text of the supplementary examples. 
They are also all included in the main GitHub repository 
(https://github​.com​/afni​/apaper​_afni​_proc​/tree​/main), for 
easier copy+pasting.

https://github.com/afni/apaper_afni_proc/tree/main


48

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024



49

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024



50

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024



51

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024



52

R.C. Reynolds, D.R. Glen, G. Chen et al.	 Imaging Neuroscience, Volume 2, 2024


